1. (a) resistors in series add to 20Ω and current is 0.60 A
accept potential divider stated or formula
so p.d. across XY is $0.60 \times 12(=7.2 \mathrm{~V})$
gives $(12 / 20) \times 12 \mathrm{~V}(=7.2) \mathrm{V}$
(b) (i) the resistance of the LDR decreases
(so total resistance in circuit decreases) and current increases
(ii) resistance of $\underline{L D R}$ and 12Ω (in parallel)/across XY decreases so has smaller share of supply p.d. (and p.d. across XY falls)
alternative I increases so p.d. across 8.0Ω increases; so p.d. across $\boldsymbol{X Y}$ falls
2. (a) Line crosses 'y-axis' at $1.4(\mathrm{~V}) / V=E$ or $1.4(\mathrm{~V})$ when $I=0$ $V=E-I r$; since $I=0($ Hence $V=E$ or $1.4(\mathrm{~V})$)
(b) (i) (Graph extrapolated to give) current $=2.0$ (A) (Allow tolerance $\pm 0.1 \mathrm{~A}$)
(ii) $\quad E=I_{(\max)} r \quad$ gradient $=r($ Ignore sign $)$
$\left(r=\frac{1.4}{2.0}\right) \quad$ (Attempt made to find gradient)
$r=0.7(0)(\Omega) \quad r=0.7(0)(\Omega) \quad$ (Possible ecf)
(iii) (excessive) heating of cell / energy wasted internally / cell might 'explode' / cell goes 'flat' (quickly)
3. (a) No current (in circuit) / 'open' circuit / p.d. between \mathbf{X} and \mathbf{Y} is 5.0 V
(b) $\quad V=\frac{R_{2}}{R_{1}+R_{2}} \times V_{0} \quad, \quad \frac{V_{1}}{V_{2}}=\frac{R_{1}}{R_{2}} \quad / \quad I=\frac{3.4}{168}(=2.02) \times 10^{-2} \mathrm{~mA}$
$3.4=\frac{168}{168+R} \times 5.0 \quad, \quad \frac{1.6}{3.4}=\frac{R}{168} \quad, \quad R=\frac{1.6}{2.02 \times 10^{-2}}$
resistance $\approx 79(\mathrm{k} \Omega) \quad$ (Total resistance of $250 \mathrm{k} \Omega$ scores $2 / 3$)
4. (a) Energy (transformed by a device working) at 1 kW for 1 hour
(b) $E=P t / 5.8=0.12 \times$ time $/($ time $=) 48.3(\mathrm{hr})$ (time $=) 1.74 \times 10^{5} \approx 1.7 \times 10^{5}(\mathrm{~s})$
5. (a) (i) Correctly selected and re-arranged: $\rho=R A / L$;
(ii) ρ is independent of dimensions of the specimen of the material/AW
(b) $\quad R=1.7 \times 10^{-8} \times 0.08 / 3.0 \times 10^{-4}$ $R=4.5(3) 10^{-6}(\Omega)$
6. (a) (i) $\mathrm{Q}=\mathrm{It}$ with knowledge of what the symbols mean (1)
$=0.050 \times 4.0 \times 3600(1)$
$=720(\mathrm{C})(1)$
(ii) $\mathrm{E}=\mathrm{QV}$ with knowledge of what the symbols mean (1) $=720 \times 6.0=4320$ (J) (1)
(b) chemical (potential) (energy) (1)
(c) (i) $\mathrm{I}=4.0 / 48=0.5 / \mathrm{r}$ (ie by proportion or by finding current) (1) $\mathrm{r}=24 / 4=6(\Omega)(1)$
(ii) $\mathrm{E}=\mathrm{V} 2 \mathrm{t} / \mathrm{R}$ with knowledge of what the symbols mean (1)
$=4.02 \times 2700 / 48$ (1)
$=900(\mathrm{~J})(1)$
(iii) $900 / 4320=5 / 24=(0.208)(1)$
(d) because the p.d. across it $(4.5-4.0)$ is known only to 1 sig.fig.
7. (i) \mathbf{M} marked at the end of the graph
(ii) current is $5(\mathrm{~A})$ and p.d is $6(\mathrm{~V})$
$P=V I \backslash p=6.0 \times 5.0$
(Allow $p=I^{2} R$ or $p=V^{2} \backslash R$)
C1
power $=30(\mathrm{~W})$
A1
(iii) 1. $\quad V_{L}=1.0(\mathrm{~V})$ (From the I / V graph) $\backslash R_{L}=1.0 / 2.0$ or $0.5(\Omega) \quad$ M1
$V_{R}=1.2 \times 2.0 \backslash R_{\mathrm{T}}=1.2+0.5 \quad$ M1
$V=1.0+2.4 \backslash V=1.7 \times 2.0 \quad \mathrm{~A} 1$
voltmeter reading $=3.4(\mathrm{~V}) \quad$ A0
8. $\mathrm{Vr}=4.5-3.4(=1.1 \mathrm{~V}) \backslash 4.5=2.0 \mathrm{r}+3.4$ (Possible ecf)

$$
r=\frac{1.1}{2.0}
$$

$$
\mathrm{r}=0.55(\Omega) \quad(1.05 \Omega \text { scores } 0 / 2 \text { since the lamp is ignored })
$$

8. (i) p.d.: energy transferred per unit charge from electrical form (into other forms, e.g. light/heat) e.m.f.: energy transferred per unit charge into electrical form (from other B1 forms, e.g. chemical/mechanical)
(ii) $\mathrm{J} \mathrm{C}^{-1}$ B1
9. (a) (i) resistance decreases/falls/drops (with increase in temperature)

B1
(ii) $100 \pm 10 \Omega$ B1
(iii) for low temps ΔR is large for $\Delta \theta$ and at high temps ΔR is small for same B 1 $\Delta \theta$; so sensitivity decreases (continuously)from low to high temperatures B
(b) (i) correct circuit symbol B1
(ii) connections in parallel with fixed resistor B 1 B1
(iii) $R_{\mathrm{th}}=100$ to 105Ω B1
$R_{\text {tot }}=200+R_{\text {th }}$ M1
$I=V / R_{\text {tot }}=6 / R_{\text {tot }}(=0.02 \mathrm{~A})$ A1
(iv) $\quad(\mathrm{V}=\mathrm{IR}=0.02 \times 200)=4.0(\mathrm{~V})$ A1
10. Current is (directly) proportional to potential difference (for a metal conductor) M1 provided the temperature \backslash (all) physical condition(s) remains constant A1

