RECOGNISING ACHIEVEMENT

PHYSICS B (ADVANCING PHYSICS)

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schoois and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2004
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annersley
NOTTINGHAM
NG15 ODL
Telephone: 08708706622
Facsimile: 08708706621
E-mail: publications@ocr.org.uk

Advanced GCE Physics B (3888-7888) January 2004 Assessment Session

Unit Threshold Marks

Unit		Maximum Mark	a	b	c	d	e	u
2860	Raw	90	68	62	56	50	45	0
	UMS	100	80	70	60	50	40	0
2861	Raw	90	62	55	49	43	37	0
	UMS	110	88	77	66	55	44	0
2862	Raw	120	97	85	73	62	51	0
	UMS	90	72	63	54	45	36	0
$\begin{gathered} 2863 \\ \text { Option A } \end{gathered}$	Raw	127	100	89	79	69	59	0
	UMS	100	80	70	60	50	40	0
$\begin{gathered} 2863 \\ \text { Option B } \end{gathered}$	Raw	127	100	90	80	71	62	0
	UMS	100	80	70.	60	50	40	0
$\begin{gathered} 2864 \\ \text { Option A } \end{gathered}$	Raw	119	91	81	72	63	54	0
	UMS	110	88	77	66	55	44	0
2864 Option B	Raw	119	91	81	72	63	54	0
	UMS	110	88	77	66	55	44	0
2865	Raw	90	66	59	52	46	40	0
	UMS	90	72	63	54	45	36	0

Specification Aggregation Results

Overall threshold marks in UMS (i.e. after conversion of raw marks to uniform marks)

	Maximum Mark	A	B	C	D	E	U
3888	300	240	210	180	150	120	0
7888	600	480	420	360	300	240	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	B	C	D	E	U	Total Number of Candidates
$\mathbf{3 8 8 8}$	17.6	41.9	64.8	84.0	96.5	100	382
$\mathbf{7 8 8 8}$	9.4	41.5	60.4	79.2	94.3	100	54

Physics B (Advancing Physics) mark schemes - an introduction

Just as the philosophy of the Advancing Physics course develops the student's understanding of Physics, so the philosophy of the examination rewards the candidate for showing that understanding. These mark schemes must be viewed in that light, for in practice the examiners' standardisation meeting is of at least equal importance.

The following points need to be borne in mind when reading the published mark schemes:

- Alternative approaches to a question are rewarded equally with that given in the scheme, provided that the physics is sound. As an example, when a candidate is required to "Show that..." followed by a numerical value, it is always possible to work back from the required value to the data.
- Open questions, such as the questions in section C permit a very wide variety of approaches, and the candidate's own approach must be rewarded according to the degree to which it has been successful. Real examples of differing approaches are discussed in standardisation meetings, and specimen answers produced by candidates are used as 'case law' for examiners when marking scripts.
- Final and intermediate calculated values in the schemes are given to assist the examiners in spotting whether candidates are proceeding correctly. Mark schemes frequently give calculated values to degrees of precision greater than those warranted by the data, to show values that one might expect to see in candidates' working.
- Where a calculation is worth two marks, one mark is generally given for the method, and the other for the evaluation of the quantity to be calculated.
- If part of a question uses a value calculated earlier, any error in the former result is not penalised further, being counted as error carried forward: the candidate's own previous result is taken as correct for the subsequent calculation.
- Inappropriate numbers of significant figures in a final answer are penalised by the loss of a mark, generally once per examination paper. The maximum number of significant figures deemed to be permissible is one more than that given in the data; two more significant figures would be excessive. This does not apply in questions where candidates are required to show that a given value is correct.
- Where units are not provided in the question or answer line the candidate is expected to give the units used in the answer.
- Quality of written communication will be assessed where there are opportunities to write extended prose.

SECTION C

The outline mark schemes given here will be given more clarity by the papers seen when the examination is taken. Some of these scripts will be used as case law to establish the quality of answer required to gain the marks available.
It is not possible to write a mark scheme that anticipates every example which students have studied.

For some of the longer descriptive questions three marks will be used (in scheme called the $1 / 2 / 3$ style).

1 will indicate an attempt has been made
2 will indicate the description is satisfactory, but contains errors
3 will indicate the description is essentially correct

ADVICE TO EXAMINERS ON THE ANNOTATION OF SCRIPTS

1. Please ensure that you use the final version of the Mark Scheme. You are advised to destroy all draft versions.
2. Please mark all post-standardisation scripts in red ink. A tick (\checkmark) should be used for each answer judged worthy of a mark. Ticks should be placed as close as possible to the point in the answer where the mark has been awarded. The number of ticks should be the same as the number of marks awarded. If two (or more) responses are required for one mark, use only one tick. Half marks ($1 / 2$) should never be used.
3. The following annotations may be used when marking. No comments should be written on scripts unless they relate directly to the mark scheme. Remember that scripts may be returned to Centres.
```
x = incorrect response (errors may also be underlined)
^ = omission mark
bod = benefit of the doubt (where professional judgement has been used)
ecf = error carried forward (in consequential marking)
con = contradiction (in cases where candidates contradict themselves in the same response)
sf = error in the number of significant figures
```

4. The marks awarded for each part question should be indicated in the margin provided on the right hand side of the page. The mark total for each double page should be ringed at the end of the question, on the bottom right hand side. These totals should be added up to give the final total on the front of the paper.
5. In cases where candidates are required to give a specific number of answers, (e.g. 'give three reasons'), mark the first answer(s) given up to the total number required. Strike through the remainder. In specific cases where this rule cannot be applied, the exact procedure to be used is given in the mark scheme.
6. Correct answers to calculations should gain full credit even if no working is shown, unless otherwise indicated in the mark scheme. (An instruction on the paper to 'Show your working' is to help candidates, who may then gain partial credit even if their final answer is not correct.)
7. Strike through all blank spaces and/or pages in order to give a clear indication that the whole of the script has been considered.
8. An element of professional judgement is required in the marking of any written paper, and candidates may not use the exact words that appear in the mark scheme. If the science is correct and answers the question, then the mark(s) should normally be credited. If you are in doubt about the validity of any answer, contact your Team Leader/Principal Examiner for guidance.

Abbreviations, annotations and conventions used in the Mark Scheme		$\left.\begin{array}{ll}1 & =\text { alternative and acceptable answers for the same marking point } \\ \text { NOT } & =\text { separates marking points }\end{array}\right]$N answers which are not worthy of credit () $=$ words which are not essential to gain credit $=$ (underlining) key words which must be used to gain credit ecf $=$ error carried forward AW $=$ alternative wording Ora $=$ or reverse argument		
Qn	Expected Answers		Marks	Additional guidance
1a;b	$\begin{aligned} & \text { Section A } \\ & \mathrm{V} ; \mathrm{C} \mathrm{~s}^{-1} \end{aligned}$		2	
2a; bi; ii	32 ; (samples/sec \times bytes/sample \times time) / $44.1 \times 10^{3} \times 4 \times 150$ method; $=26.4(6)$ Mbytes ; eval. (data) compression / fewer samples/sec / fewer bytes/sample / reduce quality / AW		$\begin{aligned} & 1 \\ & 2 \end{aligned}$	allow 25.2(3) Mbytes pc correct eval. scores 2 other sensible comments NOT filtering
$\begin{gathered} 3 \\ a ; b ; c \end{gathered}$	metal ; rubber ; glass		3	
$\begin{gathered} 4 a ; b \\ c \end{gathered}$	$\begin{aligned} & 0.13(0) \mathrm{m} ; 8.33 / 8.3 \\ & \pm 0.3 / 0.4 \mathrm{D} \text { ecf on (b) } \end{aligned}$		$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { accept } 0.33 \text { or } 0.31 \text { or } \\ & 0.32 \text { or } 0.34 \end{aligned}$
5ai;ii bi ; ii	$\begin{aligned} & 3 ; 8 / 2^{3} \\ & 50 \mathrm{mV} \\ & \begin{array}{l} \text { more (than 3) bits (per sample) / more levels } \\ \text { better voltage resolution AW } \end{array} \\ & \hline \end{aligned}$		2 1 1	NOT 7 accept 100 mV NOT greater sampling rate
6ai;ii	$\mathrm{x} 1 / 4 ; \times 2$		2	
7				zero marks for no attempt In col. 1 accept 2/3/4 bass bars In col. 5 expect 0 treble bars / OR (accept 0/1 bars in col. 4)
		Section A total	20	

QoWC Marking quality of written communication

The appropriate mark (0-4) should be awarded based on the candidate's quality of written communication in Section C of the paper.

4 max \quad The candidate will express complex ideas extremely clearly and fluently. Answers are structured logically and concisely, so that the candidate communicates effectively. Information is presented in the most appropriate form (which may include graphs, diagrams or charts where their use would enhance communication). The candidate spells, punctuates and uses the rules of grammar with almost faultless accuracy, deploying a wide range of grammatical constructions and specialist terms.

3
The candidate will express moderately complex ideas clearly and reasonably fluently. Answers are structured logically and concisely, so that the candidate generally communicates effectively. Information is not always presented in the most appropriate form. The candidate spells, punctuates and uses the rules of grammar with reasonable accuracy; a range of specialist terms are used appropriately.

2
The candidate will express moderately complex ideas fairly clearly but not always fluently. Answers may not be structured clearly. The candidate spells, punctuates and uses the rules of grammar with some errors; a limited range of specialist terms are used appropriately.

1
The candidate will express simple ideas clearly, but may be imprecise and awkward in dealing with complex or subtle concepts. Arguments may be of doubtful relevance or obscurely presented. Errors in grammar, punctuation and spelling may be noticeable and intrusive, suggesting weakness in these areas.

0
The candidate is unable to express simple ideas clearly; there are severe shortcomings in the organisation and presentation of the answer, leading to a failure to communicate knowledge and ideas. There are significant errors in the use of language which makes the candidate's meaning uncertain.

Qn	Expected Answers	Marks	Additional guidance
1 (a)	$600 \checkmark$	1	
(b)	$60 \checkmark$	1	
(c)	0.6	1	
2(a)	g.p.e. to k.e. \checkmark	1	
(b)(i)	$\begin{aligned} & v^{2}=2 \times 9.8 \times 2.8 \checkmark \quad v=7.4\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \\ & (\mathrm{g}=10 \text { gives } 7.48) \end{aligned}$	2	By energy change or by suvat
(ii)	neglecting/negligible/no air resistance \checkmark (all gpe goes to ke) (constant 'a' if suvat approach)	1	not wind resistance
3(a)	representation of 3 fringes minimum \checkmark equispaced peaks \checkmark (4 needed)	2	intensity variation is fine
(b)	fringes further apart \checkmark	1	
4 (a)	$f=\left(3 \times 10^{8}\right) / 1500 \checkmark_{m}=2.0 \times 10^{5}(\mathrm{~Hz}) \checkmark_{e}$	2	
(b)	$\text { method mark }\left(2.4 \times 10^{17}\right) / \underset{\text { ecf from (a) }}{\left(2.0 \times 10^{5}\right)} \checkmark_{\mathrm{m}}=1.2 \times 10^{12} \checkmark_{\mathrm{e}}$	2	not 1.2E12/1.2 ${ }^{12}$
5(a)	horizontal $=300 \cos 50^{\circ}=192.8 \checkmark_{\mathrm{m}}$	1	
(b)	$\begin{aligned} & P=\left(\text { horizontal component from (a)) } \times 0.6 \checkmark_{m}\right. \\ & \text { So } P=116(120) \text { (W) } \checkmark_{e}(120 \mathrm{~W} \text { from } F=200 \mathrm{~N}) \end{aligned}$	2	penalise using wrong F
6(a)	phasor arrow pointing to S.E. \checkmark	1	
(b)	same amplitude and wavelength $\checkmark 180^{\circ}$ phase diff \checkmark	2	minimum of 1 cycle
	total	20	

$\begin{aligned} & 7(\mathrm{a}) \\ & (\mathrm{i}) \end{aligned}$	destructively interfering \checkmark	1	phasors antiphase / waves out of phase
(ii)	mention path difference $\checkmark \quad \lambda / 2$ idea \checkmark	2	phasors cancel resultant phasor $=0$ so
(iii)	* (LOOK AT (a)(i) and (ii) together) idea that 2 amplitudes different \checkmark cause (absorption) or effect .. not complete cancelling \checkmark (others possible)	2	probability $=0$ or AW not quite out of phase $=0$
(b)	white $=$ many colours \checkmark green not reflected \checkmark other wavelengths give the purple colour \checkmark	3	not purple light reflected
(c)	brighter/ greater contrast/ more focused/greener \checkmark explained	2	
	total	10	
8 (a)(i)	One loop \checkmark nodes and antinodes labelled \checkmark	2	
(ii)	$0.8(\mathrm{~m}) \checkmark$ ecf from (a)(i)	1	
(iii)	$=440 \times 0.8 \checkmark=352\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \checkmark$ ecf from (a)(ii)	2	
(b)	$\mathrm{N}=\mathrm{kg} \mathrm{m} \mathrm{s}^{-2} \checkmark$ for coherent development \checkmark	2	
(c)(i)	different mass per unit length (thickness/density) thicker string lowest note	2	
(ii)	equal force on neck/ won't distort instrument/ easier to bow \checkmark or other mechanical reason	1	
	total	10	
$\begin{aligned} & 9 \\ & (a)(i) \end{aligned}$	constant speed \checkmark equal distance in equal times \checkmark	2	or no forces acting horizontally
(ii)	accelerating \checkmark increasing distances in equal times \checkmark	2	or gravity is acting vertically
(b)(i)	$t=x / v \checkmark$ sot ${ }^{2}=x^{2} / v^{2} \checkmark$	2	$\mathrm{t}^{2}=\mathrm{x}^{2} / \mathrm{v}^{2} 2$ marks
(ii)	$y=1 / 2 \mathrm{gt}{ }^{2}$ rearranged $\checkmark \ldots \ldots$ to give $\mathrm{t}^{2}=2 \mathrm{y} / \mathrm{g}$	1	
(iii)	$x^{2} / v^{2}=2 y / g$ rearranged $\checkmark \ldots .$. to give $v^{2}=x^{2} g / 2 y$	1	
(c)	$\begin{aligned} & v^{2}=\left((4.0)^{2} \times 9.8\right) /(2 \times 1.5) \checkmark=52(52.27) \\ & v=7.2 \checkmark\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \\ & v \text { s.f. } \max \end{aligned}$	2	
	total	10	

$\begin{aligned} & 10 \\ & (\mathrm{a})(\mathrm{i}) \end{aligned}$	arrow backwards \checkmark labelled 'drag' / air or wind resistance (not just 'friction')	2	through common point, drawn on the aircraft
(ii)	thrust $=$ drag \checkmark lift $=$ weight \checkmark forces must be 'balanced' idea/ no acceleration \checkmark	3	
(b)(i)	appropriate velocity vector arrows to scale \checkmark to match Fig. 10.1	1	must have arrows
(ii) 1	method mark $\checkmark 11 \mathrm{~m} \mathrm{~s}^{-1}(10.8) \checkmark$ (10.5 to 11.5 by diag)	2	by Pythagoras or measurement
(ii) 2	method mark $\checkmark 21.8^{\circ} \checkmark\left(20^{\circ}\right.$ to 25° by diag $)$	2	by trig or measurement
	total	10	
$\begin{aligned} & 11 \\ & \text { (a)(i) } \end{aligned}$	clear statement of measurement \checkmark	1	
(ii)	sensible estimate with unit \checkmark (check for appropriateness)	1	UP
(b)(i)	diagram labelled - could be set up $\checkmark \checkmark \checkmark$ some errors or omissions $\checkmark \checkmark$	3/2/1	
(ii)	radiation sent out \checkmark pulse \checkmark reflected and received \checkmark time delay measured/recorded \checkmark	4	what would need to be done in this case.. addressed (prose)
(c)(i)	$\mathrm{s}=\mathrm{vt} \checkmark$ stating specifically what v represents here \checkmark time delay halved	3	depends on example selected (analysis)
(ii)	for 2 relevant sources of error $\checkmark \checkmark$	2	or 1 factor and the consequence
	total	14	
$\begin{aligned} & 12 \\ & \text { (a) } \end{aligned}$	For a situation where a quantum phenomenon is observed \checkmark	1	if not a quantum phenomenon ... zero marks total
(b)	clear labelled diagram $\checkmark \checkmark \checkmark$... with some minor omissions or errors $\checkmark \checkmark$ for some attempt made	3/2/1	
(c)	for four separate relevant and correct items of description $\checkmark \checkmark \checkmark \checkmark$	4	
(d)	read as a whole ... upto 4 marks for relevant quantum ideas $\checkmark \checkmark \checkmark \checkmark$	4	
	total	12	
$\begin{aligned} & \text { Qo } \\ & \text { WC } \end{aligned}$	$\checkmark \checkmark \checkmark \checkmark$	4	Judged solely on written communication in questions 11 and 12

7 (a) (i) Max depth $=15 \mathrm{~m} \checkmark \quad 1$
(a) (ii) Amplitude $=5 \mathrm{~m} \checkmark \quad 1$
(a) (iii) Gradient at $t=6$ hours \checkmark correct reading from graph \checkmark answer worked to 3
$3.0 \mathrm{~m} \mathrm{hr}^{-1} \checkmark$ (answers in range $2.5 \mathrm{~m} \mathrm{hr}^{-1}$ to $3.5 \mathrm{~m} \mathrm{hr}^{-1}$)
(b) time period from graph $=12.5 \mathrm{hrs} \checkmark f=1 / T=1 / 12.5 \checkmark=0.080 \mathrm{hr}^{-1} \checkmark$
(c) shading or lines drawn on graph \checkmark answer in range of 15.5 hrs to 16.5 hrs
(d) $\quad d=10+5 \sin (2 \pi \sin 0.080 * 9.5) ~ \checkmark=5.0 \mathrm{~m} \checkmark \quad$ (allow ecf from a(ii) and b)
or \sin varies between +1 and $-1 \checkmark$ so lowest value is $10-\mathrm{A}$ (this allows incorrect value for A to ecf)

8 (a)(i) $\Delta p=280 \times 55-280 \times 0 \checkmark=15400 \checkmark \mathrm{~kg} \mathrm{~ms}^{-1} \checkmark$
(a) (ii) $f=m a=280 \times(55 / 0.25) \quad \checkmark=61600 \mathrm{~N} \checkmark$ (or use $F=\frac{\mathrm{mv}-\mathrm{mu}}{\mathrm{t}}$)
a(iii) argue from Newton 3 or conservation of momentum leading to a force on the plane \checkmark this makes the plane move down \checkmark (as plane is much more massive so acceleration/movement much less than that of the pilot). (Accept plane won't move2 because its on the ground for second mark)
(b) $\quad 1 / 2 m v^{2}=m g \Delta h \quad \Delta \mathrm{~h}=\mathrm{v}^{2} / 2 \mathrm{~g}=55^{2} / 19.6 \checkmark=154 \mathrm{~m} \checkmark$ S.F. penalty. Or suitable equation of motion chosen \checkmark values substituted \checkmark evaluation \checkmark
(c) Collisions between pilot and particles \checkmark momentum/direction/velocity change of particles during collision \checkmark change of momentum of particles exerts force on pilot.3

9 (a) $\quad 250 \times 50=12500 \mathrm{~J} \checkmark$
(b) number of molecules $=5 \times 6.02 \times 10^{23} / 18 \checkmark=1.67 \times 10^{23} \checkmark$2
(c) $\quad E=12500 / 1.7 \times 10^{23} \checkmark=7.35 \times 10^{-20} \checkmark \mathrm{~J}$ (or 7.48×10^{-20} if 1.67×10^{23} used)
(d) $k T=1.4 \times 10^{-23} \times 373=5.2 \times 10^{-21} \mathrm{~J} \checkmark$
(e) (i) $\quad 5.2 \times 10^{-21} / 7.5 \times 10^{-20}=0.07 \quad$. (ecf)
(ii) Argument from average energy \checkmark explanation of why there is a range of energies e.g. molecular collisions or 'getting lucky' \checkmark (or Boltzmann arguments)

10 (a) (i) $\quad V_{\text {grav }}=-6.67 \times 10^{-11} \times 5.98 \times 10^{24} / 6.38 \times 10^{6} \checkmark=-6.252 \times 10^{7} \checkmark \mathrm{~J} \mathrm{~kg}^{-1}$ Own value needed.
(a) (ii) Calculating $V_{\text {grav }}=-6.27 \times 10^{7} \checkmark \mathrm{~J} \mathrm{~kg}^{-1}$ using this to give ratio 6.27/6.25=1.003(2) \checkmark Own value needed.
OR: explanation leading to $6.38 / 6.36 \checkmark=1.0031 \checkmark$
a(iii) Gravity is always attractive (AW) \checkmark hence it always takes energy/work to separate gravitationally bound masses. At infinity the energy 'stored' is zero therefore an object in a field will be in a potential well. \checkmark (AW)
(b) $\quad g=(-) G M / r^{2}$
(c) (i)
(ii)
$g=-6.67 \times 10^{-11} \times 5.98 \times 10^{24} /\left(6.36 \times 10^{6}\right)^{2} \checkmark=9.86 \checkmark \mathrm{~N} \mathrm{~kg}^{-1}$
Value for potential depends on r whereas field strength depends on $r^{2} . \checkmark$ Hence field
strength more sensitive to changes in $r \checkmark$ or evaluate ratio \checkmark (OWTTE)

QWC marks on questions 8 a(iii), 8 (c), 9 e (ii) $\checkmark \checkmark \checkmark \checkmark$

Section B total: 50 marks

1	s^{-1}	1
2	A	1
3	10^{3}	1
4 (a)	A	1
4 (b)	E is electric field (strength) / force on unit charge	1
5 (a)	at right angles to equipotential through the point (by eye) pointing away from sphere ACCEPT curved field lines which have the correct direction at X	1 1
5 (b)	0 V	1
6	$\begin{array}{\|l\|} \hline A \\ C \end{array}$	1 1

7(a)	B	1
7(b)	C	1
8	higher energy level standing wave to fit potential well more than two antinodes	1 1 1
9 (a)	 as shown, by eye	1
9 (b)	$\begin{aligned} & \text { total binding energy }=56 \times 8.8 \times 10^{6}=4.93 \times 10^{8} \mathrm{eV} \\ & \text { ecf incorrect eV: } \\ & \text { energy }=4.93 \times 10^{8} \times 1.6 \times 10^{-19}=7.9 \times 10^{-11} \mathrm{~J} \\ & \text { (steps clearly shown to earn marks) } \end{aligned}$	1 1
9 (c)	$\begin{aligned} & E=m c^{2} \\ & \text { ecf incorrect } E \text { : } \\ & m=E / c^{2}=7.9 \times 10^{-11} / 9 \times 10^{16} \\ & m=8.8 \times 10^{-28} \mathrm{~kg} \\ & \left(1 \times 10^{-10} \mathrm{~J} \text { gives } 1 \times 10^{-27} \mathrm{~kg}\right) \end{aligned}$	1 1

11 (a)	$\begin{aligned} & Q=n e \text { (eor) } \\ & n=8 \times 10^{-10} / 1.6 \times 10^{-19}=5.0 \times 10^{9} \end{aligned}$	1
11 (b)(i)	positive EITHER so that right-hand plate becomes positively charged repelling positive charge on drop OR left-hand plate becomes negatively charged to attract positive charge on the drop OR potential decreases as drop moves to the left resulting in drop gaining KE as it moves that way	0
11 (b)(ii)	horizontal lines equally spaced (accept correct edge-effects) arrow to the left	1 1 1
11 (c)(i)	statement of formula: $E=V / d$ elimination of E to obtain required expression accept formula $E=V / d$ derived from expression for [2] accept $F=Q V / d$ for [1]	1
11 (c)(ii)	correct substitution of powers of 10 ecf incorrect powers of ten: $V=\frac{F d}{Q}=\frac{3.6 \times 10^{-6} \times 15 \times 10^{-2}}{0.8 \times 10^{-9}}=675 \mathrm{~V}(\text { accept } 680 \mathrm{~V})$	1 1

12 (a)(i)	number of X-rays $=120$ ecf: total dose equivalent $=120 \times 16 \times 10^{-6}=1.9 \times 10^{-3} \mathrm{~Sv}$ ecf : risk $=1.9 \times 10^{-3} \times 3=0.0058 \%$	1 1 1
12 (a)(ii)	cancers $=0.0058 \times 55 \times 10^{6} / 100=3200$ (0.006% gives 3300)	1
12 (a)(iiii)	[1] + [1] per valid statement backed by correct calculation, up to [4] No ecf: e.g. - annual dose equivalent from X-rays is $32 \mu \mathrm{~Sv}$ - $32 / 2000=0.016$ of dose equivalent from background (ora) - risk of background is unavoidable (owtte) - and will lead to $2 \times 10^{-3} \times 60 \times 0.03 \times 55 \times 10^{6}=200000$ cancers - lifetime X-ray dose similar to annual background dose - so any cancer is much less likely to come from X-ray (ora)	4
12 (b)(i)	proposal: d.e. \times distance $^{2}=$ constant shown clearly calculations: -1 per error, maximum -2 $\begin{aligned} & 2.6 \times 10^{-6} \times 0.25^{2}=0.163\left(\times 10^{-6}\right) \\ & 0.95 \times 10^{-6} \times 0.41^{2}=0.160\left(\times 10^{-6}\right) \\ & 0.27 \times 10^{-6} \times 0.77^{2}=0.160\left(\times 10^{-6}\right) \end{aligned}$	2
12 (b)(ii)	any of the following, maximum [2] - X-ray emitter acts as a point source (owtte) - photons spread out evenly in all directions/in a cone - X-ray photons not absorbed by air - dose equivalent depends on photons per square metre (owtte) - doubling distance quadruples area for photons to pass through (owtte)	2
12 (b)(iii)	$\begin{aligned} & \text { dose equivalent per X-ray }=0.2 \times 10^{-3} / 4000=5 \times 10^{-8} \mathrm{~Sv} \\ & X \text {-ray dose equivalent }=0.16 \times 10^{-6} / \mathrm{x}^{2} \\ & x=\left(0.16 \times 10^{-6} / 5 \times 10^{-8}\right)^{0.5}=1.8 \mathrm{~m} \end{aligned}$	1 1

Abbreviations, annotations and conventions used in the Mark Scheme			rs for t credit gain cre st be	same marking point ed to gain credit
Qn	Expected Answers		Marks	Additional guidance
1 (a)	Any long random linear molecular structure \checkmark		1	Chemical type chains OK, or just zigzags
(b)	(i) Not brittle/doesn't crack/deforms before breaking/ absorbs energy on breaking/ AW \checkmark (ii) Molecules tightly wound Strongly bonded / difficult to separate helical 'strands' \checkmark (iii) Molecules separate \checkmark; Less strongly bonded \checkmark		$\begin{aligned} & 1 \\ & 2 \\ & 2 \end{aligned}$	Force or energy argument acceptable for (b)(ii) and (iii)
(c)	(i) Virtually all water (ii) Very few bonds between protein strands to break \checkmark		1	
		Total:	8	
2 (a)	$70 \mathrm{~kJ} \mathrm{~mol}^{-1}=70 \times 10^{3} / 6.0 \times 10^{23} \mathrm{~J}$ per molecule $\checkmark \mathrm{m}$ $=1.17 \times 10^{-19} \mathrm{~J} /$ molecule $\approx 1.2 \times 10^{-19} \mathrm{~J} /$ molecule $\sqrt{ } \mathrm{e}$ ora		2	Must have $1.17 \times 10^{-19} \mathrm{~J}$ for second mark
(b)	(i) $k T$ is an energy, in $J \checkmark$; so E/kT is dimensionless AW \checkmark (ii) At $500 \mathrm{~K}, \mathrm{E}=15 \mathrm{kT}$ while at $255 \mathrm{~K}, E=30 \mathrm{kT}$ Only processes with $15<E / k T<30$ happen at an appreciable rate AW \checkmark		2 2	'Argument of e must be dimensionless' gets only $E / k T$ not big enough at 255 K would gain only
(c)	(i) Ratio of $f_{\mathrm{B}}=7.51 \times 10^{-11} 13.95 \times 10^{11}=1.90 \mathrm{~V}$; ≈ 2 so rate is roughly doubled \checkmark (ii) reaction rate depends on number of molecules having enough energy to react \checkmark; Boltzmann factor gives fraction of molecules with enough energy \checkmark		2 2	Ora e.g. ‘should be doubled $=7.9 \times 10^{-11}$ at 373 K which is close
		Total:	10	
3 (a)	Alcohol would boil/ could not read thermometer in food \checkmark		1	Anything plausible
(b)	12 mV is much too small to read on 2.5 V scale \checkmark		1	
(c)	Gradient not constant Show/ calculate that emf $<1.25 \mathrm{~V}$		2	'May' allows correction e.g. with lookup table
(d)	Appreciating that resolution is related to slope of graph $\sqrt{\text {; }}$ Resolution greatest near $0^{\circ} \mathrm{C}$ because same ΔT produces bigger $\Delta \varepsilon /$ gradient greatest near $0^{\circ} \mathrm{C} \checkmark$		2	
		Total:	6	

Qn	Expected Answers	Marks	Additional guidance
4 (a)	(i) decreases because field lines further apart \checkmark (ii) $E_{k \text { max }}=4000 \times 1.6 \times 10^{-19} \mathrm{~J}$ $=6.4 \times 10^{-16} \mathrm{~J} \approx 6 \times 10^{-16} \mathrm{~J} \vee \mathrm{mve}$ (iii) $\quad 650 / 6 \times 10^{-16} \mathrm{~J}=1.1 \times 10^{18} \mathrm{~s}^{-1} \checkmark \mathrm{~m} v e$ (iv) Energy not all converted to useful output \checkmark	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 1 \end{aligned}$	Can use $6.4 \times 10^{-16} \mathrm{~J}$ to get $1.0 \times 10^{18} \mathrm{~s}^{-1}$ in (iii) (iv) must refer to energy.
(b)	Arrow perpendicular to electron path \checkmark; Arrow to right \checkmark	2	Inward arrow which is not perpendicular gets one \checkmark
(c)	(i) Force \checkmark; On charge q moving at velocity v in field $B \checkmark$ (ii) Centripetal force/ force needed \checkmark; for particle to move along arc (of radius r) \checkmark (iii) Electron starts slow and accelerates/electron gains kinetic energy, so v increases \checkmark; $v \propto r$ (equation 2), so as v increases, r increases \checkmark	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	(ii) second mark needs equation to be related to this situation (iii) increased momentum not enough for second mark
	Total:	14	
5 (a)	High resistance means low conductance/vice versa \checkmark; high conductance base corresponds to low resistance in electrical circuit	2	First mark can be stated or implied
(b)	p.d. $=\Delta T$ shared between two different resistances and bigger resistance $=$ egg takes bigger share so T at base of egg (Y) is close to T of pan $(X) \checkmark$	2	Can use constant current and Ohm's Law
(c)	Temperature at Y close to that at $X \checkmark$; At high temperatures, carbonisation takes place/molecules split up completely/AW \checkmark	2	
	Total:	6	
6 (a)	$\begin{aligned} & E=h f=6.63 \times 10^{-34} \times 2.45 \times 10^{9} \mathrm{~J} \\ & =1.62 \times 10^{-24} \mathrm{~J} \approx 2 \times 10^{-24} \vee \mathrm{mve} \end{aligned}$	2	Must calculate E to at least 2 sf to show this
(b)	(i) Constant ratio of adjacent/equally spaced values (ii) Test applied to ≥ 2 pairs \checkmark conclusion (yes) (iii) Use of repeated ratio appropriately to get $1.5-1.7 \checkmark$	$\begin{aligned} & 1 \\ & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 19 / 24=0.79,15 / 19=0.79 \\ & 12 / 15=0.80,10 / 12=0.83 \\ & 15 / 24=0.63,10 / 15=0.67 \end{aligned}$
(c)	Microwaves absorbed more as they penetrate ; intensity lower as you go further in	2	
	Total:	8	

Qn	Expected Answers	Marks	Additional guidance
7 (a)	$\begin{aligned} & c=f \lambda \checkmark ; \\ & \lambda=c / f=3.00 \times 10^{8} / 2.45 \times 10^{9} \mathrm{~m}=0.122 \mathrm{~m} \approx 12 \mathrm{~cm} \checkmark \mathrm{~s} \checkmark \mathrm{e} \end{aligned}$	3	
(b)	Reflect \checkmark	1	
(c)	Whole number of node-node loops $\checkmark ; 6$ loops \checkmark	2	Must be 'loopy' and not just a travelling wave
	Total:	6	
8 (a)	(i) $\quad \rho_{\text {Ceres }}=8.7 \times 10^{20} / 4.3 \times 10^{17}=2000 \mathrm{~kg} \mathrm{~m}^{-3} \checkmark$; $\rho_{\text {vesta }}=3.0 \times 10^{20} / 7.8 \times 10^{17}=3800 \mathrm{~kg} \mathrm{~m}^{-3} \checkmark$ (ii) Densities differ (significantly) so different materials \checkmark	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	Sfe penalty here for >3 sig figs.
(b)	(i) Using $T=2 \pi r / v \checkmark$; $\frac{2 \pi r}{v}=\frac{2 \pi r}{\sqrt{G M / r}}=\sqrt{4 \pi^{2} r^{2}} \sqrt{\frac{r}{G M}}=\sqrt{\frac{4 \pi^{2} r^{3}}{G M}} \checkmark \mathrm{~m} v e$ (ii) $T \uparrow \Rightarrow r \uparrow \Rightarrow v \downarrow$ so Vesta is faster as T is smaller $\checkmark \mathrm{m} \checkmark \mathrm{e}$	$\begin{aligned} & 3 \\ & 2 \end{aligned}$	Must relate T to v for second mark in (ii)
(c)	$\begin{aligned} & T=\sqrt{\frac{4 \pi^{2} r^{3}}{G M}}=\sqrt{\frac{4 \pi^{2}(35000)^{3}}{6.67 \times 10^{-11} \times 6.69 \times 10^{15}}} \mathrm{~s} \vee \mathrm{~s} \\ & =61600 \mathrm{~s}=17.1 \text { hours } \approx \text { nearly a day } \vee \mathrm{e} \end{aligned}$	2	
(d)	(i) $t=d / c=3 \times 10^{11} / 3.0 \times 10^{8}=1000 \mathrm{~s} \checkmark$ (ii) control from Earth not possible \checkmark; because of large (2000 s) round-trip time for signals \checkmark	3	
(e)	(i) $398 \times 303=120594 \vee 10576$; so compressed $\sqrt{ }$ (ii) 10576 bytes $=10576 \times 8$ bits $=84608$ bits \checkmark time $=84608$ bits $/ 10$ bits $\mathrm{s}^{-1}=8461 \mathrm{~s} \approx 8500 \mathrm{~s} \checkmark$	1	Using 120594 instead of 10576 is OK in (ii), $\Rightarrow 964752$ bits, 96000 s Ignore sfe in (ii)
	Total:	17	
9 (a)	$k=F / X=4.0 \mathrm{~N} / 0.10 \mathrm{~m}=40 \mathrm{~N} \mathrm{~m}^{-1} \checkmark$	1	
(b)	(i) $F \propto x$ as above \checkmark; $a \propto F$ by Newton II \checkmark (ii) $\quad a$ in opposite direction to $x \checkmark$; reference to vector nature γ	2	
(c)	$0.7 \mathrm{~s} \leq T \leq 1.0 \mathrm{~s}$	1	Graph gives 0.92 s
(d)	(i) $\begin{aligned} T & =2 \pi \sqrt{1.0 \mathrm{~kg} / 40 \mathrm{Nm}^{-1}}=2 \pi \times 0.158 \mathrm{~s} \\ & =0.99 \mathrm{~s} \checkmark \mathrm{~s} \checkmark \mathrm{e} \end{aligned}$ (ii) Rapid changes in $\mathrm{x} / \mathrm{v} /$ a not modelled \checkmark (iii) Use a much smaller time interval \checkmark; example of suitable Δt (e.g. 0.01 s or smaller) \checkmark	$\begin{aligned} & 2 \\ & 1 \\ & 2 \\ & \hline \end{aligned}$	Second mark in (iii) could be for explaining why smaller Δt is better.
	Total:	11	
	Quality of Written Communication	4	

OCR (Oxford Cambridge and RSA Examinations)
 1 Hills Road

 Cambridge

 Cambridge
 CB1 2EU

OCR Information Bureau

(General Qualifications)
Telephone: 01223553998
Facsimile: 01223552627
Email: helpdesk@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations

is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

