

Physics B (Advancing Physics)

Advanced Subsidiary GCE

Unit G492: Understanding Processes/Experimentation and Data Handing

Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2011

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

Qn	Expected Answers	Marks	Additional guidance
1 (a)	$kg m s^{-2} (1);$	2	
(b)	N m <u>and</u> W s (1)		
2 (a)	10 ⁻⁶ (1)	ິ ດ	
(b)	10 ³ (1)	2	
3		2	Three equal-length arrows (by eye) joined tip-to-tail (1)
		-	Forming a (closed equilateral) triangle (1)
4	increasing amplitude		Deduct one mark for each extra tick.
	increasing frequency		
	increasing intensity	2	
	increasing wavelength		
	increasing width ✓		
5 (a)	$d = 1 \times 10^{-3} \text{ m}/400 = 2.5 \times 10^{-6} \text{ m} (1)$	1	
(b)	$n\lambda - d\sin\theta \rightarrow \sin\theta - n\lambda/d$		No marks for first order
()	$\sin \theta = 2 \times 5.0 \times 10^{-7} \text{ m/1 } 6 \times 10^{-6} \text{ m} = 0.625$		If you see 38.7°, it must be right = (2)
	$\Rightarrow \theta = 30^{\circ} (1) \text{m} (1) \text{e}$	2	Allow (1) m for using the value of <i>d</i> from (a)
6 (2)	$E = 850 \text{ kg x} (27 \text{ m s}^{-1}/15 \text{ s}) = 1530 \text{ N} \approx 1500 \text{ N}(1)\text{m} (1)\text{s}$	ົ	
0 (a)	$7 = 0.00 \text{ Kg} \times (27 \text{ H} \text{ S} 710 \text{ S}) = 1500 \text{ N} \approx 1500 \text{ N}(1) \text{ H}(1) \text{ H}(1)$	2	
(b)	$P = Fv = 1100 \text{ N} \times 27 \text{ m s}^{-1} = 29700 \text{ W} = 30000 \text{ W}(1)$	1	
7	$ \text{displacement} = \sqrt{(15-3)^2 + 7^2} = \sqrt{193} = 13.9/14$	4	Allow any clear indication of direction, e.g. N 30.3° W,
	paces (1)	Ĩ	Including diagram with correct angle labelled.
			For scale drawing, allow $13 - 15$ pades at $28 - 32$
	bearing = $360^{\circ} \arctan(7/(15-3)) = 360^{\circ} - \arctan(0.583)$		Allow 30.3°W of N or 59.7° N of W or either angle labelled on
	$= 360^{\circ} - 30.3^{\circ} = 330^{\circ}$	2	the diagram.
	1 st mark is for calculation of the angle and the 2 nd is for		
	correctly reporting it.		
8 (a)	'loop' = $\frac{1}{2}\lambda$ and 0.5 × 20 cm = 50 cm / 5 (1)	1	Allow alternative valid approach, e.g. 5 half-wavelengths
			= 50 cm so λ = 50 cm/(5 × 0.5) = 20 cm
(b)	Appropriate test proposed: can be assumed if an appropriate test is carried out correctly (1) proposed test carried out correctly on all 3 data sets(1)		Should calculate, for all 3 data pairs, either f^2/T (14.4, 14.5,
			14.7) or f/\sqrt{T} (3.79, 3.80, 3.83) or their inverses (0.0694,
			0.0692, 0.0680) and (0.264, 0.263, 0.261).
		3	Allow conclusion 'No' only if candidate indicates that
			calculated 'constant' shows a distinct trend.
	conclusion (ves, to precision of data given) (1)		Max 1 mark for answers involving graphs.
	Section A total:	21	

Qn		Expected Answers	Marks	Additional guidance
9 (a)	(i)	v = 0 initially (1)	1	'flat' is not enough without reference to 0
	(ii)	W > T (and then $W = T$) and then $T > W(1)Because W is decreasing/it is ejecting gas (1)$	2	Do not penalise for statements or idea of T increasing.
(b)	(i)	tangent drawn at $t = 6.0$ s with $\Delta t \ge 1$ (1) Uses $\Delta v/\Delta t$ (1) Answer in range 9 to 11 m s ⁻² (1)	3	1 st mark is independent of the others e.g. gradient – allow rounding (this is a <i>show that</i> question)
	(ii)	$F_{\text{res}} = ma = 6.9 \text{ kg} \times 10 \text{ m s}^{-2} = 69 \text{ N or } W = 6.9 \text{ kg} \times 9.8 \text{ N kg}^{-1}$ = 68N ≈ 69 N (1) so $T = F_{\text{res}} + W$ must be about double $W(1)$	2	Use own acceleration or 10 m s ⁻² Allow algebraic approach $ma = T - mg \Rightarrow T = ma + mg$ And $a \approx g$ so $T = 2mg$
(c)		Starts curving up sooner(1)	2	Allow curve starting at zero.
		Curves diverge continually (1)	10	Judge by eye
10 (2)		Energy needed to liberate electrons (1):	10	One mark for each point
		Higher frequency/lower wavelength means higher energy photons (1); light provides energy in 'packets' (1); violet photons are energetic enough to liberate electrons, while red are not (1); greater intensity = more photons (1); one photon liberates one electron (1); more photons \Rightarrow more electrons produced (1); in wave model, red light will emit if you wait long enough but this does not happen (so wave model is wrong) (1)	4	QWC is organise information clearly. The 4 th mark would not be awarded for a confused answer which does not link quantum behaviour with red and violet light.
(b)		$E = hf = 6.6 \times 10^{-34} \text{ J s} \times 5.6 \times 10^{14} \text{ Hz} = 3.7 \times 10^{-19} \text{ J}$ (1); comparison of calculated value with given threshold (1)	2	ORA: calculate $f_{min} = 3.7 \times 10^{-19} \text{J}/6.6 \times 10^{-34} \text{J s} = 5.6 \times 10^{14} \text{Hz}(1);$
(c)		No electrons produced below 3.7 (× 10 ⁻¹⁹ J)(1); Above this, (extra) energy supplied goes to electron (1)	2	Reject reference to direct proportion.
(d)		Any reasonable application/use involving detection of light or measurement of its intensity (1); limitation e.g. limited range of wavelengths detectable (not red end of spectrum), need for clean potassium surface (1)	2	E.g. solar panel, measuring light level, automatic switch.
		Total:	10	

Qn		Expected Answers	Marks	Additional guidance
11 (a)	(i)	(70°/360°)×365 days(1)m; = 70.97(1)e (≈71 days)	2	71.0 implies evaluation. Allow rounding of intermediate calculation.
	(ii)	period = 71×24×60/40 = 2556 minutes (1)m (1)e	2	70.97 days \Rightarrow 2555 minutes. Accept 2600 minutes for 2 marks
(b)	(i) (ii)	half d = opposite side of right-angled triangle with vertex 35° (1) $0.5 \times d/R = \sin(35^\circ) \Rightarrow d = 2R \sin(35^\circ)$ (1) $d = 2 \times 1.4 \times 10^{11} \text{ m} \times \sin(35^\circ) = 1.6 \times 10^{11} \text{ m}$ $c = 1.6 \times 10^{11} \text{ m}/(11 \times 60 \text{ s}) = 2.4 \times 10^8 \text{ m s}^{-1}$ (1)m (1)e	2 2	Working may be on a labelled drawing, possibly on Fig. 11.1. 1 st mark for recognising the triangle, second for the algebra.
	(iii)	suggestion (1); explanation (1)	2	Suggestion: estimate for $R \underline{too low}$ (1) this makes <i>d</i> too low which lowers the value for <i>c</i> (1) Suggestion time $\underline{too large}$ (1) because it's hard to measure/only an estimate(1)
		Total:	10	
12 (a)		horiz: $u \cos \theta$ vert: $u \sin \theta$ (1)	1	both needed.
(b)	(i)	Using $s = ut + \frac{1}{2}at^2$ (1); $s = 0$ (1); $u = vert$ component of $u = u \sin \theta$ (1); $a = -g$ (1)	3	Any three points Allow alternative valid approaches, with choice of equation (1); a = -g (1); other conditions with respect to. u , v , s , t (2);
	(ii)	$0 = (u \sin \theta)t - \frac{1}{2}gt^{2} \Rightarrow u \sin \theta = \frac{1}{2}gt (1)$ $t = 2u \sin \theta / g$ $= 2 \times 8.0 \text{ m s}^{-1} \times \sin(50^{\circ}) / 9.8 \text{ m s}^{-2} = 1.25 \text{ s} (1) \text{ s} (1) \text{ e}$	3	Use of invalid equation = zero marks Allow other methods: choice of valid equation and rearrangement as necessary(1); substitution (1); evaluation (1) 1.25 s or 1.3 s gets 3 marks automatically
(c)		Throw at smaller angle θ (1); collisions with sides of buckets (1)	2	Allow any feasible strategy for (1); second mark needs a possible physical explanation. Allow e.g lower <i>u</i> (1) so less energy to dissipate (1)
		Total:	9	
		Section B total:	39	

Qn		Expected Answers	Marks	Additional guidance
13 (a)		distance travelled better defined / using similar visual stimulus to start and stop timing / student A's method requires doing more than one thing at a time – higher chance of error/ larger distance travelled, so time longer and therefore less uncertain.	1	Any plausible reason. Allow reading of text to imply B makes repeated measurements of a single pass up the tank.
(b)		suggestion(1); correction (1)	2	e.g. starting stop watch when wave generated, not at end (1); allow to reach end before starting timing (1); or measuring depth with ruler with 0 not at end (1); correction by subtraction, etc. (1)
(c)	(i)	2.43/2.434 2.92/2.924	1	Both correct for the mark. Allow 3 or 4 s.f. only.
	(ii)	Each correct point (1) best fit line (1)	3	Vertically above minor division gridline and not above half-way between minor divisions. Allow e.c.f. from (i). Judge best fit line by eye.
	(iii) (iv)	$v = \sqrt{gd} \Rightarrow v^2 = gd$ (so v^2 against <i>d</i> has gradient <i>g</i>) Gradient from graph calculated (1)m (1) e	1 2	Rearranged equation is enough for the mark. Accept values from 9.3 to 10.3 m s ⁻²
(d)	(i)	3% (1)	1	Allow 3.3% or any number of sf
	(ii)	percentage/fractional uncertainty in <i>t</i> is significantly greater than in <i>L</i> or <i>d</i> (1)	1	
	(iii)	v = 2×0.62 m/(0.7+ 0.2) s = 1.38 m s ⁻¹ (1) $g = v^2/d = (1.38 \text{ m s}^{-1})^2/0.30 \text{ m} = 6.3 \text{ m s}^{-2}$ (1) % uncertainty = (10.5 m s ⁻² -6.3 m s ⁻²)×100/10.5 m s ⁻² = 40% (1)	3	Independent marking point. Allow ecf from <i>v</i> to calculate <i>g</i> . e.g. only considering a single journey (omission of the 2) gives $g = 1.582 \text{ m s}^{-2}$, leading to an uncertainty of 85% Must use 0.30 m in calculation of <i>g</i> . 1 or 2 s.f. only (correct % uncertainty = 40% to 1 or 2 s.f.)
		Total:	15	

Qn		Expected Answers	Marks	Additional guidance
14 (a)		Many uncontrolled variables owtte (1)	1	Can quote e.g. 'may have different size/widths'
(b)	(i)	test for tyre 2 of type A (1)	1	Accept either way round 2 A or A 2
	(ii)	All values (significantly) > other two tests	1	
	(iii)	Allow any reasoned suggestion; one mark for possible cause, one for explanation giving right direction	2	e.g. pressed harder onto rollers(1) so friction increased (1) e.g. fault in inflation pressure meter (1) causing it to read too low (1) / systematic error in time taken to stop the wheel (1) giving time values too short (1)
(c)	(i)	variation is in 3 rd s.f./uncertainty is about 0.01 N (1); 2 s.f. would lose significant information/4 s.f. not justified as you should round to the size of the uncertainty (1)	2	1 st mark for appreciation that the variation in a test is in the last figure quoted; 2 nd mark for justifying this.
	(ii)	(significantly)> test 1 or test 2 (1); does not fit data trend down the column (1)	2	Can credit the idea of it being an outlier with reference to the other values horizontally (1) and vertically (1)
(d)		Type B at 80Ncm ⁻² (high pressure) (1) because the (rolling) friction is lower (1)	2	
		Total:	11	

Qn		Expected Answers	Marks	Additional guidance
15 (a)		Assumption that the Sun's rays are parallel (1);		Any four points.
		Knew angle was 0° at Syene (1);		Or Sun directly overhead
		deduced 7° latitude difference between Syene & Alexandria owtte (1);		
		knew time to travel at known speed from S to A (1); deduced distance from speed or time of travel (1);	4	
		use of 700 stadia per degree/realised distance was 7/360 of circumference of Earth (1);		QWC is 'select and use a form and style of writing appropriate to purpose and to complex subject matter'; 4 th mark would not be awarded if the story is not clearly
		calculation 4900 ×360/7 = 252 000 stadia (1)		conveyed. Allow bulleted lists.
(b)		Any reasonable disadvantage related to lack of repeatability/consistency (1)	1	E.g. differences in terrain or weather conditions or day length will affect speed of caravan.
(c)	(i)	160 m (1) 180 m (1)	2	Penalise one mark for > 2sf. Penalise one mark for max and
	(ii)	max = 4900×170 m× (360°/6°) = 50000000 m (49 980 000 m) (1) min = 4900×170 m× (360°/8°) = 37 500 000 m (37 485 000 m)(1)	3	min values in wrong place
		Comparison with 40010000 m. (1)		Third mark is independent of first two marks.
	(iii)	(angle) 1° in 7° = 14%/ (stadion) 5% is 1 in 20 (1) angle is a far greater source of uncertainty (1)	2	1 st mark for comparing uncertainties in angle and stadion; 2 nd for conclusion
(d)		True distance is less than the one he used (1);		Accept either approach
		so the final circumference is too big (1) (ect);		
		Estimate uncertainty from the diagram 5-8% (1)	2	
		Uncertainty in much less than uncertainty in angle,		
		so will have less effect on the calculated value (1)		
		Total:	14	
		Section C total:	40	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

