1.	(a)	resist	ors in series add to 20 <i>accept</i> potent d. across XY is 0.60 > gives (12 /20)	0 Ω and current is 0 tial divider stated of × 12 (= 7.2 V)) × 12 V (= 7.2)V	9.60 A r formula	B1 B1	
	(b)	(i)	the resistance of the	<u>e LDR</u> decreases		M1	
			(so total resistance i	in circuit decreases)	and current increases	A1	
		(ii)	resistance of <u>LDR a</u>	and 12Ω (in paralle)	l)/ <u>across XY</u> decreases	B1	
			so has smaller share alternative I i across XY fal	e of supply p.d. (and increases so p.d. ac lls	l p.d. across XY falls) ross 8.0 Ω increases; so p.d.	B1	[6]
2.	(a)	Line $V = P$	crosses 'y-axis' at 1.4 E - Ir; since $I = 0$ (Here)	4 (V) / V = E or 1.4 ence $V = E \text{ or } 1.4(V)$	(V) when $I = 0$	B1	
	(b)	(i)	(Graph extrapolated (Allow tolerance ± 0	d to give) current = 2 0.1A)	2.0 (A)	B1	
		(ii)	$E = I_{(\max)} r \qquad g$	gradient = r (Ignore	sign)	C1	
			$(r = \frac{1}{2.0})$ (0) $r = 0.7(0)$ (Ω)	(Attempt made to II) $r = 0.7(0) (\Omega)$	(Possible ecf)	A1	
		(iii)	(excessive) heating cell might 'explode'	of <u>cell</u> / energy was ' / <u>cell</u> goes 'flat' (q	sted <u>internally</u> / uickly)	B1	[5]

3. (a) No current (in circuit) / 'open' circuit / p.d. between **X** and **Y** is 5.0 V B1

(b)
$$V = \frac{R_2}{R_1 + R_2} \times V_0$$
 / $\frac{V_1}{V_2} = \frac{R_1}{R_2}$ / $I = \frac{3.4}{168} (= 2.02) \times 10^{-2} \text{ mA}$ C1

$$3.4 = \frac{168}{168 + R} \times 5.0 \quad / \quad \frac{1.6}{3.4} = \frac{R}{168} \quad / \quad R = \frac{1.6}{2.02 \times 10^{-2}}$$
C1

resistance
$$\approx 79 (k\Omega)$$
 (Total resistance of 250 k Ω scores 2/3) A1

[4]

[3]

4.	(a)	Energy (transformed by a device working) at 1 kW for 1 hour	B1
	(b)	$E = Pt / 5.8 = 0.12 \times \text{time} / (\text{time} =) 48.3 (\text{hr})$	C1
		(time =) $1.74 \times 10^5 \approx 1.7 \times 10^5$ (s)	A1

5.	(a)	(i)	Correctly selected and re-arranged: $\rho = RA/L$;	M1
			symbols defined: $A = \underline{cross-sectional}$ area, $R = resistance$, $L = length$	A1
		(ii)	ρ is independent of dimensions of the specimen of the material/AW	B1

(b)
$$R = 1.7 \times 10^{-8} \times 0.08/3.0 \times 10^{-4}$$
 C1
 $R = 4.5(3) \ 10^{-6} \ (\Omega)$ A1

[5]

1

2

3

6.	(a)	(i)	Q = It with knowledge of what the symbols mean (1) = $0.050 \times 4.0 \times 3600$ (1) = 720 (C) (1)		3
		(ii)	E = QV with knowledge of what the symbols mean (1) = 720 × 6.0 = 4320 (J) (1)		2

chemical (potential) (energy) (1) (b)

- I = 4.0/48 = 0.5/r (ie by proportion or by finding current) (1) (c) (i) $r = 24/4 = 6 (\Omega) (1)$
 - E = V2t/R with knowledge of what the symbols mean (1) (ii) $= 4.02 \times 2700 / 48(1)$ = 900 (J) (1)

	(d)	beca	suse the p.d. across it $(4.5 - 4.0)$ is known only to 1 sig.fig.	1	[13]
7.	(i)	M m	narked at the end of the graph	B1	
	(ii)	curre P =	ent is 5 (A) and p.d is 6 (V) $VI \setminus p = 6.0 \times 5.0$	C1	
		(Alle	ow $p = I^2 R$ or $p = V^2 \setminus R$)	C1	
		pow	er = 30 (W)	A1	
	(iii)	1.	$V_L = 1.0$ (V) (From the <i>I</i> / <i>V</i> graph) \ $R_L = 1.0/2.0$ or 0.5 (Ω)	M1	
			$V_R = 1.2 \times 2.0 \setminus R_T = 1.2 + 0.5$	M1	
			$V = 1.0 + 2.4 \setminus V = 1.7 \times 2.0$	A1	
			voltmeter reading = 3.4 (V)	A0	
		2.	$Vr = 4.5 - 3.4 (= 1.1 V) \setminus 4.5 = 2.0r + 3.4$ (Possible ecf)	C1	
			$r = \frac{1.1}{2.0}$		
			$r = 0.55 (\Omega)$ (1.05 Ω scores 0/2 since the lamp is igno	ored) A1	[9]

(iii) 900/4320 = 5/24 = (0.208) (1)

8. p.d.: energy transferred per unit charge from electrical form (into other B1 (i) forms, e.g. light/heat) e.m.f.: energy transferred per unit charge into electrical form (from other **B**1 forms, e.g. chemical/mechanical) $J C^{-1}$ (ii) B1

9.	(a)	(i)	resistance decreases/falls/drops (with increase in temperature)	B1
		(ii)	$100 \pm 10 \ \Omega$	B1
		(iii)	for low temps ΔR is large for $\Delta \theta$ and at high temps ΔR is small for same	B1
			$\Delta \theta$; so sensitivity decreases (continuously) from low to high temperatures	B1

[3]

1

(b)	(i)	correct circuit symbol	B1	
	(ii)	connections in parallel with fixed resistor B1	B1	
	(iii)	$R_{\rm th} = 100 \text{ to } 105 \ \Omega$	B1	
		$R_{\rm tot} = 200 + R_{\rm th}$	M1	
		$I = V/R_{\text{tot}} = 6/R_{\text{tot}} (= 0.02 \text{ A})$	A1	
	(iv)	$(V = IR = 0.02 \times 200) = 4.0 (V)$	A1	
				[10]

10.	Current is (directly) proportional to potential difference (for a metal conductor)	M1	
	provided the temperature \ (all) physical condition(s) remains constant	A1	
			[2]