1. (a) (i) $\mathrm{E}=(\mathrm{Pt}=) 36 \times 3600$
allow $I=3 A$ and $E=V I t$, etc.
C1
$=1.3 \times 10^{5}(\mathrm{~J})$
accept $129600(J)$
A1
(ii) $\mathrm{Q}=\mathrm{E} / \mathrm{V}=1.3 \times 10^{5} / 12$ or $\mathrm{Q}=\mathrm{It}=3 \times 3600$
$\boldsymbol{e c f}(a)(i)$
C1
$=1.1 \times 10^{4}$
accept 1.08×10^{4}
unit: C
allow A s not $J V^{-1}$
B1
(iii) $\quad \mathrm{Q} / \mathrm{e}=1.1 \times 10^{4} / 1.6 \times 10^{-19}$
$e c f(a)(i i)$
C1
$=6.9 \times 10^{22}$
accept 6.75 or 6.8×10^{22} using 10800
(b) (i) no mark for quoting formula
the average displacement/distance travelled of the electrons along the wire per second;
allow in one second
B1
(over time/on average) they move slowly in one direction through the metal $/ \mathrm{Cu}$ lattice (when there is a p.d. across the wire);
(because) they collide constantly/in a short distance with the lattice/AW
max 2 marks from 3 marking points
(ii) \quad select $\mathrm{I}=\mathrm{nAev}(=3.0 \mathrm{~A})$

1 mark for correct formula
C1
2. (a) (i) Electrons in a metal B1
(ii) Ion in an electrolyte B1
(b) 1. $I=Q / t / I=650 / 5$
$I=130(\mathrm{~A}) \quad$ A1
2. $n=I / e=130 / 1.6 \times 10^{-19}$
$n=8.1 \times 1020$
C1
A1
3. (a) $R=R_{1}+R_{2} / R=200+120 / R=320$

C1
current $=\frac{8.0}{320}$
current $=2.5 \times 10^{-2}(\mathrm{~A})$
A0
(b) $\quad V=25 \times 10^{-3} \times 120 / V=\frac{120}{120+200} \times 8.0$
$V=3.0(\mathrm{~V}) \quad$ (Possible ecf)
B1
(c) p.d. across the $360(\Omega)$ resistor $=$ p.d. across the $120(\Omega)$ resistor /

There is no current between \mathbf{A} and $\mathbf{B} /$ in the voltmeter
B1 (Allow ' A \& B have same voltage' - BOD)
The p.d. calculated across 360Ω resistor is shown to be $3.0 \mathrm{~V} /$
The ratio of the resistances of the resistors is shown to be the same.
B1

[5]

4. (a) Into the page B1
(b) $I=\frac{\Delta Q}{\Delta t} \quad$ (Allow other subject, with or without Δ)
$($ charge $=) 7800 \times 0.23$
$1.794 \times 10^{3} \approx 1.8 \times 10^{3}(\mathrm{C}) \quad$ (Ignore minus sign)
$\left(1.8 \times 10^{6}(\mathrm{C})\right.$ scores $\left.2 / 3\right)$
(c) $\quad($ number $=) \frac{1.79 \times 10^{3}}{e} \quad($ Possible ecf)
$($ number $=) 1.12 \times 10^{22} \approx 1.1 \times 10^{22}$
5.

(a) $\quad Q=I t \quad \quad$ (Allow any subject)
$Q=0.040 \times 5.0 \times 60 \times 60 \backslash \quad Q=0.040 \times 1.8 \times 10^{4}$
charge $=720$
$\left(40 \times 5=200\right.$ or $0.040 \times 5=0.02$ or $40 \times 1.8 \times 10^{4}=7.2 \times 10^{5}$ scores $\left.1 / 2\right)$
coulomb $\backslash \mathrm{C} \backslash \mathrm{As}$$\quad \begin{aligned} & \text { (b) It is less because the average current is less } \backslash \text { area (under graph) is less } \backslash \\ & \text { current 'drops' after } 3 \text { hours. }\end{aligned}$ B1
$\begin{array}{lll}\text { 6. (a) Ammeter in series } & & \text { B1 } \\ & \text { (across the ends of the wire) } & \text { B1 }\end{array}$
(b) $\rho=\frac{R A}{L}$
(Allow any subject) ($\rho=$ resistivity is given in the question)
Any four from:
$\begin{array}{ll}\text { Measure the length of the wire using a ruler } & \text { B1 }\end{array}$
Measure the diameter of the wire B1
$\begin{array}{ll}\text { using a micrometer } \backslash \text { vernier (calliper) } & \text { B1 }\end{array}$
Calculate the (cross-sectional) area using $\mathrm{A}=\pi \mathrm{r} 2 \backslash \mathrm{~A}=\pi \mathrm{d} 2 / 4 \quad \mathrm{~B} 1$
Calculate the resistance (of the wire) using $R=\frac{V}{I} \quad$ B1
Repeat experiment for different lengths \backslash current \backslash voltage \backslash diameter
(to get an average) \quad B1
$\begin{array}{ll}\text { Plot a graph of } R \text { against } L . \text { The gradient }=\rho / A . & B 1\end{array}$
(Or Plot V against I. The gradient is $\rho \mathrm{L} / \mathrm{A}$)
Structure and organisation. B1
Spelling and grammar. B1

QWC

The answer must involve physics, which attempts to answer the question.
Structure and organisation
Award this mark if the whole answer is well structured.

Spelling and Grammar mark

More than two spelling mistakes or more than two grammatical errors means the SPAG mark is lost.
7. Coulomb / C B1
8. (a) Parallel
(b) \quad (i) $\quad I=\frac{12}{8.0}$
current $=1.5(\mathrm{~A})$
A1
(ii) $\quad P=\frac{V^{2}}{R} \quad / \quad P=I V \quad P=I^{2} R$
$P=\frac{12^{2}}{8} \quad / \quad P=1.5 \times 12 \quad P 1.5^{2} \times 8.0 \quad$ (Possible ecf)
power $=18(\mathrm{~W})$
C1

C1
(iii) $\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\left(\frac{1}{R_{3}}\right) \quad / \quad \frac{1}{R}=\frac{1}{8}+\frac{1}{8}+\frac{1}{8}$
$\frac{1}{R}=3 \times \frac{1}{8}$
resistance $=2.67 \approx 2.7(\Omega)$ (Allow answer expressed as $8 / 3$)
(0.375 or $3 / 8$ scores $2 / 3$)
(iv) $\left.\begin{array}{ll}\text { energy }=0.018 \times 12 \times 3 & \\ \text { energy }=0.648 \approx 0.65(\mathrm{~kW} \mathrm{~h}) & \text { (Possible ecf) } \\ (0.22(\mathrm{~kW} \mathrm{~h}) \text { scores } 1 / 2) & \text { A1 } \\ (648(\mathrm{~kW} \mathrm{~h}) \text { scores } 1 / 2) & \\ \left(2.3 \times 10^{6}(\mathrm{~J}) \text { scores } 1 / 2\right) & \end{array}\right)$
(c) It will be brighter B1

The current is larger / correct reference to: $P \propto 1 / R \quad$ B1
9. The sum of the currents entering a point / junction is equal to the sum of the currents leaving (the same point) Or 'Algebraic sum of currents at a point $=0$ '
(-1 for the omission of 'sum' and -1 for omission of 'point'/ 'junction')
(Do not allow $I_{1}+I_{2}=I_{3}+I_{4}$ unless fully explained)

