Abbreviations, annotations and conventions used in the Mark Scheme	$\left.\begin{array}{ll}l & =\text { alternative and acceptable answers for the same marking point } \\ \text { NOT } & =\text { separates marking points } \\ \text { NOnswers which are not worthy of credit }\end{array}\right]$() words which are not essential to gain credit = (underlining) key words which must be used to gain credit $\overline{\text { ecf }}$ $=$ error carried forward AW $=$ alternative wording ora $=$ or reverse argument	
Question	Expected Answers	Marks
$1(a)(i)$ (ii) (b)	energy, power and speed underlined any error loses this mark vector has magnitude / size vector has a direction Scale diagram: correct triangle / parallelogram drawn on Fig. 1.1 scale stated and correct resultant arrow resultant force 25 to 26 (N) resultant force 24 to 27 (N) Value calculated: correct triangle drawn correct triangle labelled (arrows and labels which includes the resultant with an arrow in the correct direction) valid method of calculation: (e.g. cosine rule) / resolve into horizontal ($12+16 \cos 50$) and vertical (16sin50) components and use of Pythagoras 25.(4) (N)	B1 B1 B1 M1 A1 B2 B1 M1 A1 C1 A1 Total: 7

Abbreviations, annotations and conventions used in the Mark Scheme	1 $=$ alternative and acceptable answers for the same marking point $;$ $=$ separates marking points NOT $=$ answers which are not worthy of credit () $=$ words which are not essential to gain credit $\overline{\text { ecf }}$ $=$ (underlining) key words which must be used to gain credit AW $=$ elter carnatived forward ora $=$ or reverse argument	
Question	Expected Answers	Marks
2 (a)(i)	$\mathrm{v}^{2}=0+2 \times 9.8(1) \times 30$	C1
	$\mathrm{v}=24 .(3) \quad\left(\mathrm{m} \mathrm{~s}^{-1}\right)$ (-1 if $\mathrm{g}=10$ is used ,once only on the paper) (zero scored if $\mathbf{s}=36 \mathrm{~m}$ is used)	A1
	$\begin{aligned} & 30=0+1 / 2 \times 9.8(1) \times t^{2} \quad t=24.3 / 9.8 \quad t=2 \times 30 / 24.3 \\ & t=2.5 \text { (s) } \end{aligned}$	C1 A1
(b)	In the air: weight / force due to gravity (allow air resistance if included as well)	B1
	(Hence) constant acceleration / acceleration at 9.8 m sis (allow reduced acceleration / terminal velocity if air resistance included)	B1
	In water: weight and (large) fluid resistance / upthrust / buoyancy	B1
	Hence deceleration / slows down	B1
		Total: 8

Abbreviations, annotations and conventions used in the Mark Scheme	l $=$ alternative and acceptable answers for the same marking point NOT $=$ separates marking points Nanswers which are not worthy of credit () $=$ words which are not essential to gain credit $\overline{\text { ecf }}$ $=$ (underlining) key words which must be used to gain credit AW $=$ alror carried forward ora $=$ or reverse wording 	
Question	Expected Answers	Marks
$4 \text { (a) (i) }$ (ii) (b)(i) (ii)	(one of the) force x perpendicular distance between the forces $\begin{aligned} \text { torque } & =1200 \times 0.4 \\ & =480 \mathrm{Nm} \end{aligned}$ [allow one mark for $1200 \times 0.2=240(\mathrm{~N} \mathrm{~m})$] $\begin{aligned} \text { work } & =\text { force } \times \text { distance (moved) } \\ & =2 \times 1200 \times 2 \times \pi \times 0.2 \\ & =3016(\mathrm{~J}) \end{aligned}$ power = work done / time $\begin{aligned} & =3000 /(1 / 40) \\ & =1.2 \times 10^{5}(\mathrm{~W}) \end{aligned}$	B1 C1 A1 B1 B1 A0 C1 A1 Total: 7

Abbreviations, annotations and conventions used in the Mark Scheme	1 $=$ alternative and acceptable answers for the same marking point $;$ $=$ separates marking points NOT $=$ answers which are not worthy of credit () $=$ words which are not essential to gain credit $\overline{\text { ecf }}$ $=$ (underlining) key words which must be used to gain credit AW $=$ elter carnatived forward ora $=$ or reverse argument	
Question	Expected Answers	Marks
5 (a)	One reading from the graph e.g. 1.0 N causes 7 mm Hence $5.0(\mathrm{~N})$ causes 35 ± 0.5 (mm) (allow one mark for 35 ± 1 (mm)	C1 A1
(b) (i)	Force on each spring is $2.5(\mathrm{~N})$ extension = $17.5(\mathrm{~mm})$ allow $18(\mathrm{~mm})$ or reading from graph [allow ecf from (a)]	C1
		A1
(ii)	$\begin{aligned} \text { strain energy } & =\text { area under graph } / 1 / 2 \mathrm{~F} \times \mathrm{e} \\ & =2 \times 0.5 \times 2.5 \times 17.5 \times 10^{-3}\end{aligned}$	C1
	$\text { = } 0.044(\mathrm{~J})$ [allow ecf from (b)(i)]	A1
(c)	$E=$ stress / strain	C1
	Stress $=$ force $/$ area and strain $=$ extension $/$ length extension $=(F \times L) /(A \times E)$	C1
	$\begin{aligned} & =(5 \times 0.4) /\left(2 \times 10^{-7} \times 2 \times 10^{11}\right) \\ & =5 .(0) \times 10^{-5}(\mathrm{~m}) \end{aligned}$	A1
(d)	strain energy is larger in the spring extension is (very much larger) (for the same force) for the spring	B1
		B1
		Total: 11

Abbreviations, annotations and conventions used in the Mark Scheme	l $=$ alternative and acceptable answers for the same marking point NOT $=$ separates marking points (answers which are not worthy of credit ($=$ words which are not essential to gain credit $\overline{\text { ecf }}$ $=$ (underlining) key words which must be used to gain credit AW $=$ earror carried forward ora $=$ or reverse wording 	
Question	Expected Answers	Marks
6 (a)	Tyre exerts downward force on the road which is balanced by an upward force from the road Engine / car generates a torque on the wheels / or axle / force turns the wheels Tyre pushes back on the road Road pushes tyre forwards / in opposite direction (by Newton's third law) Brakes generate a torque on the wheels Tyres exert a force on the road in the same direction as the motion Push from road on tyres is in the opposite direction to the motion [Max of three marks for either engine or brakes explanation and one mark for indicating the other is then the reverse argument] Motive / braking force between the tyre and the road is friction The greater the friction the greater the acceleration / deceleration The greater the engine motive force / torque supplied the greater the acceleration or the greater the braking force greater the deceleration	Max 5

Abbreviations, annotations and conventions used in the Mark Scheme	$\left.\begin{array}{ll}l & =\text { alternative and acceptable answers for the same marking point } \\ ; & =\text { separates marking points }\end{array}\right]$NOT $=$ answers which are not worthy of credit () $=$ words which are not essential to gain credit	
Question	Expected Answers	Marks
6 (b)	Definition of braking distance [the distance a car travels after the brakes are applied until it comes to rest] Greater the speed the greater the b. d. plus explanation Poor brake pads / discs greater the b. d. plus explanation Road conditions given to suggest reduced / greater friction plus explanation e.g. ice / wet and the appropriate effect on b. d. tyre tread example and effect on b. d. plus explanation e.g. tyre tread and the effect on channelling water away. Greater mass plus explanation and effect on b.d. Gradient of road plus explanation and effect on b.d. 2/3 factors unexplained can score 1	
QWC	≥ 4 factors unexplained can score 2 SPAG TECHNICAL	$\text { Max } 5$ B1 B1 Total: 12

