Physics A

Advanced GCE 7883

Mark Schemes for the Units

January 2007

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2007
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annersley
NOTTINGHAM
NG15 0DL
Telephone: 08708706622
Facsimile: 08708706621
E-mail: publications@ocr.org.uk

CONTENTS

GCE Physics A (7883)

Advanced Subsidiary GCE Physics (3883)

MARK SCHEMES ON THE UNITS

Unit	Content	Page
2821	Forces and Motion	1
2822	Electrons and Photons	9
2823/01	Wave Properties / Experimental Skills 1 Written Paper	15
2823/03	Wave Properties / Experimental Skills 1 Practical Examination	19
2824	Forces, Fields and Energy	27
2825/01	Cosmology	31
2825/02	Health Physics	35
2825/03	Materials	39
2825/04	Nuclear and Particle Physics	43
2825/05	Telecommunications	53
2826/01	Unifying Concepts in Physics / Experimental Skills 2 Written Paper	61
2826/03	Unifying Concepts in Physics / Experimental Skills 2 Practical Examination	65
*	Grade Thresholds	72

Mark Scheme 2821 January 2007

Mark Scheme 2822 January 2007

CATEGORISATION OF MARKS

The marking schemes categorise marks on the MACB scheme.
B marks: These are awarded as independent marks, which do not depend on other marks. For a B-mark to be scored, the point to which it refers must be seen specifically in the candidate's answers.

M marks: \quad These are method marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answers. If a candidate fails to score a particular M-mark, then none of the dependent A-marks can be scored.

C marks: These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the \mathbf{C} mark is given.

A marks: These are accuracy or answer marks, which either depend on an M-mark, or allow a C-mark to be scored.

Abbreviations, annotations and conventions used in the Mark Scheme	$\begin{aligned} & \hline! \\ & \text {; } \\ & \text { NOT } \\ & \text { () } \\ & \text { ecf } \\ & \text { AW } \\ & \text { ora } \\ & \hline \end{aligned}$	```= alternative and acceptable answers for the same marking point = separates marking points = answers which are not worthy of credit = words which are not essential to gain credit \(=\) (underlining) key words which must be used to gain credit = error carried forward = alternative wording = or reverse argument```

(a)	Any two from:	B1 $\times 2$
	Travel through vacuum (allow 'free space')	
	Travel at the speed of light $\backslash \mathrm{c} \backslash 3 \times 108 \mathrm{~m} \mathrm{~s}-1$ (in vacuum)	
	Consist of oscillating electric and magnetic fields	
	They are all transverse waves \backslash can be polarised	
	Can be diffracted \} reflected \ refracted	
	Consist of photons	
(b)	radio (waves); Infra-red \backslash ir; gamma $\backslash \gamma$ (rays ${ }^{\text {a }}$ (waves \backslash radiation)	B1 $\times 3$
(c)	Quantum of energy \ (electromagnetic) radiation \light \backslash packet of energy	B1
	(Do not allow 'particle of light' - since in the stem of the question)	
(d)	Planck constant (Do not allow h)	B1
(e)	ratio $=0.5 \backslash$ ratio $=1 / 2 \quad($ Allow ratio $=1: 2)$	B1

(e) ratio $=0.5 \backslash$ ratio $=1 / 2 \quad$ (Allow ratio $=1: 2$)
[Total: 8]
(a) $\quad Q=I t \quad$ (Allow any subject)
$Q=0.040 \times 5.0 \times 60 \times 60 \backslash$

$$
Q=0.040 \times 1.8 \times 10^{4}
$$

charge $=720$
$\left(40 \times 5=200\right.$ or $0.040 \times 5=0.02$ or $40 \times 1.8 \times 10^{4}=7.2 \times 10^{5}$ scores $\left.1 / 2\right)$ coulomb $\backslash \mathrm{C} \backslash$ As
(b) It is less because the average current is less \backslash area (under graph) is less \backslash current 'drops' after 3 hours.
(b) (i) \mathbf{M} marked at the end of the graph
(b) (ii) current is 5 (A) and p.d is 6 (V)

$$
P=V I \backslash P=6.0 \times 5.0
$$

$$
\text { (Allow } P=I^{2} R \text { or } P=V^{2} / R \text {) }
$$

$$
\text { power }=30(\mathrm{~W})
$$

(b) (iii) 1. $\quad V_{\mathrm{L}}=1.0(\mathrm{~V})$ (From the I / V graph) $\backslash R_{\mathrm{L}}=1.0 / 2.0$ or $0.5(\Omega)$

$$
V_{\mathrm{R}}=1.2 \times 2.0 \backslash R_{\mathrm{T}}=1.2+0.5 \quad \mathrm{M} 1
$$

$$
V=1.0+2.4 \backslash V=1.7 \times 2.0
$$

$$
\text { voltmeter reading }=3.4(\mathrm{~V})
$$

(d) (iii)2. $\mathrm{Vr}=4.5-3.4(=1.1 \mathrm{~V}) \backslash 4.5=2.0 \mathrm{r}+3.4$ (Possible ecf)

$$
r=\frac{1.1}{2.0}
$$

$$
\mathrm{r}=0.55(\Omega) \quad(1.05 \Omega \text { scores } 0 / 2 \text { since the lamp is ignored })
$$

4
(a) At B: (Straight) arrow to the right

At C: (Straight) arrow to the left
(Judged by eye)
B1
(b) (i) $\quad I=\frac{V}{R}=\frac{3.0}{1.5}$ current $=2.0(\mathrm{~A})$
(Allow 1 sf answer) B1
(b) \quad (ii) $\quad B=\frac{F}{I L}$
(Allow any subject)
C1

$$
\begin{equation*}
B=\frac{4.0 \times 10^{-3}}{2.0 \times 0.05} \quad \text { (Possible ecf) } \tag{C1}
\end{equation*}
$$

$B=4.0 \times 10^{-2}(\mathrm{~T})$
(Allow 1 sf answer)
$\left(4.0 \times 10^{-4} \mathrm{~T}\right.$ scores $2 / 3$)
[Total: 6]
5
(a) Ammeter in series B1
Voltmeter in parallel (across the ends of the wire) B1
(b) $\quad \rho=\frac{R A}{L}$ (Allow any subject)M1
$R=$ resistance, $L=$ length and $A=$ (cross-sectional) area A1
($\rho=$ resistivity is given in the question)
Any four from:
Measure the length of the wire using a ruler B1
Measure the diameter of the wire B1
using a micrometer \backslash vernier (calliper) B1
Calculate the (cross-sectional) area using $\mathrm{A}=\pi \mathrm{r} 2 \quad \backslash \mathrm{~A}=\pi \mathrm{d} 2 / 4$ B1
Calculate the resistance (of the wire) using $R=\frac{V}{I}$ B1
Repeat experiment for different lengths \backslash current \backslash voltage \backslash diameter (to get an average)BPlot a graph of R against L . The gradient $=\rho / \mathrm{A}$.B1
(Or Plot V against I. The gradient is $\rho \mathrm{L} / \mathrm{A}$)
Structure and organisation. B1
Spelling and grammar. B1

QWC

The answer must involve physics, which attempts to answer the question.

Structure and organisation

Award this mark if the whole answer is well structured.

Spelling and Grammar mark

More than two spelling mistakes or more than two grammatical errors means the SPAG mark is lost.

6
(a) (i) light-dependent resistor \backslash LDR
(a) (ii) Resistance of \mathbf{X} decreases (as light intensity is increased)
(a) (iii) The current is halved.
(b) total resistance of three in series $=6.0(\mathrm{k} \Omega)$
$\frac{1}{R}=\frac{1}{2}+\frac{1}{6} \quad$ R $=\frac{2 \times 6}{2+6}$
resistance $=1.5(\mathrm{k} \Omega)$ A1
(c) (i) p.d across $1.5 \mathrm{k} \Omega$ resistor $=5.0-1.2=3.8$ (V)

B1
(c) (ii) $\quad V=\frac{R_{2}}{R_{1}+R_{2}} \times V_{0} \backslash \frac{V_{1}}{R_{1}}=\frac{V_{2}}{R_{2}} \backslash$ current $=3.8 / 1.5(=2.53 \mathrm{~mA})$
$1.2=\frac{R}{R+1.5} \times 5.0 \quad \backslash \quad \frac{1.2}{R}=\frac{3.8}{1.5} \quad \backslash \quad R=1.2 / 2.53$
$R=474(\Omega) \approx 470(\Omega)$
(Using 3.8 V instead of 1.2 V gives $4.75 \mathrm{k} \Omega$ - allow $2 / 3$)
[Total: 11]
(a) $\lambda=\frac{h}{m v} \backslash \lambda=\frac{h}{p}$
$\lambda=$ wavelength,$m=$ (particle) mass, $v=$ speed \backslash velocity or $p=$ momentum
The wavelength $\backslash \lambda$ is a wave property
The mass $\backslash m$ (or momentum $\backslash p$) is a particle property
(b) (i) 1. The minimum frequency (of radiation \backslash waves) needed for electrons to be released (from the metal surface) \backslash for photoelectric effect
(b) (i) 2. Its temperature increases \backslash gets warm \backslash 'heats up'
(b) (ii) $\quad E=2.2+1.9(=4.1)$
$E=4.1 \times 1.6 \times 10^{-19}=6.56 \times 10^{-19}(\mathrm{~J})$
(Allow this mark for correct conversion of either 1.9 eV or 2.2 eV to joules)

$$
\begin{equation*}
f=\left(\frac{6.56 \times 10^{14}}{6.63 \times 10^{-34}}=\right) 9.89 \times 10^{14} \approx 9.9 \times 10^{14} \backslash \quad \lambda=\frac{h c}{E}=\frac{6.63 \times 10^{-34} \times 3.0 \times 10^{8}}{6.56 \times 10^{-19}} \tag{C1}
\end{equation*}
$$

$\lambda=3.03 \times 10^{-7} \approx 3.0 \times 10^{-7}(\mathrm{~m})$
(Allow 1 sf answer)
(Allow 3/4 marks for $\lambda=4.85 \times 10^{-26} \mathrm{~m}$ when eV is not converted to joules)
[Total: 10]

Mark Scheme 2823/01 January 2007

1 (a) the spreading out of waves (as they pass through a gap) (WTTE)
B1 [1]
(b) (i) gap about same size wavelength (i.e between 0.5λ and 1.5λ)

B1
semicircular arcs (ie nothing straight)
B1
no change in wavelength shown or stated or labelled
B1 [3]
\{n.b mark this rigidly because Question suggests they label the diagram\}
(ii) LESS diffraction (less spreading out) (WTTE)

B1 [1]
[Total: 5]

2
(a) refractive index $=\mathrm{ci} / \mathrm{cr}$ OR sini/sinr

B1
$\mathrm{ci}=$ speed of incident light/speed in air \quad OR $\mathrm{i}=$ angle of incidence
AND cr =speed of refracted light/speed in material OR r = angle of refraction
\{Allow $\mathrm{RI}=$ speed of light in air/speed of light in material or 2 marks \}
\{Allow $\mathrm{RI}=$ sine angle of incidence/sine angle of refraction for 2 marks\}
(b) Use of $\mathrm{n}=\mathrm{ci} / \mathrm{cr}$ (WTE) seen anywhere \{allow BACK CREDIT for (a)\}

Material	Refractive Index	Speed of light in the material m s
Water	1.33	$\mathbf{2 . 2 6}$ (or 2.3) $\mathbf{1 0} 0^{8}$
diamond	- A1	

(c) (i) ray is refracted/changes direction/changes speed
(ii) ray refracted towards normal AND away from normal on exit amount of refraction the same at entry and exit (WTTE)

B1
(iii) statement that path of refracted ray is drawn (on sheet)

B1
evidence of correct angles of incidence (i) AND refraction (r) measure (or find) i and r

[Total: 10]
4 (a) (i) amplitude $=3.75 \mathrm{~cm}$ \{allow 3.7 to 3.8)
(ii) when $\mathrm{t}=1.8 \mathrm{~ms}$ displacement $=$ ANY negative value

B1
(-) 3.35 cm (ALLOW 3.3 TO 3.4)
B1 [2]
(iii) period $=2.64 \mathrm{~ms}$ (allow 2.64 to 2.68)

B1 [1]
(iv) frequency $=1 /$ period

C1
$=1 /(2.64 \times 10-3)=379 \mathrm{~Hz}(379$ to 373 or 380$)$ \{ecf for T$\}$
(b) recall of $\mathrm{v}=\mathrm{f} \lambda$

C1
$\lambda=\mathrm{v} / \mathrm{f}=300 / 379=0.79 \mathrm{~m}$ (or 0.8 m) \{allow ecf from (iv) \}
[Total: 8]
5 (a) (i) ANY 3 correct phenomena from REFLECTION, REFRACTION, INTERFERENCE, SUPERPOSITION, DIFFRACTION, (allow transfer energy) B2 [2]
3 correct scores 2 marks, 2 correct scores 1 mark otherwise zero
(ii) POLARISATION

B1 [1]
(b) (i) it consists of nodes and antinodes / it does not transfer energy (WTTE) B1 formed by two identical waves travelling in opposite directions (WTTE) B1 (microwaves leaving transmitter) interfere (with reflected waves) (WTTE)B1 [3] \{allow superimpose/interact/cancel out/reinforce for interfere\}
(ii) 1. wavelength of the microwaves $=2 \times 1.4=2.8 \mathrm{~cm}$
2. speed of microwaves in air $=3 \times 108 \mathrm{~m} / \mathrm{s}$ OR c
frequency $\quad=3 \times 108 / 2.8 \times 10-2$ (allow ecf) $=1.07 \times 1010 \mathrm{~Hz}$
(iii) Place a metal grid \{allow "Polaroid"\} (between T and D) and rotate (or place at 900) OR rotate grid/transmitter/detector

B1 this causes minm/zero signal (WTTE)

Mark Scheme 2823/03 January 2007

Planning Exercise - Skill P

A1 Diagram of workable arrangement of apparatus including appropriate support at R. 1
A2 Correct procedure 1
(ie measure load, measure force at F; change load and measure new force - allow graph or table). Method must be workable.
A3 Correctly measures force at F 1
A4 Adds a carried load between F and R 1
B1 Method for suspending or supporting block of wood at F (could be on diagram) 1
B2 Range of loads applied (0-6 kg) 1
B3 Range of newton meter/top pan balance (0-1 N, 0-10 N, 0-50 N, 0-5 kg) 1
C1 Safety precautions, explicit statements required 1

Danger of heavy loads: sand below load; keep feet away from load;
place load near ground; boots with steel toe-caps.
R1/2 Evidence of the sources of the researched material
Two or more (vague) references or one detailed reference score one mark. Two or more detailed references scores two marks.

Detailed references should have page or chapter numbers or be internet pages.

> D1/2/3/4 Any further relevant detail. Examples of creditworthy points might be; $\max 4$
> Find weight of wood (either by measurement or density)
> Determination of newton meter/top pan balance range range
> Precision of newton meter/top pan balance
> Justificationof load to keep force on front axle/discussion of variation of force at F Method of keeping carried load in the same position
> Evidence of preliminary investigation in the laboratory
> Use of spirit level to keep beam horizontal
> Method of reducing friction at R

QWC Quality of written communication
This is for the organisation and sentence construction. Accounts that are rambling, or where the material is not presented in a logical order will not score these marks

16 marks total.

Question 1

(c) Measurements	$\mathbf{2 / 1 / 0}$
Write the number of readings as a ringed total next to the table of results.	
Six sets of values forT and M scores 2 marks. Five sets scores 1 mark	
Minor help from Supervisor then -1 .	
Major help (equipment set up for the candidate) then -2 .	
No trend (ie random scatter of plots) then -2 .	

(c) Column headings in the table 2/1/0
One mark for M heading with valid unit.
One mark for T headingwith valid unit.
Ignore units in the body of the table.
(c) Consistency of raw readings 2/1/0
One mark for T which must be to the nearest 0.1 N
One mark for M which must be to the nearest 1 g (eg 100 g or 0.100 kg)
(d) Axes 2/1/0
Sensible scales must be used. Awkward scales (eg 3:10, 6:10, 7:10) are not allowed.
The scales must be labelled with the quantities plotted. Ignore units.
Do not allow more than three large squares without a scale label.
One mark for each correct axis.
(d) Size of graph 2/1/0
Plotted points must occupy at least half the graph grid in both x and y directions (ie 4×6 large squares).
One mark for each correct axis.
(d) Plotting of points 2/1/0
Count the number of plots and write as a ringed number on the graph grid.
All observations must be plotted. Check a suspect plot. Tick if correct otherwise indicate the correct position.
If the plot is accurate < half a small square, then two marks awarded.
One mark if the plot is out by > half a small square and < than one small square.
(d) Line of best fit 1/0
Judge by scatter of points about the line.
There must be a fair scatter of points either side of the line of best fit.
Allow line through five trend plots for full credit (if done well).
Do not allow a line through a curved trend.Quality of results1/0Judge by scatter of points about the line of best fit.Six good trend plots on the graph grid needed for this mark to be scored.
(e) Gradient 2/1/0
The hypotenuse of the Δ must be \geq half the length of the drawn line. 1 mark.
Read-offs must be accurate to half a small square and ratio correct. 1 mark.
(f) y -intercept 1/0
Expect the value to be read from the y-axis to an accuracy of half a small square.
Or correct substitution from point on line into $y=m x+c$.

28 marks available. Write the mark as a ringed total at the bottom of page 7.

Question 2

(b) (ii) Connects circuit correctly without help

1
Records a current value in mA
(c) (ii) Method of calculating R and R / L 1 Penalise POT but allow ecf from (b)(ii).
(d) (i) Calculates percentage uncertainty in emf ratio (13.3\%) 1
(ii) $\Delta I=1-5 \mathrm{~mA} \quad 1$

Adds percentage uncertainties for V and I
1
(e) Repeats experiment gaining a smaller value forl

1
(f) Direct proportionality ideas

Method to prove or disprove proportionality
(eg determines constant of proportionality)
1
Appropriate conclusion based on their method of proving or disproving proportionality.
Vague answers will not score this second mark.
No method loses both these marks
(g) Evaluation of procedure

6
Relevant points from the table must be underlined and ticked with the appropriate marking letter.

	Problem	Solution
A	Heating effect of pencil	Remove wooden sleeve/use a smaller current/take reading instantly
B	Difficult to attach crocodile clips/lead breaks	Method of improving contact with pencil/expose more lead/use mini crocodile clips
C	Current readings fluctuate	Repeat reading and take an average
D	Physical characteristics of lead may not be same, eg diameter/tapers at the ends/length not accurate	Check with a micrometer screw gauge or good improvement to measure length/cut long length
E	EMF not 1.5 V or internal resistance ideas	Use a voltmeter to measure the voltage across the pencil
F	Two readings of R and L are not enough to verify the suggestion	Take many readings of L and plot a graph (eg R $\mathrm{~V} L$)

6 maximum

No credit for simple 'repeats' or 'using a computer'or digital meters.
Do not allow vague human error in measuring L or parallax errors.
Quality of written communication (ie spelling, punctuation and grammar).
Capital letters at the beginning of sentences, full stops at the end scores one mark
Correct spelling and grammar scores one mark. Allow max two errors.
N.B. Two marks can only be scored if greater than half a page of written work is assessed

16 marks available. Write the mark as a ringed total at the bottom of page 11.

Results

Question 1

m/kg	F/N
0.100	1.4
0.200	2.1
0.300	2.8
0.400	3.5
0.500	4.2
0.600	4.9

Plotting a graph of F against m produces:
Gradient $=7.0$
y-intercept $=0.70$
gradient $=3 g / 4$
$g=9.33 \mathrm{Nkg}^{-1}$
y-intercept $=R g / 2$
$R=2 \times 0.70 / 9.33=0.150 \mathrm{~kg}$
Mass from top pan balance 124 g (21\% error)

Results:

$$
\begin{aligned}
& I=8.5 \mathrm{~cm} \\
& I=85.2 \mathrm{~mA} \\
& R=16.4 \Omega \\
& R / I=\quad 193 \Omega \mathrm{~m}^{-1} \\
& I=17.2 \mathrm{~cm} \\
& I=64.8 \mathrm{~mA} \\
& R=21.6 \Omega \\
& R / I=\quad 125 \mathrm{~mm}^{-1}
\end{aligned}
$$

Since $R / /$ is not constant R is not directly proportional to /

Summary of shorthand notation which may be used in annotating scripts:

SFP Significant figure penalty
ECF Error carried forward
AE Arithmetical error
POT Power of ten error
NV Not valid
NR Not relevant
GAP Insufficient scale markings on an axis
NBL Not best line
FO False origin
NGE Not good enough
BOD Benefit of the doubt
R Point repeated (no further credit)
NA Not allowed
SV Supervisor's value
SR Supervisor's report
OOR Candidate's value is out of range
CON contradictory physics not to be credited
$\checkmark \quad$ Used to show that the size of a triangle is appropriate (gradient calculation)
$\checkmark_{\text {A1 }} \quad$ Used to show the type of mark awarded for a particular piece of work
\checkmark c Used to show that the raw readings are consistent
\checkmark Used to show that the raw readings have correct spacing
\checkmark SF Used to show calculated quantities have been given to an appropriate number of significant figures
$\wedge \quad$ Piece of work missing (one mark penalty)
$\wedge \quad \quad$ Several pieces of work missing (more than one mark penalty)
$\leftrightarrow \quad$ Scale can be doubled in the x-direction
$\downarrow \quad$ Scale can be doubled in the y-direction

Mark Scheme 2824 January 2007

Abbreviations,	l alternative and acceptable answers for the same	
annotations and	marking point	
conventions used	$;$	$=$ separates marking points
in the Mark	()	$=$ words which are not essential to gain credit
Scheme	eff	$=$ error carried forward
	AW	$=$ alternative wording

Question Expected Answers Marks
1 a i $\quad 1 / 2 \mathrm{mv}^{2}=7.6 \times 10^{-13}$ to give $v=\sqrt{ }\left(2 \times 7.6 \times 10^{-13} / 6.6 \times 10^{-27}\right.$ 1
evidence of calculation $v=\sqrt{ } 2.3 \times 10^{14}$ or $=1.52 \times 10^{7}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ 1
ii (electrostatic) repulsion between charged particles 1
slows alpha and accelerates nucleus/AW 1
momentum of system is conserved(as no external forces) 1
sum of momenta of alpha and nucleus must always equal initial momentum of alpha/be a constant 1
so speed of nucleus can be calculated as momentum $=\mathrm{mv}$ 1
$\max 3$
$\mathrm{mv}=\mathrm{MV}$ or $\mathrm{V}=6.6 \times 10^{-27} \times 1.52 \times 10^{7} / 3.0 \times 10^{-25} ;=3.3 \times 10^{5}$2
$\left(\mathrm{m} \mathrm{s}^{-1}\right)$iv $\mathrm{Ft}=2 \mathrm{mv}$ or $9.0 \times \mathrm{t}=2 \times 6.6 \times 10^{-27} \times 1.52 \times 10^{7} ; \mathrm{t}=2.2 \times 10^{-20}$2
(s)
give 1 mark for change in momentum $=$ impulse or $\Delta m v=F(\Delta) t$
b i Coulomb force α distance ${ }^{-2}$ or $F_{1} / F_{2}=r_{2}{ }^{2} / r_{1}{ }^{2}$ or $\mathrm{Fr}^{2}=$ constantgiving $F=4.0 \mathrm{~N}$ at $10 \times 10^{-14} ;=1.8 \mathrm{~N}$ at $15 \times 10^{-14} \mathrm{~m}$12
ii plot and draw correct curve ecf plausible values in b(i)14
Total 13
(The sum of) the random kinetic ; and potential energies of theatoms/molecules/particles of the gas1
omitting atoms/molecules/particles scores zero marks
b i $\quad \mathrm{n}=\mathrm{pV} / \mathrm{RT} ;=2.8 \times 10^{5} \times 2.1 \times 10^{-3} /(8.3 \times 288)$; $=0.246(\mathrm{~mol})$ 3
ii $\mathrm{p} / \mathrm{T}=$ constant; $\mathrm{T}=(290 / 280) \times 288=; 298 \mathrm{~K}=25^{\circ} \mathrm{C}$
ii $\mathrm{p} / \mathrm{T}=$ constant; $\mathrm{T}=(290 / 280) \times 288=; 298 \mathrm{~K}=25^{\circ} \mathrm{C}$3
using $p V=n R T$ with $n=0.25 \mathrm{~mol}$ gives $20^{\circ} \mathrm{C}$ also possible ecffrom b (i)iii ratio $=T_{2} / T_{1}=p_{2} / p_{1}=1.03$ or 1.04 or 1.02 ; internal energy $a \mathrm{~T}$28iii the belt tension is insufficient to provide the centripetal force; so1the belt does not 'grip' the pulley/does not hold the belt againstthe pulley/there is insufficient friction to pull/push/move the belt.1
alternative argument the belt does not 'grip' the pulley/there is insufficient friction to pull/push/move the belt; because of its 6inertia/insufficient to provide force for acceleration of (belt)-drumb resonance occurs; when the natural frequency of vibration of the1
panel = rotational frequency of the motor
c i1 $5,15,25(\mathrm{~ms})$$20,10,20,30$ (ms)1
ii Stating/using $\epsilon=d \varphi / d t$ 1
gradient $=0.67 \pm 0.05\left(\mathrm{~Wb}\right.$ turns $\left.\mathrm{ms}^{-1}\right) \quad ; \mathrm{emf}=$ gradient $\times 10^{3}$ 2(V)
$4 \quad \mathbf{a} \quad \mathrm{Q}_{0}=C V=1.2 \times 10^{-11} \times 5.0 \times 10^{3}$; $=6.0 \times 10^{-8}$; C
3
b i $\quad R C=1.2 \times 10^{15} \times 1.2 \times 10^{-11} \quad$ or $=1.44 \times 10^{4}(\mathrm{~s}) \quad 1$
ii $\quad \mathrm{I}=\mathrm{V} / \mathrm{R}=5000 / 1.2 \times 10^{15}$ or $=4.16 \times 10^{-12}(\mathrm{~A}) \quad 1$ iii $t=Q_{0} / l ;=6 \times 10^{-8} / 4.16 \times 10^{-12}=1.44 \times 10^{4}(\mathrm{~s})$ 2
iv $Q=Q_{0} e^{-1} ; Q=0.37 Q_{0}$ so Q lost $=0.63 Q_{0}$ 2
c i capacitors in parallel come to same voltage 1
so Q stored αC of capacitor 1
capacitors in ratio 10^{3} so only $10^{-3} \mathrm{Q}_{0}$ left on football 1
ii $\quad V=Q / C=6.0 \times 10^{-8} / 1.2 \times 10^{-8}$ or $6.0 \times 10^{-11} / 1.2 \times 10^{-11}$ or only 10^{-3} Q left so $10^{-3} \mathrm{~V}$ left; $=5.0(\mathrm{~V})$
Total
5 a i equally spaced horizontal parallel lines from plate to plate 1
arrows towards cathode 1
ii $\quad 1 / 2 \mathrm{mv}^{2}=\mathrm{qV} ; \mathrm{v}=\sqrt{ }(2 \mathrm{eV} / \mathrm{m})=\sqrt{ }\left(2 \times 1.6 \times 10^{-19} \times 7000 / 9.1 \times 10^{-31}\right)$ so 1
\square
146
6
$\mathrm{v}=4.96 \times 10^{\frac{7}{7}}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ 1
b i arrow perpendicular to path towards centre of arc 1
ii out of paper/upwards ;using Fleming's LH rule (for conventional 2current)
iii $\mathrm{mv}^{2} / \mathrm{r} ;=\mathrm{Bqv} ; \mathrm{r}=\mathrm{mv} / \mathrm{Bq}=\underline{9.1 \times 10^{-31} \times 4.96 \times 10^{7} ;=9.4 \times 10^{-2} \quad 4}$ (m)

$$
3.0 \times 10^{-3} \times 1.6 \times 10^{-19}
$$

c change magnitude of current in coils to change field;1
change field to change deflection; 1
reverse field/current to change deflection from up to down max 2 1
marks
Total
4

4
6 a i $\quad 212 ; \beta$ 2
ii 208; α 2b range/penetration/absorption experiment:α place detector very close/ 2 cm from source; measure count rate,1
use paper screen or move back to 10 cm or more; contrast to 1
background count level/ other emissions from same source 1
β place detector eg 10 cm from source; measure count rate, add 1
thin sheets of Al until count drops to very low or almost constant 1
value
aliter deflection experiment:needs vacuum for α experiment;1
source for radiation passes through region of E- or B-field; 1
deflection of particles detected by detector to distinguish emissions; 1
detection method max 4 1
marks
c i $\quad A=\lambda N ;=\lambda m N_{A} / M ;=0.0115 \times 6.02 \times 10^{23} \times 1 \times 10^{-9} / 212=3.27 \times 10^{10}$ 3min^{-1}
ii $\quad T_{1 / 2}=0.693 / \lambda=60.3(\mathrm{~min})$ 1
iii Curve passing through $(0,32)$ $(60,16)(120,8)$
ecfs from (i) \&
4
(ii)
(ii)

Total
7 a Do not score the same marking point twice; some marking points appear more than once in a different context fission is splitting of nuclei: neutron is absorbed by the nucleus; 1 an (unstable) nucleus splits into two (major) fragments; 1 and several/two/three neutrons 1 charges on/Coulomb repulsion pushes fragments apart; 1 loss of mass/increased binding energy accounts for k.e of fragments/release of energy
fusion is fusing of nuclei:
two light nuclei (are moving rapidly enough to overcome the Coulomb repulsion to 'touch' and) fuse; statement in brackets gets second mark
has to be very hot for nuclei to have enough kinetic energy/ only 1
happens naturally inside Sun/star accept H-bomb 1
loss of mass/increased binding energy accounts for release of energy
similarity: release of energy/total (rest) mass decrease/'increase' in
binding energy /conservation of charge/mass-energy, etc
difference: /cold, hot/heavy, light nuclei/large (200 MeV), small (30 1
MeV) energy release per reaction
conditions: fission rate can be varied/controlled by absorbing and or slowing released neutrons in reactor where chain reaction is
occurring/AW $\max 2$
marks
fusion needs a very hot and sufficiently dense and plentiful plasma for random fusion collisions to occur, eg inside Sun/star/AW max 2 marks
b Appreciation that key is the difference in numbers of atoms/nuclei or equal number of nucleons involved if nothing else is achieved
Full argument:
235 g of uranium and 4 g of hydrogen/helium contain 1 mole of 1
atoms 1
there are 4.26 moles of uranium and 250 moles of helium 1
so at least 58 times as many energy releases in fusion 1
ratio of energies is only 7 fold in favour of uranium therefore more energy release from 1 kg of hydrogen any similar alternative argument along same lines scores 4 marks 1
eg For U each nucleon 'provides' 0.85 MeV 1
For H each nucleon 'provides' $7 \mathrm{MeV} \quad 1$
(Approximately) same number of nucleons per kg of U or $\mathrm{H} \quad 1$
so 8.2 times as much energy from H
Total
Quality of Written Communication (see separate sheet)

Mark Scheme 2825/01 January 2007

a) i) 1 Craters/ mountains on Earth's Moon 1
2 Moons orbiting Jupiter 1
a) ii) Moon not perfect (sphere) 1Earth not the centre of all orbits / confirmedheliocentric theory1
b Position/velocity (of Uranus) not that predicted 1
Another force acting (on Uranus) 1
Existence of another planet/Neptune predicted 1
c galaxy/ milky way/ accept black hole 1planet1planetary moon/ asteroid/ comet1
total 10
2 a) i) $m_{s} v^{2} / r=G m_{s} m_{e} / r^{2}$ 1
a) ii) $\quad v=2 \pi r / T$ 1 1
$4 \pi^{2} r^{2} / T^{2}=G m_{e} / r$
$4 \pi^{2} r^{2} / T^{2}=G m_{e} / r$
b) i) \quad Time $=718 \times 60 \mathrm{~s} \quad(=43,080 \mathrm{~s})$ 1$r^{3}=6.67 \times 10^{-11} \times 6 \times 10^{24}(718 \times 60)^{2} / 4 \pi^{2}$$r=2.66 \times 10^{7} \mathrm{~m} \quad 1$1c) i) satellites are in moving reference frame1
satellites are in weaker/different gravitational field 1
c) ii) satellites have elliptical orbits 1ref. to change in speed or height above Earth1

3 a) change in frequency or wavelength 1
from relative motion of source and/or observer 1
b) Any 6 from
correct reference to red shift/ longer wavelength 1
bodies are receding (from Earth)/ Universe is expanding 1
the objects are galaxies 1
$\mathrm{v} / \mathrm{c}=\Delta \lambda / \lambda \quad 1$
using data from spectra (eg measure $\Delta \lambda$) 1
reference to obtaining distance data 1
velocity is proportional to distance $/ \mathrm{v}=\mathrm{H}_{0} \mathrm{r} \quad 1$
suggests Universe started with Big Bang / singularity 1
age of Universe $=1 / \mathrm{H}_{0} \quad 1 \quad 6$
total 8
4 a) burning hydrogen 1
H and He the major constituents/ longest or most stable part of life-span (as a star)/ evolves into red giant/
radiation pressure balanced by gravitational pull
1
b) i) intensity changes/decreases with distance 1
absolute magnitude places all stars at $10 \mathrm{pc} /$ same distance/
distance does not affect comparison of luminosities
b) ii) $m-M=5 \log (d / 10) \quad 1$
$\mathrm{M}=7.5-5 \log (158.5 / 10) \quad 1$
$M=1.50$
c) i) any 6 points plotted correctly 1
all points correct 1
c) ii) curve passes through all points and correct peak 1
c) iii) min.apparent magnitude read correctly from graph 1
d) supernova 1

H burning has ended/ luminosity increases greatly
quarks/electrons/ positrons/ neutrinos formed 1
temperature decreases/inflation 1
strong nuclear force takes effect 1
protons/ neutrons/ pions formed 1
annihilation/ excess matter to anti-matter 1
synthesis of helium nuclei 1
hydrogen atoms form 1
25% of mass is helium 1
gamma radiation 1
universe becomes transparent $1 \quad 6$
b) EITHER
uniform intensity/isotropic
1
from era when matter and radiation strongly coupled
1

OR
temperature of 3 K
1
agrees with expected cooling
12
c) i) $\quad E=h f / E=h c / \lambda$
$E=6.63 \times 10^{-34} \times 3 \times 10^{8} / 1.1 \times 10^{-3}$
c) $\mathrm{ii} \quad \mathrm{E}=\mathrm{mc} \mathrm{c}^{2}$
$E=1.7 \times 10^{-27} \times\left(3 \times 10^{8}\right)^{2}$
c) iii) $\left(1.53 \times 10^{-10} / 10^{9} \times 1.8 \times 10^{-22}\right)$
$8.5 \times 10^{2}($ ecf from c)i) and c)ii))
c) iv) Any 2 from shorter photon wavelength / universe smaller 1 photon energy greater ratio becomes smaller.
total 15
6 a) all inertial frames equivalent/ laws of physics same in all frames
constancy of speed of light
b) any 6 from
muons moving at speed near c
muons unstable/ decay
measure intensity of muons
(intensity taken) for two/range of heights
increased range/ intensity of muons
clocks in muon reference frame slowed further detail
(eg created in upper atmosphere measurements taken on mountain zero intensity anticipated at sea-level speed $=0.99$ c)
c) i) distance moved by light in one year
c) ii) $1 \quad \mathrm{t}=6 / 0.99$
$t=6.09 y$
$2 \quad t=t_{0} / \sqrt{ }\left(1-v^{2} / c^{2}\right) \quad / \quad t=y t_{0}$
$V\left(1-v^{2} / c^{2}\right)=0.14 / V=7.1$
$t_{0}=0.14 \times 6=0.84 y$

1

For mark scheme for the common question see unit 2825/05.

Mark Scheme 2825/02 January 2007

1
(a) (i) astigmatism
(ii) curvature of cornea not spherical different focal lengths (or power) in different planes / allow 'blurred' in some planes but not in others
(iii) Fig.2.2 undeviated rays

Fig.2.3 rays diverge
(b) (i) $1 /$ for $p=1 / u+1 / v$
substitution
(1)
$55=2+1 / v$ 19 mm
(1)
(18.9 mm)
(ii) substitution

57 D
(iii) substitution e.g $57-55$

$$
\begin{equation*}
+2 \mathrm{D} \tag{1}
\end{equation*}
$$

3 one mark for each up to a maximum of 6, eg
low intensity light give perception of warmth / calm / quiet
high intensity light give the perception of active / exciting / cold
red light is a warm colour
blue light is a cold colour
advertising situation with appropriate colour and intensity
eg fast food restaurant
uses combination of red and yellow as these are busy colours
second different situation
extra detail

4 one mark each up to a maximum of 5, eg
laser boils water content (of cell)
cell shrivels / dies
advantages:
heat cauterises wound
so less bleeding (than conventional surgery)
sterile surgery compared with....
as no direct contact with tissue
finer cut than
shorter recovery time
keyhole surgery / minimal intrusion / shorter hospitalisation
5 (a) minimum intensity at which sound is just detected
(b) substitution $63=10 \lg 5 / 10-12$
$1.995 \times 10-6 \mathrm{~W}$ m-2
(c) (i) substitution $/ \mathrm{I}=\mathrm{k} / \mathrm{d} 2$
or $k=3.2 \times 10-5$
$3.1 \times 10-8 \mathrm{~W} \mathrm{~m}-2$
(ii) substitution I.L. $=10 \lg (3.1 \times 10-8 / 1.0 \times 10-12)$ 45 dB
(iii) only just detected / just at the threshold
comparison with $10-8 \mathrm{~W} \mathrm{~m}-2$
relevant response eg
would not be heard if any background sound / reflections would increase I.L / ref. to how to cater for impaired hearing / sound of wind /

6 (a) (electrostatic) potential
kinetic
thermal
(b) $3.75 \times 1017 \times 1.4 \times 10-14$

5250 W
(c) ref. to very large quantities of heat generated
sensible comment eg target needs high melting point
anode made of good conductor
oil surrounding target to remove heat
rotating anode
anode large mass
(d) $\mathrm{I}=\mathrm{lo} \mathrm{e}-\mathrm{x}$
$0.5=\mathrm{e}-\mathrm{x} 3.0$
(e) eg X-ray is cheaper
quicker
relatively portable / MRI larger
MRI cannot be used if metal implants
. $=0.23$
(1) 230
mm-1
(1) $\mathrm{m}-1$
年

7 (a) direct:
atoms / molecules in DNA are ionised by direct interaction / 'collision'
indirect:
free radicals formed / H and OH formed / H 2 O 2 formed
which then damage the DNA (in chromosomes in the nuclei of cells)
(b) kill cell / cancer develops / mutation
(a) (i) $D=f \times X \quad / 60 \times 0.050$
$D=3.0$
J kg-1 / Gy
(ii) $\mathrm{D}=(41$ to 45$) \times 0.050=2.05$ to $2.25 \mathrm{~J} \mathrm{~kg}-1 / \mathrm{Gy}$
(b) lower energy could reduce absorbed dose for soft tissue / increase dose for bone
More absorption in bone so better contrast, (so exposure time could be reduced) (1) Film would have higher efficiency for lower energy, (so exposure time could be reduced further)

For mark scheme for the common question see unit 2825/05.

Mark Scheme 2825/03 January 2007
(a) (i) single crystal example;
application: eg silicon in integrated circuit / quartz in watch.
(ii) amorphous example;
application: eg glass as optic fibre: metallic glass as transformer core.
(b) (i) each atom/ bubble is surrounded by / in contact with 6 atoms / bubbles.
(ii) fault at H or I/f org OR L or M / h or I Impurity atom / substitution (defect) / interstitial (defect).
fault at L or M / h or i OR E or F / for g; dislocation.
(c) (i) ball model shows 3 dimensions / bubble raft only shows 2 dimensions;
(ii) bubble raft can show imperfections / ball model cannot show imperfections.
(a) (i) $\quad \mathrm{R}=\mathrm{V} / \mathrm{I}=6.0 / 8.2 \times 10-6=7.32 \times 105 \Omega$
(1)
$\sigma=1 / \rho$ stated or implied
$=L / R A$
$=0.018 /(7.32 \times 105 \times 0.0075 \times 0.0075)=4.37 \times 10-4 \Omega-1 \mathrm{~m}-1$
(ii) $\quad v=I / n A e=8.2 \times 10-6 /(2.1 \times 1016 \times 0.0075 \times 0.0075 \times 1.6 \times 10-19)$
(b) (i) Charge carriers / electrons in the valence band are given more thermal energy; (1) so more are able to cross the energy gap (into the conduction band).
(ii) $\ln \frac{\mathrm{n} 2}{2.1 \times 1016}=1.28 \times 104\left(\frac{1}{298}-\overline{3}-\frac{1}{303}\right) \quad(=0.709)$

$$
\begin{equation*}
\frac{\mathrm{n} 2}{2.1 \times 1016}=2.03 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{n} 2=4.27 \times 1016 \mathrm{~m}-1 \tag{1}
\end{equation*}
$$

(iii) (From I = nAve), with no change in drift velocity current would be 4.27 / 2.1 $=2.03$ times bigger;
For same current p.d. needs to be $6 / 2.03=2.95 \mathrm{~V}$.
(a) (i) (At equilibrium separation) attractive force (between atoms);
(Resultant force is zero - allow 1 mark)
(ii) (Separation varies) because atoms vibrate (about a mean position).
(b) (i) 1 (Resultant force is attractive) from 0.4 nm to $0.9 \mathrm{~nm} /$ above 0.4 nm . 2. 0.4 nm .
(ii) The energy required is the work done in overcoming the attractive force; Work done = force x displacement (in direction of the force);
The shaded area represents this work.
(1) \max
(iii) 2 mm square represents $1.0 \times 10-23 \mathrm{~J} / \mathrm{cm}$ square represents $2.5 \times 10-22 \mathrm{~J}$;
(1)

Area under graph $=170-2102 \mathrm{~mm}$ squares $/ 7.5-8.5 \mathrm{~cm}$ squares;
Energy in range $1.7 \times 10-21 \mathrm{~J}-2.1 \times 10-21 \mathrm{~J}$
OR equivalent based on triangle approximation)
(iv) Specific latent heat of sublimation is energy calculated in (iii);
(1)
times the total number of bonds between all the atoms in 1 kg .

4 (a) The temperature at which the resistance suddenly drops to zero.
(b) (i) Completion of table and one point correctly plotted; 3 further points correctly plotted;
All points correctly plotted with suitable line.
Coble
(ii) 1 (Intercept at $\mathrm{T} 2=$ zero) Bo in range 0.190 T to 0.198 T ;

2 (Intercept at B = zero) Tc2 in range 84 (K2) to 90 (K2);
Tc in range 9.1 K to 9.5 K .
(c) (i) High temperature superconductors have transition temperatures above 50 K / alternative sensible description);
Liquid nitrogen needed for cooling to transition temperature.
Liquid nitrogen for cooling is cheaper to produce than liquid helium;
Cost of maintaining a higher low temperature is less.
(1) \max
5 (a) Sketch to include: Variable frequency A.C source to primary, core, coils; resistor connected to secondary;
appropriate meters in primary and secondary circuits;
Quantities kept constant: Voltage of source;
Primary current / power;
Resistance of secondary circuit resistor;
Number of turns in both coils;
Procedure: Use several frequencies over a wide range / the range available;
At each frequency read meters;
Table headings to show: meter readings;
primary power, secondary power, efficiency.
Graph of efficiency against drawn;
Details of calculations of power (may use meter readings and value of resistor);
Expression for efficiency / \% efficiency.
(b) Energy / heat is lost in core due to hysteresis;

Energy / heat loss in 1 cycle is proportional to area of hysteresis loop;
Frequency increase reduces efficiency because energy loss (per second) = frequency x area enclosed by hysteresis loop.
Energy loss takes place due to heat generated in core by induced / eddy currents;
(1)

Induced voltage in core increases with frequency / is proportional to frequency;
(so) induced current in core increases with frequency / is proportional to frequency.
(1) \max
(a) Polar / interatomic bonds in glass absorb photons;

This process is a major factor above $1.5 \mu \mathrm{~m}$;
Hydroxyl ions / impurities in glass absorb photons;
This process is only significant around $1.4 \mu \mathrm{~m}$;
Photons scattered by Rayleigh scattering / random fluctuations in the density / composition of glass;
This process decreases with increasing wavelength.
$1.5 \mu \mathrm{~m}$ is the wavelength which minimises absorption and scattering processes;
(Accept labelled and annotated graph providing some / all above information.)
(b) (Amount of) scattering is proportional to $1 / \lambda 4$
$\%$ of A scattered $=\lambda 4 B$
$\%$ of B scattered $\quad \lambda 4 \mathrm{~A}$
$\lambda 4 B=\frac{1.54 \times 5}{10} \quad \lambda=1.26 \mu \mathrm{~m}$

For mark scheme for the common question see unit 2825/05.

Mark Scheme 2825/04 January 2007

ADVICE TO EXAMINERS ON THE ANNOTATION OF SCRIPTS

1 Please ensure that you use the final version of the Mark Scheme.
You are advised to destroy all draft versions.
2 Please mark all post-standardisation scripts in red ink. A tick (\checkmark) should be used for each answer judged worthy of a mark. Ticks should be placed as close as possible to the point in the answer where the mark has been awarded. The number of ticks should be the same as the number of marks awarded. If two (or more) responses are required for one mark, use only one tick. Half marks $(1 / 2)$ should never be used.

3 The following annotations may be used when marking. No comments should be written on scripts unless they relate directly to the mark scheme. Remember that scripts may be returned to Centres.

```
x = incorrect response (errors may also be underlined)
^ = omission mark
bod = benefit of the doubt (where professional judgement has been used)
ecf = error carried forward (in consequential marking)
con = contradiction (in cases where candidates contradict themselves in the same response)
sf = error in the number of significant figures
```

4 The marks awarded for each part question should be indicated in the margin provided on the right hand side of the page. The mark total for each question should be ringed at the end of the question, on the right hand side. These totals should be added up to give the final total on the front of the paper.

5 In cases where candidates are required to give a specific number of answers, (eg 'give three reasons'), mark the first answer(s) given up to the total number required. Strike through the remainder. In specific cases where this rule cannot be applied, the exact procedure to be used is given in the mark scheme.

6 Correct answers to calculations should gain full credit even if no working is shown, unless otherwise indicated in the mark scheme. (An instruction on the paper to 'Show your working' is to help candidates, who may then gain partial credit even if their final answer is not correct.)

7 Strike through all blank spaces and/or pages in order to give a clear indication that the whole of the script has been considered.

8 An element of professional judgement is required in the marking of any written paper, and candidates may not use the exact words that appear in the mark scheme. If the science is correct and answers the question, then the mark(s) should normally be credited. If you are in doubt about the validity of any answer, contact your Team Leader/Principal Examiner for guidance.

Abbreviations, annotations and conventions used in the Mark Scheme		l $=$ alternative and acceptable answers for the same marking point $;$ $=$ separates marking points NOT $=$ answers which are not worthy of credit () $=$ words which are not essential to gain credit $=$ (underlining) key words which must be used to gain credit ecf $=$ error carried forward AW $=$ alternative wording ora $=$ or reverse argument	
Question	Expect	Answers	Marks
1 (a) (i) (ii) (iii)	general then hit marks marks	ape: crosses axis, reaches turning point; istance axis (not asymptotic); tions as 'repulsive' and 'attractive', consistent with graph; sing point ' X '	
(b)	at smal at large either restorin or at equil	separation / to left of X , force is repulsive; paration / to right of X, force is attractive; force always returns neutrons to original separation / is a rce um separation strong force is zero;	$\begin{aligned} & 1 \\ & 1 \end{aligned}$ [3]
(c)	acts on either so force nucleus or referen so dens	n nearest neighbour / when nuclei are 1 diameter apart; lding nucleons/ neutrons together independent of size of o b so distance apart (of nucleons) must be constant; of nucleus is independent of size;	1 1 1 [3] 10

3 (a) (i) (ii)	to come to rest simultaneously, total mtm. $=0$ or AW (but initial mtm. not zero) $\begin{array}{ll} \text { initial } \mathrm{mtm} . & =3 m u-2 m u=m u \\ \text { when closest, } \mathrm{mtm} . & =(3 m+2 m) v \\ \text { so } \quad 5 m v=m u \quad(\text { and } v=u / 5) \end{array}$	$\begin{array}{ll} 1 & {[1]} \\ 1 & \\ 1 & \\ & {[2]} \end{array}$
(b) (i) (ii) (iii)		1 [1] 1 [3] 2 1 1 [4]

5 (a)	$\begin{aligned} & 1 / 2 m v^{2}=V e \\ & 1 / 2 \times 1.67 \times 10^{-27} v^{2}=750 \times 1000 \times 1.6 \times 10^{-19} \\ & \text { so } v=1.20 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1} \\ & \text { uses electron mass }- \text { gives } 5.13 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \\ & 1 / 2 \times 1.67 \times 10^{-27} v^{2}=750 \text { gets } 1,0,0=1 / 3 \end{aligned} \text { gets } 1,0,1=2 / 3$	$\begin{array}{lr} \hline 1 & \\ 1 & \\ 1 & {[3]} \end{array}$
(b)	```time interval = \pir/v = \pi\times0.382/(1.20\times10 7) (= 1.00 \times10-7 s)```	$\begin{array}{ll} 1 & \\ 1 & {[2]} \end{array}$
(c)	no. of times $=750 / 15=50$	1 [1]
(d)	horizontal steps from 60 correct ΔE steps at each $10^{-7} \mathrm{~s}$, starting at $1.0 \times 10^{-7} \mathrm{~s}$ straight line through points gets $0,1,0=1 / 3$	$\begin{array}{ll} 1 & \\ 1 & \\ 1 & {[3]} \end{array}$
(e)	Δv increments would decrease with increasing time; either because v^{2} increases with ΔE or AW; or $\quad v$ would increase linearly between steps; any 1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$

For mark scheme for the common question see unit 2825/05.

Mark Scheme 2825/05 January 2007
(a) Analogue-to-Digital Converter
(1) (do not accept ADC)
(b)

msb clearly indicated
(1 mark each for first three samples then 1 mark in total for last two)
(c) Digital-to-Analogue Converter
(1) (do not accept DAC)
(d)

time / s
(e) Fig.2.1 shows a temperature rising more slowly than actually

Fig.2.1 shows a rise in temperature from time 0 not from time 40
Fig.2.1 fails to catch the drop in temperature when the door is opened at 140 s
This is because the sampling frequency $(1 / 60 \mathrm{~Hz})$ is far too low to resolve the detail
(f) To catch the rapid drop in temperature at 140 s there should be no longer than 1 or 2 seconds between samples.
So sampling frequency should be about $1 \mathrm{~Hz} \quad$ (allow 1 Hz to 0.5 Hz) for explanation (1) for frequency (1)
(g) Total number of bits $=$ Number of samples x number of bits per sample $=241 \times 4964$
$=\quad 964(1)$

2 (a)

Any sensible explanation of carrier (eg RF wave being modulated/controlled/broadcast)
Sidebands are limits in frequency space of modulated carrier (or wtte)
(b) Bandwidth $=2 \times 4=8$ (1) $\quad=\quad \mathrm{kHz}$ (1) (for unit)
(c) Maximum number of stations $=(280-140) / 8$
$=\quad 17$
(d) Broadcast quality FM requires a bandwidth of about 180 kHz per station

The available frequency space (140 kHz) would not even accommodate one station
(e) Normal broadcast TV requires an information / signal bandwidth of over 5 MHz There is thus no way to provide for such frequencies on a carrier much lower than this

3 (a) Microphone correctly labelled
(b) Maximum output voltage $= \pm 14 \mathrm{~V}$
(1) (allow $\pm 13 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$)
(c)

Non-inverting input (+) connected to 0 V line
Input resistor connected to inverting input (-)
Feedback resistor correctly wired up
One microphone pin connected to $2.2 \mathrm{k} \Omega$ resistor
Other microphone pin connected to 0 V line
(d) Voltage gain $=10.5 / 0.035$
$=300$
(e) Feedback resistor $=300 \times 2.2 \mathrm{k} \Omega$
$=660 \mathrm{k} \Omega$
Both $660 \mathrm{k} \Omega$ feedback resistor and $2.2 \mathrm{k} \Omega$ input resistor correctly labelled

4

(a)	p.d. across electromagnet			$=0.2 \times 48$				(1)
				$=9.6 \mathrm{~V}$	(1)	<	1\%	1200 V
(b)	Cable resistance		\approx	1200 / 0.2				(1)
			\approx	6000Ω				
	(more precisely	R	=	[1200-9.6] / 0.2	$=$	5952		
(c)	Area of copper		=	$\rho L / R$				(1)
			=	$1.7 \times 10^{-8} \times 3000$	$10^{3} /$	000		(1)
			=	$8.5 \times 10^{-6} \mathrm{~m}^{2}$				(1)
	Diameter		=	$\checkmark\left(4 \times 8.5 \times 10^{-6}\right.$				(1)
			=	3.3 mm				
(d)	Mass of copper		=	$8930 \times 3000 \times 10$	$\times 8.5$	10^{-6}		(1)
			=	$2.28 \times 10^{5} \mathrm{~kg}$		ecf u	dia.	$3.5 \mathrm{~mm})$
(e)	power ratio		=	$10 \lg \mathrm{P}_{1} / \mathrm{P}_{2}$				
			=	$10 \times \lg (9.6 \times 0.2$	/ 1200	x 0.2)		(1)
				$-21 \mathrm{~dB}$ absence of negative is given as a pow	sign) ratio 0	08 the	allow	(1) mark)

(f) To save on the cost of a return cable / copper was/is expensive or
Sea water is a very good conductor so no need for return cable

5 (a) The central core has a higher refractive index than the outer cladding
Rays travel slower in core
Rays propagate by total internal reflection
Along the core
As long as angle of incidence of ray is greater than critical angle
(b) (i) Ray A at angle in core makes multiple reflections

Ray B moves directly parallel without reflecting along core
(ii) Ray C into cladding will gradually lose energy and be lost
(c) (i) Different rays with different angles of incidence travel by different paths

Some path lengths are longer than others
All rays travel at same speed
Rays take different times to propagate through the core
Any pulse is composed of many rays each taking a different time
Any pulse input becomes stretched in time on output
Thus high frequency pulses will eventually smear into one another
And coded information / signal will be lost
Any sensible comment on material dispersion
(any five points)
(ii) Monomode fibre has a tiny diameter core (in order of $10 \mu \mathrm{~m}$)

Only direct rays can travel along core
No multipath dispersion occurs
Pulses keep in time and do not smear into each other
Monomode fibres allow much higher frequency of pulse transmission Higher frequency means greater bandwidth / information carrying capacity Higher bandwidth means greater scope for time-division multiplexing This reduces the cost per user
So telephone system is affordable by all

6 (a) Mean time of flight $=(14.8+17.2+15.6) / 3=15.87 \mathrm{~s}(1)$
Maximum speed $=240 / 15.87=15.12 \mathrm{~m} \mathrm{~s}^{-1}$
(b) (i) To produce a vector at 45° the horizontal and vertical components must be equal And the $15 \mathrm{~ms}^{-1}$ horizontal component does not change with time
(ii) Vertically, the time of flight is given by $15=0+9.81 \times \mathrm{t}$

$$
\begin{equation*}
\text { Thus } \mathrm{t}=1.53 \mathrm{~s} \tag{1}
\end{equation*}
$$

Vertical fall $y=u t+1 / 2 a t^{2}$
$=0+1 / 29.81(1.53)^{2}=11.47 \mathrm{~m}$
(Allow 1 mark for correct substitution in any appropriate formula and allow 1 mark for correct calculation of 11.47 m)
(iii) Horizontal jump $x=u t+1 / 2$ at 2

$$
\begin{equation*}
=\quad 15 \times 1.53+0 \quad=\quad 22.95 \mathrm{~m} \tag{1}
\end{equation*}
$$

(iv) Resultant velocity $=15 / \operatorname{Cos} 45=15 \times \sqrt{ } 2=21.2 \mathrm{~ms}^{-1}$

Kinetic Energy $=1 / 2 \mathrm{mv}^{2}=1 / 2 \times 86 \times 21.2^{2}$
$=19350 \mathrm{~J}$
or $K E$ at ramp $=K E$ on take off + PE lost through fall of $11.47 \mathrm{~m}=19350 \mathrm{~J}$
(Allow 1 mark for $\mathrm{KE}=1 / 2 \mathrm{mv} 21 \mathrm{mark}$ for correct use of $15 \mathrm{~m} \mathrm{~s}-1$ and 1 mark for correct calculation of KE)
(c) (i) At top of loop, the centripetal force $=\mathrm{mv}^{2} / \mathrm{r}$

Thus speed at top $v=\sqrt{ } \mathrm{gr}$
$=\quad \sqrt{ } 9.81 \times 9.17 / 2$
$=\quad 6.7 \mathrm{~ms}^{-1}$
or use an energy argument KE on entry $=\mathrm{PE}$ gained +KE at top
(1 mark for idea, 1 mark for correct substitution in appropriate formula and 1 mark for correct calculation of $6.7 \mathrm{~ms}^{-1}$)
(NOTE The unexplained use of $v^{2}=u^{2}+2 g s$ can only score a maximum of 1 mark)
(ii) Kinetic Energy at top

$$
\begin{align*}
& =\quad 1 / 2 \times 86 \times 6.7^{2} \tag{1}\\
& =1935 \mathrm{~J} \tag{1}\\
& =\quad 86 \times 9.81 \times 9.17 \tag{1}
\end{align*}
$$

Potential Energy at top
(iii) Kinetic Energy on entry $=1 / 2 \times 86 \times 15^{2}$
$=9675 \mathrm{~J}$
Sum of energies at top
$=\quad 1935+7740$
$=9675 \mathrm{~J}$
QED
(iv) Any reference to loss of contact / centripetal force or wtte Comment on the consequences of taking off vertically or wtte

Enacting the suggestion could result in disaster At the point A in the loop, the velocity vector is purely vertical Therefore there is no horizontal component of velocity
So no matter how fast the cyclist is travelling he will only be projected vertically And come (crashing?) down on the same point where he left off The best that could happen (with some skill) is to return back along same path

Mark Scheme 2826/01 January 2007

1 (a) (i) $V=\pi r 2 I=\times 202 \times 15$
(75 400 allow 1 ¹2)
[1]
[1]\{2\}
(ii) mass $=18800 \times 1.3=24500 \mathrm{~kg}$ [1]\{1\}
(iii) $1 / 2 \mathrm{mv} 2$ with m from (ii) and $\mathrm{v}=15 \mathrm{~m} \mathrm{~s}-1$
$=2.76 \times 106(\mathrm{~J})$
[1]\{2\}
(iv) recognises that this is 60% of previous figure [1] $=0.6 \times 2.76 \times 106=1.65 \times 106 \mathrm{~W}$
(b) (i) 30% of (a)(iv) $=0.3 \times 1.65 \times 106 \mathrm{~W}=4.95 \times 105 \mathrm{~W}(500000)$
(ii) $10001 / 1 / 2=2000$
(c) (i) eg no production of CO 2
(ii) eg there may be days when there is little wind relate demand to supply eg on a (cold) day when there is high demand
[1]\{2\}(3)
(d) (i) eg lower efficiency
more air is 'lost' between the blades
more K.E. of wind after passing blades
more vibration of blades
MAXIMUM 2 for one idea well explained
(ii) danger of breaking up
(iii) huge numbers of turbines would be required conventional stations still required for base load environmental problems longer supply lines needed as wind turbines will be in out of the way places (2) for main argument and explanation (1) for extra different detail

2 (a) (i) Q = It with knowledge of what the symbols mean

$$
=0.050 \times 4.0 \times 3600
$$

$$
=720 \text { (C) }
$$

(ii) $\mathrm{E}=\mathrm{QV}$ with knowledge of what the symbols mean
$=720 \times 6.0=4320(\mathrm{~J})$
(b) chemical (potential) (energy)
(c) (i) $\quad \mathrm{I}=4.0 / 48=0.5 / \mathrm{r} \quad$ (ie by proportion or by finding current)
$r=24 / 4=6(\Omega)$
(ii) $E=V 2 t / R$ with knowledge of what the symbols mean
$=4.02 \times 2700 / 48$

$$
=900(\mathrm{~J})
$$

(iii) $900 / 4320=5 / 24=(0.208)$
(d) because the p.d. across it ($4.5-4.0$) is known only to 1 sig.fig.
(a) tyre pushes backwards on the road
Newton's third law therefore gives an equal and opposite force on a different body
this is the force the road exerts on the tyre
motion here could be no relative motion between tyre and road
larger forward force than drag therefore acceleration takes place
(b)
the equal forces act on different objects
example and/or clarification eg when an apple is falling the force
the Earth exerts on the apple equals the force the apple exerts on the Earth
this force causes an appreciable acceleration of the apple but negligible
acceleration of the Earth [1]\{3\}(3)

4 (a) speed $=3.00 \times 108(\mathrm{~m} \mathrm{~s}-1)$
[1]\{1\}(1)
(b) (i) wavelength $=$ eg $0.124(\pm 0.002) / 3=0.041(\mathrm{~m})$
(ii) frequency $=c / \lambda=3.00 \times 108 / 0.041$
= 7.3(2) $\times 109 \quad$ Hertz or Hz
(iii) allow microwaves or radio waves
(c) (i) both 49 cm
(ii) phase difference will be zero so amplitude of resultant wave will be a maximum
(iii) $\mathrm{DABC}=80 \mathrm{~cm}, \mathrm{DC}=18 \mathrm{~cm}$
(iv) path difference $=62 \mathrm{~cm}$, which is $151 / 2$ wavelengths so waves arrive (π radians) out of phase so cancellation (may) take(s) place
(v) large signal from transmitter would swamp (reflected) weak signals [1] unless they arrived at different times [1] this cancels out the strong signal [1] but allows the weak signal through strong signal could damage the receiver

Mark Scheme 2826/03 January 2007

1 (b) (ii) Extension

Reading for y_{0}. One mark.
y - y_{0} calculated correctly. One mark.
(c) Readings
[3/2/1/0]
Write the number of readings as a ringed total by the results table.
6 sets of values for m and $x(x \neq 0)$ scores one mark.
Check a value for $\lg (\mathrm{m} / \mathrm{g})$ and a value for $\lg (\mathrm{x} / \mathrm{cm})$. Underline checked values.
Ignore small rounding errors. Tick if correct and score one mark.
If incorrect then write in correct values; In values will not score this mark.
Readings should include raw values for length y; tick head of column
and score one mark.
If help is given then -1 .
Please indicate when help has been given to a candidate by writing SR
at the top of the front page of the candidate's script. Also, please indicate the type of help that has been given by writing a brief comment by
the table of results.
(c) Quality of results.

Judge by scatter of points about the line of best fit.
Five or six good trend plots, with little or no scatter. Two marks.
Some scatter, within a couple of small squares for a full size graph. One mark.
Large scatter/no trend scores zero.
These marks cannot be scored if $\lg \mathrm{m}$ or $\lg \mathrm{x}$ values have been
miscalculated (but accept In values).
(c) Column headings. One mark for m , one mark for x and/or y .

The columns for m and y (and/or x) must be headed with a quantity and a unit.
There must be some distinguishing mark between the quantity and its unit.
eg ' m / g ' or ' $\mathrm{m}(\mathrm{g}$) ' or ' m in g ' or ' mass in grams' are all allowable;
' mg g' or ' $(\mathrm{m}$) g ' or ' mg ' or ' g ' (on its own) are not allowable.
Please tick each correct column heading to show that it has been seen. Ignore the column headings for $\lg (\mathrm{m} / \mathrm{g})$ and $\lg (\mathrm{x} / \mathrm{cm})$.
(c) Consistency of raw readings in the table of results.

Apply to m and y (and/or x) only. One mark for m, one mark for x and/or y.
All raw readings of a particular quantity must be given to the same number of decimal places. Do not allow an unreasonable degree of precision to be given which is inconsistent with the apparatus used. Indicate using $\checkmark \mathrm{C}$ at the foot of each column of raw readings if correct. m must be to the nearest gram; y and x must be to the nearest mm .
(d) (i) Axes

Each axis must be labelled with a quantity.
Scales must be such that the plotted points occupy at least half the graph grid in both the x and y directions.
Do not allow more than 3 large squares between scale markings.
Do not allow awkward scales (eg 3:10, 6:10, 7:10, 8:10 etc).
One mark for each correct axis.
Axes inverted, lose a mark.
(d) (i) Plotting of points

Count the number of plots on the grid and write this value by the line and ring it.
Do not allow plots in the margin area.
The number of plots must correspond to the number of observations.
Do not award this mark if the number of plots is less than the number of observations.
Check one suspect plot. Circle this plot. Tick if correct.
If incorrect then mark the correct position with a small cross and use an arrow to indicate where the plot should have been.
Allow errors up to and including half a small square for this mark.
(d) (i) Line of best fit.

There must be a reasonable balance of points about the line of best fit. If one of the plots is a long way from the trend of the other plots then allow this plot to be ignored when the line is drawn.
This mark can only be awarded if a straight line is drawn through a linear trend.
Do not credit thick ($\geq 1 \mathrm{~mm}$) or "hairy" lines.
(d) (ii) Measurement of gradient.
[2]
The hypotenuse of the triangle must be greater than half the length of the drawn line. One mark.
Read-offs must be accurate to half a small square and the ratio must be correct.
One mark.
Please indicate the vertices of the triangle by labelling with Δ.
If the triangle is of an appropriate size then $\checkmark \Delta$.
(e) $\lg m=\lg k+n \lg x$
[1]
(Allow $\ln m=\ln k+n \ln x$)
(e) Value of n (from gradient)
(f) (i) Use of micrometer

Micrometer screw gauge readings for b and d.
Both must be within $\pm 0.20 \mathrm{~mm}$ of SV
Raw values must be given to 2 d.p., ie to 0.01 mm .
(f) (ii) Calculation of A

Correct calculation 4 ($\mathrm{b} \times \mathrm{d}$), to be checked. One mark.
Conversion of units, ie $\times 10-6$. One mark. This mark is only to be awarded if the physics is correct ie $b \times d$ is in the calculation.
(f) (iii) Largest percentage uncertainty in b .
[2/1/0]
One mark for sensible Δb (0.05 or 0.1 mm)
One mark for correct ratio idea, and x100. No need to check calculation.
If repeats done then $\Delta \mathrm{b}$ can be half the range.
(f) (iv) Use of correct formula, stress $=\mathrm{mg} / \mathrm{A}$ and
[4/3/2/1/0]
calculation correct, to be checked. One mark.
(Do not allow $\mathrm{g}=10 \mathrm{Nkg}-1$ since $\mathrm{g}=9.8 \mathrm{~N} \mathrm{~kg}-1$ is given at start)
ecf for incorrect values of A.
Correct units, Pa or $\mathrm{Nm}-2$. One mark.
Answer to 2 or 3 sf. One mark
Assumption that cross-sectional area hasn't changed, one mark
28 marks in total.

(b)	Recording of times.	1
(c)	Determination of time interval and correct method for calculation of rate. $($ rate $=5 / \Delta \mathrm{t})$	1
(d)	Justification of number of sf in R_{1} ie same sf as $\Delta \theta$ (allow "raw data" ideas). Do not allow dp ideas. Answers must be consistent with c(ii).	1
(e)	Calculation of R_{2}, which must be less than R_{1}. Check calculation.	1
(f)	One mark for correct calculation of both average excess temperatures. One mark for calculation of k's, or using ratios. One mark for conclusion that $\mathrm{d} \theta / \mathrm{dt}$ is proportional to $\theta_{\text {excess }}$ with explanation (only if k values are within about 10% of each other). OR, if k values are not within 10%, conclusion that $d \theta / d t$ is not prop. to $\theta_{\text {excess. }}$. One mark.	3/2/1/0
(g)	Evaluation of procedure. Relevant points must be underlined and ticked. Some of these might be: [$\mathrm{P}=$ problem $\quad \mathrm{S}=$ solution] P. Difficult to read thermometer accurately when temperature is changing/difficult to read time and temperature simultaneously P. Difficult to read stop clock without stopping it/human error S. Use a helper/clamp stand for thermometer/use of video S. Time individual temperature drops separately. S. Repeat set of readings, and average. S. Sensor attached to thermometer bulb + data logger P. Results affected by draughts. S. Close doors and windows / use some sort of shielding. P. Two readings are not enough to draw a conclusion. S1. Several/many sets of values of t and $\Delta \theta$ are needed, to draw a graph of R against $\Delta \theta$ S2. Plot a graph of temperature against time, measure the gradient at various temps, (then plot gradients against $\theta_{\text {excess }}$). P. At higher/lower temps $5^{\circ} \mathrm{C}$ difference is too small/large. S. Have larger/smaller values for temperature difference. Allow other relevant points (7 maximum)	7
	2 marks are reserved for quality of written communication. 16 marks maximum to be awarded.	2

	Planning Exercise	
A1	Diagram showing workable arrangement of apparatus, eg plastic strip clamped at each end (not tied).	1
A2	Labelled load and how extension is measured. Penalise incorrect measurement of extension here, not in A1.	1
A3	Workable method. Measure m and x , change m and repeat.	1
B1	Labelled sketch graph of load/extension (or stress/strain), with correct shape for plastic, ie elastic region briefly linear then slightly curved, no clear yield point.	1
B2	Failure labelled on graph.	1
C1	Measure thickness, with a micrometer.	1
C2	Area $\mathrm{A}=$ width x thickness, and load $\mathrm{F}=\mathrm{mg}$ (or use newton weights).	1
C3	Young modulus $=(\operatorname{load} / \mathrm{A}) /(\mathrm{x} / \mathrm{I})-$ usual meanings. Must be obtained from gradient of linear part of stress / strain graph or load / extension graph	1
D1	Ideal properties looked for by manufacturers might be : large failure stress (or large failure load together with being as thin as possible) biodegradeable. YM not too small, so that the plastic doesn't stretch too much. toughness/ ability to resist tearing. (not 'inexpensive', not just 'strong', not just 'not brittle'	2/1/0
D2	Any further relevant detail, eg Evidence of preliminary experiment. Measure thickness of several layers of plastic. Care to cut out the sample accurately with parallel sides. Safety, eg secure clamp stand to bench / something to catch falling masses after failure. Not goggles. Discussion of 'grain' structure of the plastic. Direction of stretch important. Other good points	2/1/0
R	Evidence of research of material. ie at least two detailed references have been given (i.e chapter and/or page numbers must be given). Allow internet pages to be sourced. Two or more vague references (ie no chapter or page reference) score one mark One detailed reference scores one mark. One vague reference scores zero.	2/1/0
	Underline and tick each relevant point in the body of the text. The ticks must have a subscript showing which marking point is being rewarded (eg $\checkmark \mathrm{A} 1$).	
Q	Quality of written communication (organisation) Rambling and poorly presented material cannot score both marks.	2

Advanced GCE Physics A 3883/7883 January 2007 Assessment Series

Unit Threshold Marks

Unit		Maximum	a	b	c	d	e	u
2821	Raw	90	43	38	33	28	24	0
	UMS	90	72	63	54	45	36	0
2822	Raw	90	49	44	39	34	29	0
	UMS	90	72	63	54	45	36	0
2823A	Raw	120	96	85	74	64	54	0
	UMS	120	96	84	72	60	48	0
2823B	Raw	120	96	85	74	64	54	0
	UMS	120	96	84	72	60	48	0
2823C	Raw	120	93	84	75	66	57	0
	UMS	120	96	84	72	60	48	0
2824	Raw	90	62	55	48	41	35	0
	UMS	90	72	63	54	45	36	0
2825A	Raw	90	66	59	52	46	40	0
	UMS	90	72	63	54	45	36	0
2825B	Raw	90	66	59	52	46	40	0
	UMS	90	72	63	54	45	36	0
2825C	Raw	90	65	58	51	45	39	0
	UMS	90	72	63	54	45	36	0
2825D	Raw	90	64	56	48	41	34	0
	UMS	90	72	63	54	45	36	0
2825E	Raw	90	64	57	50	44	38	0
	UMS	90	72	63	54	45	36	0
2826A	Raw	120	89	80	71	62	53	0
	UMS	120	96	84	72	60	48	0
2826B	Raw	120	89	80	71	62	53	0
	UMS	120	96	84	72	60	48	0
2826C	Raw	120	86	79	72	65	59	0
	UMS	120	96	84	72	60	48	0

Specification Aggregation Results

Overall threshold marks in UMS (i.e. after conversion of raw marks to uniform marks)

	Maximum Mark	A	B	C	D	E	U
$\mathbf{3 8 8 3}$	300	240	210	180	150	120	0
7883	600	480	420	360	300	240	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	B	C	D	E	U	Total Number of Candidates
$\mathbf{3 8 8 3}$	18.9	36.6	58.1	77.0	94.0	100.0	278
$\mathbf{7 8 8 3}$	21.7	45.7	69.6	87.0	95.7	100.0	54

For a description of how UMS marks are calculated see; http://www.ocr.org.uk/exam system/understand ums.html

Statistics are correct at the time of publication

OCR (Oxford Cambridge and RSA Examinations)
 1 Hills Road
 Cambridge
 CB1 2EU

 OCR Customer Contact Centre

 OCR Customer Contact Centre}

(General Qualifications)

Telephone: 01223553998
Facsimile: 01223552627
Email: helpdesk@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

