Data, Formulae and Relationships Booklet

GCE Advanced Level and Advanced Subsidiary

 Advancing Physics

 Advancing Physics}

Physics units (PILOT) 7730-7735
 Physics units 2860-2865

These data, formulae and relationships are for the use of candidates following the Advancing Physics Pilot and Advancing Physics.

Clean copies of this booklet must be available in the examination room, and must be given up to the invigilator at the end of the examination.

Copies of this booklet may be used for teaching.

DATA, FORMULAE AND RELATIONSHIPS

Data

Values are given to three significant figures, except where more - or less - are useful.

Physical constants

speed of light
permittivity of free space
electric force constant
permeability of free space
charge on electron
mass of electron
mass of proton
mass of neutron
mass of alpha particle
Avogadro constant
Planck constant
Boltzmann constant
molar gas constant
gravitational force constant

$$
\begin{array}{cl}
c & 3.00 \times 10^{8} \mathrm{~ms}^{-1} \\
\varepsilon_{0} & 8.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}\left(\text { or } \mathrm{F} \mathrm{~m}^{-1}\right) \\
k=\frac{1}{4 \pi \varepsilon_{0}} & 8.98 \times 10^{9} \mathrm{~N} \mathrm{~m}^{2} \mathrm{C}^{-2}\left(\approx 9 \times 10^{9} \mathrm{~N} \mathrm{~m}^{2} \mathrm{C}^{-2}\right)
\end{array}
$$

$\mu_{0} \quad 4 \pi \times 10^{-7} \mathrm{~N} \mathrm{~A}^{-2}$ (or $\mathrm{H} \mathrm{m}^{-1}$)
$e \quad-1.60 \times 10^{-19} \mathrm{C}$
$m_{e} \quad 9.11 \times 10^{-31} \mathrm{~kg}=0.00055 \mathrm{u}$
$m_{p} \quad 1.673 \times 10^{-27} \mathrm{~kg}=1.0073 \mathrm{u}$
$m_{n} \quad 1.675 \times 10^{-27} \mathrm{~kg}=1.0087 \mathrm{u}$
$m_{\alpha} \quad 6.646 \times 10^{-27} \mathrm{~kg}=4.0015 \mathrm{u}$
$L, N_{A} \quad 6.02 \times 10^{23} \mathrm{~mol}^{-1}$
$\begin{array}{ll}h & 6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}\end{array}$
$k \quad 1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
$R \quad 8.31 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
$G \quad 6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$

Other data

standard temperature and pressure (stp)
molar volume of a gas at stp
gravitational field strength at the Earth's surface in the UK

Conversion factors

unified atomic mass unit	1 u	$=1.661 \times 10^{-27} \mathrm{~kg}$
1 day	$=8.64 \times 10^{4} \mathrm{~s}$	
1 year	$\approx 3.16 \times 10^{7} \mathrm{~s}$	
	1 light year	$\approx 10^{16} \mathrm{~m}$

Mathematical constants and equations

$e=2.72$

$$
\pi=3.14
$$

$\operatorname{arc}=r \theta$
$\sin \theta \approx \tan \theta \approx \theta$
and $\cos \theta \approx 1$ for small θ
$\ln \left(x^{n}\right)=n \ln x$
$\ln \left(\mathrm{e}^{k x}\right)=k x$

1 radian $=57.3^{\circ}$
circumference of circle $=2 \pi r$
area of circle $=\pi r^{2}$
surface area of cylinder $=2 \pi r h$
volume of cylinder $=\pi r^{2} h$
surface area of sphere $=4 \pi r^{2}$
volume of sphere $=\frac{4}{3} \pi r^{3}$

Prefixes

10^{-12}	10^{-9}	10^{-6}	10^{-3}	10^{3}	10^{6}	10^{9}
p	n	μ	m	k	M	G

Formulae and relationships

Optics

focal length

$$
\frac{1}{v}=\frac{1}{u}+\frac{1}{f}
$$

refractive
index

$$
n=\frac{\sin i}{\sin r}=\frac{\text { speed of light in vacuum }}{\text { speed of light in medium }}
$$

Cartesian convention

(object distance u, image distance v, focal length f)
(angle of incidence i, angle of refraction r)

Electricity

power
conductance
resistance
conductivity
capacitance
discharge of capacitor

$$
P=I V=I^{2} R
$$

$$
V_{\text {load }}=E-I R_{\text {internal }}
$$

$$
G=\frac{I}{V}
$$

$$
G=G_{1}+G_{2}+\ldots \ldots
$$

$$
R=R_{1}+R_{2}+\ldots \ldots .
$$

$$
G=\frac{\sigma A}{l}
$$

$$
\text { energy stored }=\frac{1}{2} Q V=\frac{1}{2} C V^{2}
$$

$$
\begin{aligned}
Q & =Q_{0} \mathrm{e}^{-t / R C} \\
\tau & =R C
\end{aligned}
$$

Materials

for a material in tension
Hooke's law

$$
F=k x
$$

$$
\begin{aligned}
\text { stress } & =\frac{\text { tension }}{\text { cross-sectional area }} \\
\text { strain } & =\frac{\text { extension }}{\text { original length }} \\
\text { Young modulus } & =\frac{\text { stress }}{\text { strain }} \\
\text { Elastic strain energy } & =\frac{1}{2} k x^{2}
\end{aligned}
$$

(tension F, spring constant k, extension x)
(power P, potential difference V, current I)
(emf E, internal resistance $R_{\text {internal }}$)
(conductance G)
(conductors in parallel)
(resistors in series)
(conductivity σ, cross section A, length l)
(charge Q, capacitance C)
(initial charge Q_{0}, time constant $R C$)
(time constant τ)
-

Gases

kinetic theory of gases

$$
p V=1 / 3 N m \overline{c^{2}}
$$

(pressure p, volume V, number of molecules N, mass of molecule m, mean square speed $\overline{c^{2}}$)

Motion and forces

$$
\begin{array}{rlrl}
\text { force } & =\text { rate of change of momentum } & \\
\text { impulse } & =F \Delta t & & (\text { force } F) \\
\text { power } & =F v & \quad(\text { velocity } v)
\end{array}
$$

components of a vector in two perpendicular directions
$F \sin \theta$

equations for uniformly accelerated motion $\quad s=u t+\frac{1}{2} a t^{2}$

$$
\begin{gathered}
v=u+a t \\
v^{2}=u^{2}+2 a s
\end{gathered}
$$

for circular motion
$a=\frac{v^{2}}{r}$
(initial speed u, final speed v, time taken t, acceleration a, distance travelled s)
(radius of circle r)

Energy and thermal effects

efficiency

$$
\text { efficiency }=\frac{\text { useful energy output }}{\text { energy input }}
$$

energy

$$
\Delta E=m c \Delta \theta
$$

(change in energy ΔE, mass m, specific thermal capacity c, temperature change $\Delta \theta$)
(ratio of numbers of particles in states differing in energy by ε, at temperature T)

Waves

$$
n \lambda=d \sin \theta
$$

(on a distant screen from a diffraction grating or double slit; order n, wavelength λ, angles of maxima θ)

Oscillations

$$
\begin{array}{rlr}
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}=a & =-\left[\frac{k}{m}\right] x=-(2 \pi f)^{2} x & \begin{array}{l}
\text { (acceleration } a, \\
\text { force per unit displacement } k \text {, mass } m, \\
\text { displacement } x \text {, frequency } f \text {) }
\end{array} \\
x & =A \cos 2 \pi f t & \\
\mathrm{x} & =A \sin 2 \pi f t & \text { (amplitude } A, \text { time } t \text {) } \\
T & =2 \pi \sqrt{\frac{m}{k}} & \\
f & =\frac{1}{T} & \\
\text { total energy } E & =\frac{1}{2} k A^{2}=\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2} &
\end{array}
$$

Atomic and nuclear physics

radioactive decay

$$
\begin{aligned}
\frac{\Delta N}{\Delta t} & =-\lambda N & & \text { (number } N, \text { decay constant } \lambda \text {) } \\
N & =N_{0} \mathrm{e}^{-\lambda t} & & \text { (initial number } N_{0} \text {) } \\
T_{\frac{1}{2}} & =\frac{\ln 2}{\lambda} & & \text { (half-life } T_{\frac{1}{2}} \text {) }
\end{aligned}
$$

absorbed dose = energy deposited per unit mass

$$
\text { risk }=\text { probability } \times \text { consequence }
$$

expected random variation in N random counts is of the order \sqrt{N}
mass-energy relationship
energy-frequency relationship for photons

$$
\begin{aligned}
E_{\mathrm{rest}} & =m c^{2} \\
E & =h f \\
\lambda & =\frac{h}{p}
\end{aligned}
$$

(energy E, mass m, speed of light c)
(photon energy E, Planck constant h, frequency f)
(wavelength λ, Planck constant h, momentum p ($=m v$ for slow moving particles))

Field and potential

for all fields
field strength $=-\frac{\mathrm{d} V}{\mathrm{~d} r} \approx-\frac{\Delta V}{\Delta r}$
(potential gradient $\mathrm{d} V / \mathrm{d} r$)
gravitational fields

$$
\begin{aligned}
g & =\frac{F}{m} \\
V_{\text {grav }} & =-\frac{G M}{r}
\end{aligned}
$$

electric fields

$$
V_{\text {elec }}=-\frac{k Q}{r}
$$

(gravitational field strength g, gravitational force F, mass m)
(gravitational potential $V_{\text {grav }}$, gravitational constant G, mass M, distance r)
(electric potential $V_{\text {elec }}$, electric force constant k, charge Q, distance r)

Electromagnetism

force on a current carrying conductor	$F=I l B$
force on a moving charge	$F=Q v B$
	$\varepsilon=-\frac{\mathrm{d}(N \Phi)}{\mathrm{d} t}$

(flux density B, current I, length l)
(charge Q, velocity perpendicular to field v)
(induced emf ε, flux Φ, number of turns linked N)

