Abbreviations,	<pre>/ = alternative and acceptable answers for the same marking point</pre>		
annotations and	; = separates marking points		
conventions used	NOT = answers which are not worthy of credit		
	() = words which are not essential to gain credit		
in the Mark	= (underlining) key words which must be used to gain credit		
Scheme	ecf = error carried forward		
	AW = alternative wording		
	ora = or reverse argument		
Question	Expected Answers	Marks	
1 (a)(i)	energy, power and speed underlined	B1	
	any error loses this mark		
(ii)	vector has magnitude / size	B1	
(11)	vector has magnitude / Size		
	vector has a direction	BI	
<i>a</i> >			
(b)	Scale diagram:		
	correct triangle / parallelogram drawn on Fig. 1.1	M1	
	scale stated and correct resultant arrow	A1	
		D 2	
	resultant force 25 to 26 (N)	B2	
	resultant force 24 to 27 (N)	B1	
	Value calculated:		
	correct triangle drawn	M1	
	ge and ge		
	correct triangle labelled (arrows and labels which		
	includes the resultant with an arrow in the correct		
	direction)	A1	
	valid method of calculation: (e.g. cosine rule) /		
	resolve into horizontal (12 + 16cos50) and vertical		
	(16sin50) components and use of Pythagoras	C1	
	25 (A) (NI)	A1	
	23.(4) (N)		
		Total: 7	

Abbreviations, annotations and conventions used in the Mark Scheme	 / = alternative and acceptable answers for the same marking ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit <u>=</u> (underlining) key words which <u>must</u> be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument 	point
Question	Expected Answers	Marke
Question		IVIAINS
2 (a)(i)	$v^2 = 0 + 2 \times 9.8(1) \times 30$	C1
	v = 24. (3) (m s ⁻¹) (-1 if g = 10 is used ,once only on the paper) (zero scored if s = 36 m is used)	A1
(ii)	$s = ut + \frac{1}{2} at^2$ or $v = u + at$ or $s = (u+v)t / 2$	
	$30 = 0 + \frac{1}{2} \times 9.8(1) \times t^2$ $t = 24.3 / 9.8$ $t = 2 \times 30/24.3$	C1
	t = 2.5 (s)	A1
(b)	In the air: weight / force due to gravity (allow air resistance if included as well)	B1
	(Hence) constant acceleration / acceleration at 9.8 m s ⁻²	
	(allow reduced acceleration / terminal velocity if air resistance included)	B1
	In water: weight and (large) fluid resistance / upthrust / buoyancy	B1
	Hence deceleration / slows down	B1
		Total: 8

Abbreviations, annotations and conventions used in the Mark Scheme	 / = alternative and acceptable answers for the same marking p ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit <u>—</u> = (underlining) key words which <u>must</u> be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument 	L point	
Question	Expected Answers	Marks	
3 (a)(i)	$V_{\rm h}$ = 10 cos 53	B1	
	= 6.0(18) m s ⁻¹)	A0	
(ii)	speed = distance / time	C1	
	time = $4.976.0$		
	= 0.8(2) (s)	A1	
(iii)	gain in potential energy = mgh	C1	
	= 50 x 10 ⁻³ x 9.8(1) x 3.3	C1	
	= 1.6(2) (J)	A1	
(b)(i)	change in velocity = (-) 10 (m s ⁻¹)	B1	
	acceleration = (v – u) / t / 10 / 0.16		
	= 62.5	A1	
	unit: m s ⁻²	В1	
(ii)	F = ma = 50 x 10 ⁻³ x 62.5	C1	
	= 3.1(3) (N)	A1	
	direction: left	B1	
(iii)	kinetic energy = $\frac{1}{2}$ m v ²	C1	
	loss in kinetic energy = $\frac{1}{2} \times 50 \times 10^{-3} (4^2 - 6^2)$	C1	
	= 0.5(0) (J)	A1 Total: 15	

Abbreviations, annotations and conventions used in the Mark Scheme	 / = alternative and acceptable answers for the same marking ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit <u></u> = (underlining) key words which <u>must</u> be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument 	point
Question	Expected Answers	Marke
4 (a) (i)	(one of the) force x <u>perpendicular distance between</u> the forces	B1
(ii)	torque = 1200 x 0.4	C1
	= 480 Nm [allow one mark for 1200 x 0.2 = 240 (N m)]	A1
(b)(i)	work = force x distance (moved)	B1
	= 2 x 1200 x 2 x π x 0.2	B1
	= 3016 (J)	A0
(ii)	power = work done / time	C1
	= 3000 / (1/40)	
	$= 1.2 \times 10^5$ (W)	A1
		Total: 7

Abbreviations, annotations and conventions used in the Mark Scheme	/ = alternative and ac ; = separates marking NOT = answers which are () = words which are n = (underlining) key w ecf = error carried forwa AW = alternative wording ora = or reverse argume	ceptable answers g points e not worthy of cre ot essential to gai words which <u>must</u> ard g ent	for the same marking p edit n credit be used to gain credit	point
Question	Expected Answers			Marks
5 (a)	One reading from the graph e.g. 1.0 N causes 7 mm Hence 5.0 (N) causes 35 ± 0.5 (mm)		C1 A1	
(b) (i)	Force on each spring is 2.5 (N)		C1	
	extension = 17.5 (mm) allow 18 (mm) or reading from graph [allow ecf from (a)]		A1	
(ii)	strain energy = area u	nder graph / ½	₂Fxe	C1
	$= 2 \times 0.5 \times 2.5 \times 17.5 \times 10^{-3}$			
	= 0.044 (, [allow ecf from (b)(i)]))		A1
(c)	E = stress / strain			C1
	Stress = force / area a	nd strain = ext	ension / length	C1
	extension = (F x L) / (A x E)		
	= (5 x 0.4) /	(2 x 10 ⁻⁷ x 2 x	10 ¹¹)	
	= 5.(0) x 10 ⁻	⁵ (m)		A1
(d)	strain <u>energy</u> is larger	in the spring		B1
	extension is (very muc for the spring	ch larger) (for	the same force)	B1
				Total: 11

Abbreviations, annotations and conventions used in the Mark Scheme	 / = alternative and acceptable answers for the same marking p ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which <u>must</u> be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument 	point
Question	Expected Answers	Marks
6 (a)	Tyre exerts downward force on the road which is balanced by an upward force from the road Engine / car generates a torque on the wheels / or axle / force turns the wheels Tyre pushes back on the road Road pushes tyre forwards / in opposite direction (by Newton's third law) Brakes generate a torque on the wheels Tyres exert a force on the road in the same direction as the motion Push from road on tyres is in the opposite direction to the motion [Max of three marks for either engine or brakes explanation and one mark for indicating the other is then the reverse argument] Motive / braking force between the tyre and the road is friction The greater the friction the greater the acceleration / deceleration The greater the engine motive force / torque supplied the greater the acceleration or the greater the braking force greater the deceleration	Max 5

Abbreviations, annotations and conventions used in the Mark Scheme	 / = alternative and acceptable answers for the same marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which <u>must</u> be used to gain credit AW = alternative wording ora = or reverse argument 	king point redit
Question	Expected Answers	Marks
6 (b)	Definition of braking distance [the <u>distance</u> a car travels after the brakes are applied <u>until it comes for rest]</u> Greater the speed the greater the b. d. plus explanation Poor brake pads / discs greater the b. d. plus explanation Road conditions given to suggest reduced / greater friction plus explanation e.g. ice / wet and the appropriate effect on b. d. tyre tread example and effect on b. d. plus explanation e.g. tyre tread and the effect on channelling water away. Greater mass plus explanation and effect on b.d. Gradient of road plus explanation and effect on b.d. 2/3 factors unexplained can score 1	to er d.
QWC	≥4 factors unexplained can score 2	Max 5
	SPAG TECHNICAL	B1 B1 Total: 12