	2020.01	mark continu	ounc zo	
1	$(\mathbf{a})\mathbf{v} = \mathbf{u} +$	+at no, but if u is zero then v is proportional to t	1	
		provided a is constant	1	2
	$pV = nR^{\frac{1}{2}}$	T not unless T is in kelvin	1	
		and both n and V are constant (R is a constant)	1	2
	P = Fv	yes if <i>v</i> is constant	1	
		but all three terms can vary so proportion unlikely	1	
		then EITHER if v is constant then P and F will also be constant		
		OR P is proportional to F when going up hills of different gradient		
		(at constant v)	1	2
		MAXIMUM 2		
	$A=\pi r^2$	yes (π is a constant and A is directly proportional to r^2)	1	1
	(b)	graph must be a straight line	1	
		graph must go through the origin	1	2
2	(a)	The air in the forest is heated and expands (so it becomes less dense)	1
		and rises 1		
		(cooler) air coming in to take its place (is the wind)	1	3
		(just saying convection current one of first two marks only)		
	(b)	A shiny surface reflects light	1	
		a black surface absorbs light	1	
		shoe itself is black because it does not reflect light	1	
		surface layer (transparent) or polish on shoe reflects light	1	
		reflection depends on texture of surface	1	3
		MAXIMUM 3		

Mark Scheme

June 2005

2826/01

(c)	the pendulum bob is travelling in a circle	1	
	so it is accelerating towards the centre	1	
	(it has a constant speed in the time interval just before vertical to just after vertical)		
	•		
	bob is not in equilibrium	1	
	so the tension must be (slightly) <u>larger</u> than the weight of the bob	1	3
	MAXIMUM 3		
(d)	X-rays have a very small wavelength (compared with 0.1 mm)	1	
	angle of diffraction increases as size of opening decreases	1	
	little diffraction when size of opening is much greater than the wavelength	1	
	quantitative values - e.g. gap is 10 ⁶ wavelengths	1	3
	MAXIMUM 3		
(e)	sound waves are longitudinal waves	1	
	longitudinal waves cannot be polarised	1	2
(f)	the heat is extracted from the air in the room	1	
	and pumped out the back of the refrigerator	1	
	the motor requires power	1	
	and its waste heat heats the kitchen	1	2
	MAXIMUM 2		
(a)	(a lower resistance will) take a larger current from the supply	1	
	(power = $V \times I$) so power to/ brightness of headlamps is greater	1	2
(b)	(first position) has no lights on at all	1	
	(second position just) lights the sidelights	1	
	(third position turns off the sidelights and) just illuminates the headlamps	1	3
(c)	4 V across the internal resistance of the generator	1	
	so current = $4 \text{ V} / 0.50 \Omega = 8.0 \text{ A}$	1	2

Mark Scheme

2826/01

3

June 2005

(d)		(i)	12 V across headlamp	1	
			so current = 12 V / 4.0 Ω = 3.0 A	1	2
		(ii)	power = $V \times I$, total current = 6.0 A	1	
			power supplied = 12 V x 6.0 A = 72	1	
			watt	1	3
	(e)		8 A from generator but only 6 A to headlamps	1	
			therefore current to battery is 2 A (allow -2 A)	1	
			battery is being charged	1	3
	(f)	(i)	constant voltage maintained across bulbs (and other components)	1	
			so brightness of bulbs does not vary (when other components		
			are being used	1	
			less energy wastage	1	
			can give high current (for starter motor)	1	2
			MAXIMUM 2		
		(ii)	If the emf of the generator is (equal to or) less than the emf of the battery		
			it is impossible to have it supply more current than the circuit uses	1	
			Charging the battery is then impossible	1	
			battery would become discharged	1	
			or other valid response	1	2
			MAXIMUM 2		
	(a)	(i)	radioactive implies the emission of ionising radiation	1	
			OR emits alpha, beta and gamma radiation	1	1
		(ii)	nuclide refers to a particular nuclear structure (with a stated number		
			of protons and neutrons)	1	
		(iii)	half-life is the (average) time taken for the activity to fall to half its original value	1	

Mark Scheme

June 2005

2826/01

4

(b)	time	/ hour	activity of material / Bq	activity of nuclide X /Bq	activity of nuclide Y /	'Bq		
		0	4600	4200	400			
		6	3713	3334	379			
		12	3002	2646	356			
		18	2436	2100	336			
		24	1984	1667	317			
		30	1619	1323	296			
		36	1333	1050	283			
(i) and	i (ii)	2100 as first fig	jure to be filled in for nu	iclide X		1		
		1667				1		
		1050				1		
		idea of subtrac	tion for nuclide Y			1		
		correct values	for the ones given in nu	clide Y column		1	5	
(0	c) sens	sible graph plott	ed			1		
	extra	apolation done				1		
	valu	e 70 ± 5 hours				1	3	
0)R A = 1	A₀ e ^{-∧t}				1		
	In A	$= \ln A_0 - \lambda t$						
	e.g.	e.g. when A = 296, t = 30 h						
	5.69	04 = 5.9915 - /	1 x 30			1		
	0.30	11/30 = 0.0100	4 = λ					
	<i>T</i> = lr	$h = 2/\lambda = 69.0 h$	answers will vary slight	ly dependent on startin	g and			
	finisl	hing times				1	3	

2826/0		/01 Mark Scheme		5
(d)		separate the two nuclides (before starting the count)	1	
		by chemical means (if possible)	1	
	OR	using a centrifuge or diffusion (if isotopes)		
	OR	sensible idea about shielding against one of the emitted particles		
(e)		decay constants or half lives are different	1	
		half-life at the start is approximately that for X	1	
		X decays more rapidly than Y so after a long time the half-life is that for Y	1	
		in between it has a value intermediate between the two (which varies)	1	3
		MAXIMUM 3		
	OR	dealt with mathematically, along the lines of		
		two separate exponential decays	1	
		when added together do not give an exponential graph	1	
		with back up maths	1	3