

Data, Formulae and Relationships Booklet

GCE Advanced Level and Advanced Subsidiary

Advancing Physics

Physics units (PILOT) 7730–7735 Physics units 2860–2865

These data, formulae and relationships are for the use of candidates following the Advancing Physics Pilot and Advancing Physics.

Clean copies of this booklet must be available in the examination room, and must be given up to the invigilator at the end of the examination.

Copies of this booklet may be used for teaching.

Data

Values are given to three significant figures, except where more – or less – are useful.

Physical constants

speed of light	С	$3.00 \times 10^8 \mathrm{ms}^{-1}$
permittivity of free space	\mathcal{E}_0	$8.85 \times 10^{-12} \ C^2 \ N^{-1} \ m^{-2}$ (or F $m^{-1})$
electric force constant	$k=\frac{1}{4\pi\varepsilon_0}$	$8.98 \times 10^9 \text{ N m}^2 \text{ C}^{-2} (\approx 9 \times 10^9 \text{ N m}^2 \text{ C}^{-2})$
permeability of free space	μ_0	$4~\pi \times 10^{-7}$ N A^{-2} (or H $m^{-1})$
charge on electron	е	$-1.60 \times 10^{-19} \text{ C}$
mass of electron	m _e	9.11×10^{-31} kg = 0.000 55 u
mass of proton	m_p	1.673×10^{-27} kg = 1.007 3 u
mass of neutron	m _n	1.675×10^{-27} kg = 1.008 7 u
mass of alpha particle	m_{α}	6.646×10^{-27} kg = 4.001 5 u
Avogadro constant	L, N_A	$6.02 \times 10^{23} \text{ mol}^{-1}$
Planck constant	h	$6.63 \times 10^{-34} \mathrm{Js}$
Boltzmann constant	k	$1.38 \times 10^{-23} \mathrm{J}\mathrm{K}^{-1}$
molar gas constant	R	$8.31 \text{ J mol}^{-1} \text{ K}^{-1}$
gravitational force constant	G	$6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$

Other data

standard temperature and pressure	(stp)		273 K (0 °C), 1.01×10^5 Pa (1 atmosphere)
molar volume of a gas at stp		V_m	$2.24\times10^{-2}m^3$
gravitational field strength at the East surface in the UK	arth's	g	$9.81{ m Nkg^{-1}}$
Conversion factors			
unified atomic mass unit	1u	= 1.0	$661 \times 10^{-27} \text{kg}$
	1 day	= 8.	$64 \times 10^4 \mathrm{s}$

2	
1 year	$\approx 3.16 \times 10^7 \mathrm{s}$
1 light year	$\approx 10^{16} \mathrm{m}$

Mathematical constants and equations

e = 2.72	$\pi = 3.14$	1 radian = 57.3°
$\operatorname{arc} = r\theta$		circumference of circle = $2\pi r$
$\sin\theta \approx \tan \theta \approx \theta$ and $\cos \theta \approx 1$ for small θ		area of circle = πr^2
		surface area of cylinder = $2\pi rh$
$\ln(x^n) = n \ln x$		<i>volume of cylinder</i> = $\pi r^2 h$
$\ln(\mathrm{e}^{kx}) = kx$		surface area of sphere = $4\pi r^2$
		<i>volume of sphere</i> = $\frac{4}{3} \pi r^3$

Prefixes

10 ⁻¹²	10 ⁻⁹	10 ⁻⁶	10 ⁻³	10 ³	10 ⁶	10 ⁹
р	n	μ	m	k	М	G

Formulae and relationships

Optics

focal length	$\frac{1}{v} = \frac{1}{u} + \frac{1}{f}$	Cartesian convention (object distance <i>u</i> , image distance <i>v</i> , focal length <i>f</i>)
refractive index	$n = \frac{\sin i}{\sin r} = \frac{\text{speed of light in vacuum}}{\text{speed of light in medium}}$	(angle of incidence i , angle of refraction r)
Electricity		
power	$P = IV = I^2R$	(power P , potential difference V , current I)
	$V_{\text{load}} = E - IR_{\text{internal}}$	(emf <i>E</i> , internal resistance R_{internal})
conductance	$G=rac{I}{V}$	(conductance G)
	$G = G_1 + G_2 + \dots$	(conductors in parallel)
resistance	$R = R_1 + R_2 + \dots$	(resistors in series)
conductivity	$G = \frac{\mathbf{G}A}{l}$	(conductivity σ , cross section <i>A</i> , length <i>l</i>)
capacitance	energy stored = $\frac{1}{2}QV = \frac{1}{2}CV^2$	(charge <i>Q</i> , capacitance <i>C</i>)
discharge of capacitor	$Q = Q_0 \mathrm{e}^{-t/\!$	(initial charge Q_0 , time constant <i>RC</i>)
	$\tau = RC$	(time constant τ)

Materials

for a material in tension

Hooke's law

F = kx

stress =	tension cross-sectional area
strain =	extension original length
modulus =	stress strain

Elastic strain energy $=\frac{1}{2}kx^2$

Young

(tension *F*, spring constant *k*, extension *x*)

Gases

kinetic theory of gases

$$pV = \frac{1}{3} Nm\overline{c^2}$$

(pressure *p*, volume *V*, number of molecules *N*, mass of molecule *m*, mean square speed $\overline{c^2}$)

Motion and forces

force = rate of change of momentum

impulse = $F\Delta t$

power = Fv

(force *F*) (velocity *v*)

components of a vector in two perpendicular directions

(initial speed *u*, final speed *v*, time taken *t*, acceleration *a*, distance travelled *s*)

equations for uniformly accelerated motion	$s = ut + \frac{1}{2}at^2$
	v = u + at
	$v^2 = u^2 + 2as$

(radius of circle r)

for circular motion

Energy and thermal effects

efficiency	efficiency = $\frac{\text{useful energy output}}{\text{energy input}}$	
energy	$\Delta E = mc\Delta\theta$	(change in energy ΔE , mass <i>m</i> , specific thermal capacity <i>c</i> , temperature change $\Delta \theta$)
Boltzmann factor	$e^{(-\mathcal{E}/_{kT})}$	(ratio of numbers of particles in states differing in energy by ε , at temperature <i>T</i>)

 $a = \frac{v^2}{r}$

Waves

Oscillations

angles of maxima θ) $\frac{d^2x}{dt^2} = a = -\left[\frac{k}{m}\right]x = -(2\pi f)^2 x \qquad (acceleration a, force per unit displacement k, mass m, displacement x, frequency f)$ $x = A \cos 2\pi f t \qquad (amplitude A, time t)$ $x = A \sin 2\pi f t$ $T = 2\pi \sqrt{\frac{m}{k}} \qquad (periodic time T)$

particles))

(on a distant screen from a diffraction grating or double slit; order *n*, wavelength λ ,

total energy
$$E = \frac{1}{2} kA^2 = \frac{1}{2} mv^2 + \frac{1}{2} kx^2$$

 $f = \frac{1}{T}$

 $n\lambda = d\sin\theta$

Atomic and nuclear physics

 $\frac{\Delta N}{\Delta t} = -\lambda N$ radioactive decay (number *N*, decay constant λ) $N = N_0 e^{-\lambda t}$ (initial number N_0) $T_{\frac{1}{2}} = \frac{\ln 2}{\lambda}$ (half-life $T_{\underline{1}}$) absorbed dose = energy deposited per unit mass $risk = probability \times consequence$ expected random variation in N random counts is of the order \sqrt{N} $E_{\rm rest} = mc^2$ mass-energy relationship (energy *E*, mass *m*, speed of light *c*) E = hf(photon energy E, Planck constant h, energy-frequency relationship for photons frequency f) $\lambda = \frac{h}{p}$ (wavelength λ , Planck constant *h*, momentum p (= mv for slow moving

Field and potential

for all fields	field strength = $-\frac{\mathrm{d}V}{\mathrm{d}r} \approx -\frac{\Delta V}{\Delta r}$	(potential gradient dV/dr)
gravitational fields	$g = \frac{F}{m}$	(gravitational field strength g, gravitational force F, mass m)
	$V_{\rm grav} = -\frac{GM}{r}$	(gravitational potential V_{grav} , gravitational constant <i>G</i> , mass <i>M</i> , distance <i>r</i>)
electric fields	$V_{\text{elec}} = -\frac{kQ}{r}$	(electric potential V_{elec} , electric force constant <i>k</i> , charge <i>Q</i> , distance <i>r</i>)
Electromagnetism		
force on a current carrying conduct	F = $I I B$	(flux density <i>B</i> , current <i>I</i> , length <i>I</i>)

force on a moving charge	F = Q v B	(charge Q , velocity perpendicular to field v)
	$\varepsilon = -\frac{\mathrm{d}(N\Phi)}{\mathrm{d}t}$	(induced emf ε , flux Φ , number of turns linked N)