RECOGNISING ACHIEVEMENT

## Physics A

## Mark Schemes for the Units

## June 2006

## Downloaded from http://www.thepaperbank.co.uk

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2006
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annersley
NOTTINGHAM
NG15 ODL
Telephone: 08708706622
Facsimile: 08708706621
E-mail: publications@ocr.org.uk

## CONTENTS

## GCE Physics A (7883) <br> Advanced Subsidiary GCE Physics (3883)

## MARK SCHEMES ON THE UNITS

| Unit | Content | Page |
| :---: | :---: | :---: |
| 2821 | Forces and Motion |  |
| 2822 | Electrons and Photons | 9 |
| 2823/01 | Wave Properties / Experimental Skills 1 Written Paper | 17 |
| 2823/03 | Wave Properties / <br> Experimental Skills 1 <br> Practical Examination | 21 |
| 2824 | Forces, Fields and Energy | 29 |
| 2825/01 | Cosmology | 33 |
| 2825/02 | Health Physics | 41 |
| 2825/03 | Materials | 47 |
| 2825/04 | Nuclear and Particle Physics | 53 |
| 2825/05 | Telecommunications | 65 |
| 2826/01 | Unifying Concepts in Physics Written Paper | 77 |
| 2826/03 | Unifying Concepts in Physics Practical Examination | 81 |
| * | Grade Thresholds | 89 |

Downloaded from http://www.thepaperbank.co.uk

## Mark Scheme 2821 <br> June 2006

|  |  |  |
| :---: | :---: | :---: |
| Abbreviations, annotations and conventions used in the Mark Scheme | 1 $=$ alternative and acceptable answers for the same marking point <br> NOT $=$ separates marking points <br> Nanswers which are not worthy of credit  <br> ( $)$ $=$ words which are not essential to gain credit <br>  $=$ (underlining) key words which must be used to gain credit <br> $\overline{\text { ecf }}$ $=$ error carried forward <br> AW $=$ alternative wording <br> ora $=$ or reverse argument |  |
| Question | Expected Answers | Marks |
| $1 \text { (a)(i) }$ <br> (ii) <br> (b) | energy, power and speed underlined <br> any error loses this mark <br> vector has magnitude / size <br> vector has a direction <br> Scale diagram: <br> correct triangle / parallelogram drawn on Fig. 1.1 <br> scale stated and correct resultant arrow <br> resultant force 25 to 26 (N) <br> resultant force 24 to 27 (N) <br> Value calculated: <br> correct triangle drawn <br> correct triangle labelled (arrows and labels which includes the resultant with an arrow in the correct direction) <br> valid method of calculation: (e.g. cosine rule) / resolve into horizontal ( $12+16 \cos 50$ ) and vertical (16sin50) components and use of Pythagoras 25.(4) (N) | B1 <br> B1 <br> B1 <br> M1 <br> A1 <br> B2 <br> B1 <br> M1 <br> A1 <br> C1 <br> A1 <br> Total: 7 |


|  |  |  |
| :---: | :---: | :---: |
| Abbreviations, annotations and conventions used in the Mark Scheme | $l$ $=$ alternative and acceptable answers for the same marking point <br> $;$ $=$ separates marking points <br> NOT $=$ answers which are not worthy of credit <br> ( $=$ words which are not essential to gain credit <br> $\overline{\text { ecf }}$ $=$ (underlining) key words which must be used to gain credit <br> AW $=$ alter carnatived forward <br> ora $=$ or reverse argument |  |
| Question | Expected Answers | Marks |
| 2 (a)(i) | $\mathrm{v}^{2}=0+2 \times 9.8(1) \times 30$ | C1 |
|  | $\mathrm{v}=24 .(3) \quad\left(\mathrm{m} \mathrm{~s}^{-1}\right)$ <br> ( -1 if $g=10$ is used ,once only on the paper) (zero scored if $\mathbf{s}=36 \mathrm{~m}$ is used) | A1 |
| (ii) | $s=u t+1 / 2 \mathbf{a t ~}^{2} \quad$ or v $=u+$ at $\quad$ or $s=(u+v) t / 2$ |  |
|  | $30=0+1 / 2 \times 9.8(1) \times t^{2} \quad t=24.3 / 9.8 \quad t=2 \times 30 / 24.3$ | C1 |
|  | $\mathrm{t}=2.5$ (s) | A1 |
| (b) | In the air: weight / force due to gravity (allow air resistance if included as well) <br> (Hence) constant acceleration / acceleration at 9.8 m si <br> (allow reduced acceleration / terminal velocity if air resistance included) | B1 |
|  |  | B1 |
|  | In water: weight and (large) fluid resistance / upthrust / buoyancy | B1 |
|  | Hence deceleration / slows down | B1 |


|  | $l$ $=$ alternative and acceptable answers for the same marking point <br> $;$ $=$ separates marking points <br> NOT $=$ answers which are not worthy of credit <br> ( $=$ words which are not essential to gain credit <br> $\overline{\text { ecf }}$ $=$ (underlining) key words which must be used to gain credit <br> AW $=$ alter carnatived forward <br> ora $=$ or reverse argument |  |
| :---: | :---: | :---: |
| Abbreviations, annotations and conventions used in the Mark Scheme |  |  |
| Question | Expected Answers | Marks |
| 3 (a)(i) | $\mathrm{V}_{\mathrm{h}}=10 \cos 53$ | B1 |
|  | $\left.=6.0(18) \mathrm{m} \mathrm{s}^{-1}\right)$ | A0 |
| (ii) | speed $=$ distance $/$ time | C1 |
|  | time $=4.9 / 6.0$ |  |
|  | $=0.8(2)(\mathrm{s})$ | A1 |
| (iii) | gain in potential energy $=\mathbf{m g h}$ | C1 |
|  | $=50 \times 10^{-3} \times 9.8(1) \times 3.3$ | C1 |
|  | $=1.6(2)(\mathrm{J})$ | A1 |
| (b)(i) | change in velocity $=(-) \mathbf{1 0}\left(\mathrm{m} \mathrm{s}^{-1}\right)$ | B1 |
|  | acceleration $=(v-u) / t / 10 / 0.16$ |  |
|  | = 62.5 | A1 |
|  | unit: $\mathrm{m} \mathrm{s}^{\mathbf{- 2}}$ | B1 |
| (ii) | $\begin{aligned} \mathrm{F} & =\mathrm{ma} \\ & =50 \times 10^{-3} \times 62.5 \end{aligned}$ | C1 |
|  | $=3.1(3)(\mathrm{N})$ | A1 |
|  | direction: left | B1 |
| (iii) | kinetic energy $=1 / 2 \mathrm{~m} \mathbf{v}^{\mathbf{2}}$ | C1 |
|  | loss in kinetic energy $=1 / 2 \times 50 \times 10^{-3}\left(4^{2}-6^{2}\right)$ | C1 |
|  | $=0.5(0)(\mathrm{J})$ | A1 <br> Total: 15 |


| Abbreviations, annotations and conventions used in the Mark Scheme | $l$ $=$ alternative and acceptable answers for the same marking point <br> $;$ $=$ separates marking points <br> NOT $=$ answers which are not worthy of credit <br> ( $)$ $=$ words which are not essential to gain credit <br> $\overline{\text { ecf }}$ $=$ (underlining) key words which must be used to gain credit <br> AW $=$ earror carried forward <br> ora $=$ or reverse wording <br>   |  |
| :---: | :---: | :---: |
| Question | Expected Answers | Marks |
| $4 \text { (a) (i) }$ <br> (ii) <br> (b)(i) <br> (ii) | (one of the) force x perpendicular distance between the forces $\begin{aligned} \text { torque } & =1200 \times 0.4 \\ & =480 \mathrm{Nm} \end{aligned}$ <br> [allow one mark for $1200 \times 0.2=240(\mathrm{~N} \mathrm{~m})$ ] $\begin{aligned} \text { work } & =\text { force } \times \text { distance (moved) } \\ & =2 \times 1200 \times 2 \times \pi \times 0.2 \\ & =3016(\mathrm{~J}) \end{aligned}$ <br> power = work done / time $\begin{aligned} & =3000 /(1 / 40) \\ & =1.2 \times 10^{5}(\mathrm{~W}) \end{aligned}$ | B1 <br> C1 <br> A1 <br> B1 <br> B1 <br> A0 <br> C1 <br> A1 <br> Total: 7 |


|  |  |  |
| :---: | :---: | :---: |
| Abbreviations, annotations and conventions used in the Mark Scheme | $\left.\begin{array}{ll}I & =\text { alternative and acceptable answers for the same marking point } \\ \text { NOT } & =\text { separates marking points } \\ \text { Nanswers which are not worthy of credit }\end{array}\right\}$( $)$ $=$ words which are not essential to gain credit <br>  $=$ (underlining) key words which must be used to gain credit <br> $\overline{\text { ecf }}$ $=$ error carried forward <br> AW $=$ alternative wording <br> ora $=$ or reverse argument |  |
| Question | Expected Answers | Marks |
| 5 (a) | One reading from the graph e.g. 1.0 N causes 7 mm <br> Hence 5.0 (N) causes $35 \pm 0.5(\mathrm{~mm})$ <br> (allow one mark for $35 \pm 1$ (mm) | C1 A1 |
| (b) (i) | Force on each spring is $2.5(\mathrm{~N})$ <br> extension $=17.5(\mathrm{~mm})$ allow $18(\mathrm{~mm})$ or reading from graph <br> [allow ecf from (a)] | C1 |
|  |  | A1 |
| (ii) | $\begin{aligned} \text { strain energy } & =\text { area under graph } / 1 / 2 \mathrm{Fx} \mathrm{e} \\ & =2 \times 0.5 \times 2.5 \times 17.5 \times 10^{-3}\end{aligned}$ | C1 |
|  | $=0.044(\mathrm{~J})$ <br> [allow ecf from (b)(i)] | A1 |
| (c) | $\mathrm{E}=$ stress / strain | C1 |
|  | ```Stress = force / area and strain = extension / length extension = (F x L)/(A x E)``` | C1 |
|  | $=(5 \times 0.4) /\left(2 \times 10^{-7} \times 2 \times 10^{11}\right)$ |  |
|  | $=5 .(0) \times 10^{-5}(\mathrm{~m})$ | A1 |
| (d) | strain energy is larger in the spring <br> extension is (very much larger) (for the same force) for the spring | B1 |
|  |  | B1 |
|  |  | Total: 11 |


| Abbreviations, annotations and conventions used in the Mark Scheme | $l$ $=$ alternative and acceptable answers for the same marking point <br> $;$ $=$ separates marking points <br> NOT $=$ answers which are not worthy of credit <br> ( $=$ words which are not essential to gain credit <br> $\overline{\text { ecf }}$ $=$ (underlining) key words which must be used to gain credit <br> AW $=$ alter carried forward <br> ora $=$ or reverse wording |  |
| :---: | :---: | :---: |
| Question | Expected Answers | Marks |
| 6 (a) | Tyre exerts downward force on the road which is balanced by an upward force from the road <br> Engine / car generates a torque on the wheels / or axle / force turns the wheels <br> Tyre pushes back on the road <br> Road pushes tyre forwards / in opposite direction <br> (by Newton's third law) <br> Brakes generate a torque on the wheels <br> Tyres exert a force on the road in the same direction as the motion <br> Push from road on tyres is in the opposite direction to the motion <br> [Max of three marks for either engine or brakes explanation and one mark for indicating the other is then the reverse argument] <br> Motive / braking force between the tyre and the road is friction <br> The greater the friction the greater the acceleration / deceleration <br> The greater the engine motive force / torque supplied the greater the acceleration or the greater the braking force greater the deceleration | Max 5 |


|  |  |  |
| :---: | :---: | :---: |
| Abbreviations, annotations and conventions used in the Mark Scheme | $\left.\begin{array}{ll}l & =\text { alternative and acceptable answers for the same marking point } \\ \text { NOT } & =\text { separates marking points }\end{array}\right)$ |  |
| Question | Expected Answers | Marks |
| 6 (b) | Definition of braking distance [the distance a car travels after the brakes are applied until it comes to rest] <br> Greater the speed the greater the b. d. plus explanation <br> Poor brake pads / discs greater the b. d. plus explanation <br> Road conditions given to suggest reduced / greater friction plus explanation e.g. ice / wet and the appropriate effect on b. $d$. <br> tyre tread example and effect on b. d. plus explanation e.g. tyre tread and the effect on channelling water away. <br> Greater mass plus explanation and effect on b.d. <br> Gradient of road plus explanation and effect on b.d. <br> 2/3 factors unexplained can score 1 <br> $\geq 4$ factors unexplained can score 2 <br> Spelling, punctuation and grammar <br> Technical | Max 5 <br> B1 <br> B1 <br> Total: 12 |

Downloaded from http://www.thepaperbank.co.uk

## Mark Scheme 2822 <br> June 2006

## Downloaded from http://www.thepaperbank.co.uk

## CATEGORISATION OF MARKS

The marking schemes categorise marks on the MACB scheme.

B marks: These are awarded as independent marks, which do not depend on other marks. For a B-mark to be scored, the point to which it refers must be seen specifically in the candidate's answers.

M marks: These are method marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answers. If a candidate fails to score a particular M-mark, then none of the dependent A-marks can be scored.

C marks: These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the $\mathbf{C}$ mark is given.

A marks: These are accuracy or answer marks, which either depend on an M-mark, or allow a C-mark to be scored.

| Abbreviations, annotations and conventions used in the Mark Scheme | $l$ n NOT ( ) $\overline{\text { ecf }}$ AW ora | = alternative and acceptable answers for the same marking point <br> = separates marking points <br> = answers which are not worthy of credit <br> = words which are not essential to gain credit <br> = (underlining) key words which must be used to gain credit <br> = error carried forward <br> = alternative wording <br> = or reverse argument |
| :---: | :---: | :---: |

1
(a)(i) Correct direction shown (anticlockwise)

B1
(a)(ii) Direction in which positive charges / ions move /

Direction / flow / current / from positive to negative /
Flow of (positive) charge from positive to negative /
Direction / flow opposite to electron flow
B1
(a)(iii) $Q=I t \quad$ (Allow any subject with or without delta notation)

C1

$$
\begin{equation*}
I=\frac{0.76}{5.0 \times 60} \tag{C1}
\end{equation*}
$$

$$
\text { current }=2.53 \times 10^{-3}(\mathrm{~A}) \approx 2.5 \times 10^{-3}(\mathrm{~A})
$$

( 0.152 / $0.15(\mathrm{~A})$ scores $1 / 3$ )
(b) The compass /needle points in the opposite direction

B1
(Magnetic) field is circular (about the wire) / in opposite direction / clockwise B1
(Both marks can be scored on diagram)
[Total: 7]
2
Any three properties from: ( -1 for each error or contradiction) $\quad \mathrm{B} 1 \times 3$

1. Travel at the speed of light $/ \mathrm{c} / 3 \times 10^{8} \underline{\mathrm{~m} \mathrm{~s}}^{-1} \quad$ (NOT 'same speed')
2. Travel through vacuum / 'free space'
3. Have oscillating electric and magnetic fields
4. They are (all) transverse waves / can be polarised
5. Allow: 'They show diffraction / reflection / refraction / interference'
6. Allow: 'Consist of photons'

Any three regions from the list below:

$$
\overline{\mathrm{B} 1} \times 3
$$

Gamma (rays / radiation) / $\gamma$ (rays) ; X-rays ; u.v ; ir ; microwaves ; radio waves (NOT 'radio')

One suitable application for the opted region.
B1
(E.g.: Gamma rays for radiotherapy / sterilisation;

X-rays for taking pictures of skeleton / bones; u.v for tanning; ir for TV remote control; microwaves for cooking / mobile phones; radio waves for communication)
(Note: Reference to alpha, beta and gamma can only score the last marking point)

3
(a) current $\propto \mathrm{p} . \mathrm{d} /$ voltage (for a metallic conductor)
as long as temperature is constant / physical conditions remain constant A1
(b)(i) $\quad(R=) \frac{0.15}{4.3}(=0.0349)$

B1
(b)(ii) $R=\frac{\rho L}{A} \quad$ (Allow any subject)

C1
$\rho=\frac{R A}{L}=\frac{0.035 \times(0.012 \times 0.012)}{0.09}$
resistivity $=5.6 \times 10^{-5}$
A1
unit: ohm metre / $\Omega \mathrm{m} \quad$ (Allow $\mathrm{V} \mathrm{m} \mathrm{A}^{-1}$ )
A1
(5.6 $\times 10^{-\mathrm{n}}$ without unit or incorrect unit and $\mathrm{n} \neq 5$ or 3 - can score $2 / 4$ )
(5.6 $\times 10^{-3} \Omega \mathrm{~m}-$ can score $3 / 4$ )
(5.6 $\times 10^{-3} \Omega \mathrm{~cm}$ - can score 4/4)
[Total: 7]

4
(a) Parallel

B1
(b)(i) $I=\frac{12}{8.0}$
current $=1.5(\mathrm{~A})$
(b)(ii) $P=\frac{V^{2}}{R} \quad / \quad P=I V \quad / P=I^{2} R$
$P=\frac{12^{2}}{8} \quad / P=1.5 \times 12 \quad / P=1.5^{2} \times 8.0 \quad$ (Possible ecf)
power $=18(\mathrm{~W})$
(b)(iii) $\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\left(\frac{1}{R_{3}}\right) \quad / \quad \frac{1}{R}=\frac{1}{8}+\frac{1}{8}+\frac{1}{8}$
$\frac{1}{R}=3 \times \frac{1}{8}$
resistance $=2.67 \approx 2.7(\Omega) \quad$ (Allow answer expressed as $8 / 3$ )
( 0.375 or $3 / 8$ scores $2 / 3$ )
(b)(iv) energy $=0.018 \times 12 \times 3$ C1
energy $=0.648 \approx 0.65(\mathrm{~kW} \mathrm{~h}) \quad$ (Possible ecf) A1
(0.22 (kW h) scores $1 / 2$ )
(648 (kW h) scores $1 / 2$ )
$\left(2.3 \times 10^{6}(\mathrm{~J})\right.$ scores $\left.1 / 2\right)$

## Downloaded from http://www.thepaperbank.co.uk

(c) It will be brighter

B1
The current is larger / correct reference to: $P \propto 1 / R$ B1
[Total: 13]
5
(a) current and current B1
(b) energy B1
(c)(i) (NTC) thermistor B1
(c)(ii) Resistance decreases when temperature is increased. (ora) B1 (Allow correct credit for a PTC thermistor)
(c)(iii)1 $\quad I=(0.032-0.006=) 0.026(\mathrm{~A})$ B1
(c)(iii)2 $\quad\left(V_{200}=0.026 \times 200=\right) 5.2(\mathrm{~V}) /\left(V_{720}=0.006 \times 700=\right) 4.2(\mathrm{~V})$
[Total: 8]

## 6

(a) Maximum of three from points 1 to 6:

B1 $\times 3$

1. Photon mentioned (e.g: photons interact with the surface electrons)
2. Energy is conserved (between the photon and the electron / in the interaction)
3. $h f=\phi+K E_{\text {(max) }}$
4. A single photon interacts with a single electron / It is a one-to-one interaction
5. Electron is removed when photon energy is greater than / equal to the work function (energy) / $\phi \quad$ (Allow ora)
6. Electron removed when frequency is greater than / equal to the threshold frequency (Allow ora)
7. (Visible) light has lower frequency than the threshold frequency / Energy of (visible) light photon is less than the work function (energy) (ora with uv)
B1
8. Greater intensity of (visible) light means more photons (per unit time) / B1
energy of a photon remains the same

QWC - Spelling, punctuation and grammar B1
QWC - Organisation B1
(b)(i) kinetic energy $=1.5 \times 1.6 \times 10^{-19}$
kinetic energy $=2.4 \times 10^{-19}(\mathrm{~J})$
A1
(b)(ii) $E=h f \quad / E=\frac{h c}{\lambda} \quad / f=7.69 \times 10^{14}(\mathrm{~Hz}) / \quad(E=) 5.1 \times 10^{-19}(\mathrm{~J})$
$\phi=5.1 \times 10^{-19}-2.4 \times 10^{-19} \quad$ (Possible ecf)
work function energy $=2.7 \times 10^{-19}(\mathrm{~J})$
A1
[Total: 12]

7
(a) $\quad \checkmark$
$\times$
$\times$
(Four correct: 3 marks, three correct: 2 marks, two correct: 1 mark) B3
(b) $\quad \lambda=\frac{h}{m v} \quad / \lambda=\frac{h}{p} \quad$ (Any subject)
$v=\frac{6.63 \times 10^{-34}}{6.8 \times 10^{-11} \times 2.0 \times 10^{-26}}$
speed $=490\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ A1
[Total: 6]

Downloaded from http://www.thepaperbank.co.uk

## Mark Scheme 2823/01 <br> June 2006


2. (a) (i) C correctly labelled on ray $Y$ B1
(ii) ray X refracted into the air away from the normal (ignore any reflected ray) B1 ray Y refracted ALONG INTERFACE (ignore any reflected ray) B1 ray Z TOTALLY INTERNALLY REFLECTED (at any angle in glass) B1
(iii) correct substitution into $n=1 / \operatorname{sinC}:$ e.g. $n=1 / \sin 44 \quad$ C1 $=1 / 0.695=1.44$ (allow 1.43, 1.45 or 1.4) A1
(b) ANY valid practical application of TIR stated and described e.g.: endoscope (telecommunication, periscope, binoculars, SLR camera, cycle reflectors, cats-eyes) B1 reference to optic fibres OR prisms (allow diagrams)
3. Maximum of 2 marks for correctly identifying the 4 errors OR stating the 2 correct notes: i.e. errors in notes $1,2,3$, and 6 (shown anywhere)B2
\{5 or 6 or 2 or 1 notes nominated scores ZERO, 4 correct scores 2,3 correct scores 1$\}$
Valid corrections score 1 mark each: do not allow "NOT" corrections apart from note 3
Note 1: In longitudinal waves vibrations are parallel to wave direction (WTTE)
\{OR in transverse waves vibrations are perpendicular to wave direction (WTTE\}
Note 2 light (or any of the em waves) can travel through a vacuum (WTTE)
\{ allow sound/longitudinal waves cannot travel thro' a vacuum
Note 3: waves carry energy/disturbance (not displacement or info) from. (WTTE)
\{allow "waves do not carry the medium" and "the medium carries the waves from......." \}
Note 6: wavelength = distance from crest to crest/trough to trough/max to max ((WTTE)
[N.B. Change of total from question paper]

## Downloaded from http://www.thepaperbank.co.uk

4. (a) diagram showing laser/light source placed directly behind double slit AND screen placed in front of slits ..... B1 \{single slit NOT required; no labelling required\}
(i) D: allow any value between 30 cm and 10 m ..... B1
(ii) a: allow any value between 0.1 mm and 2 mm ..... B1
(b) (i) evidence of good practice: i.e distance for $n x$ measured e.g. $5 x=18 \mathrm{~mm}$ ..... C1
$x=3.6 \mathrm{~mm}$ (OR 3.5 OR 3.7) ..... A1
$\{x=3.4,3.8,3.9,4.0$, or 4 mm , implying $x$ is directly measured, and score 1 mark)
(ii) for O path difference $=0$ ..... B1
for $A$ path difference $=3(\lambda)$ ..... B1
for $B$ path difference $=1.5(\lambda)$ ..... B1
(c) recall of $\lambda=a x / D$ OR $x=\lambda D / a$ OR $x \propto \lambda$ ..... B1
$\lambda$ is smaller for blue light (than red light) hence x is SMALLER (WTTE) ..... B1[2][N.B. Change of total from question paper]
[N.B. Change of total from question paper]
5. (a) ANY valid differences: e.g.Sound is longitudinal (light is not) OR light is transverse (sound is not)
OR sound waves have longer wavelengths' OR sound travels much slower
Light can be polarised (sound cannot)Light can travel though a vacuum, (sound cannot)
(b) (i) a straight object (allow paddle, NOT dipper) ..... B1
vibrating (or oscillating) (WTTE) (in the water) ..... B1[2]
(ii) reduce frequency of motor OR reduce speed of motor OR reduce current in motor OR reduce frequency/increase period of vibration
(do not accept 'reduce speed of vibration'; 'reduce frequency'; 'increase speed of waves') OR increase depth of water ..... B1 [1]
(iii) reduce depth of water (WTTE) \{no ecf from (ii) \}B1 [1]
(c) circular arcs (penalise anything flat) ..... B1
same constant wavelength before and after gap - judged by eye or labelledB1 [2][2]
this means at least 3 wavefronts need to be drawn
(d) for noticeable diffraction $\lambda \approx$ gap size (WTTE) ..... B1$\lambda$ for sound much bigger than for light (WTTE)B1 [2]

$$
[\text { Total }=10]
$$

Downloaded from http://www.thepaperbank.co.uk

## Mark Scheme 2823/03 <br> June 2006

## Downloaded from http://www.thepaperbank.co.uk

## Planning Exercise - Skill P

A1 Diagram of physical arrangement of apparatus.
Source, detector and indication of distance are needed for this mark. Ignore circuit errors.

A2 Correct procedure
(i.e. measure distance and output from photocell; change distance source/detector distance and measure new output

- allow graph or table). Method must be workable.

A3 Sensible range of distances
Maximum distance of their range must be greater than equal to 1 m
B1 Circuit diagram for candidate's detector circuit including appropriate output meter
e.g. photodiode,

LDR with ammeter + e.m.f. source; LDR with ohmmeter;
LDR with voltmeter \& potential divider
Photo detector with voltmeter
Photovoltaic cell with voltmeter
Penalise incorrect circuits (e.g. voltmeter across e.m.f. source)
B2 Stated range for output meter
B3 Keep output of infra-red source constant. An explicit statement is needed.
C1/2 Methods of reducing spurious radiations
Carry out experiment in the dark (e.g. dark room/in a tube)
(Screen) body heat
Keep ambient temperature constant/avoid background radiation
$\mathbf{R 1 / 2}$ Evidence of the sources of the researched material
Two or more independent detailed references scores two marks.
Two or more (vague) references and/or one detailed reference score one mark.
Detailed references should have page or chapter numbers or be internet pages.
D1/2/3/4 Any further relevant detail. Examples of creditworthy points might be;
$\max 4$
Safety precautions, e.g. do not look directly at source
Use of i.r. filter
Typical i.r. wavelength stated
Evidence of preliminary investigation in the laboratory
Research linked to use of meters
Method of producing point source
Measurement of background radiation (e.g. with source switched off)
Method of keeping source output constant
Method of aligning source and detector
QWC Quality of written communication
This is for the organisation and sentence construction. Accounts that are rambling, or where the material is not presented in a logical order will not score these marks.
Do not award both of these marks if the word count exceeds the recommended length by more than $50 \%$.
16 marks total.

## Question 1

(c) Justification of number of significant figures in $1 / I$

Relates sf in $1 / I$ to sf in I scores 1 mark
Number of sf in $1 / I$ is the same or one more than sf in I scores 1 mark
Answers in terms of decimal places, raw data or graphs score zero.
(d) Measurements

Write the number of readings as a ringed total next to the table of results.
Six (or more) sets of values for $I$ and $x$ scores 1 mark.
Values of $1 / I$. Underline checked value. Tick if correct and award 1 mark.
If incorrect write in correct value. Ignore minor rounding errors.
Minor help from Supervisor then -1 .
Major help (equipment set up for the candidate) then -2.
Indicate nature of help and mark front of script "SR"
(d) Column headings in the table 2/1/0

One mark for $x$ and $I$ column headings and units correct.
One mark for $1 / I$ heading and unit correct.
Ignore units in the body of the table.
(d) Consistency of raw readings

One mark for $x$ which must be to the nearest mm
One mark for $I$ which must be be to the same no of d.p.
(e) Axes

Sensible scales must be used. Awkward scales (e.g. 3:10, 6:10, 7:10, 8:10) are not allowed.
The scales must be labelled with the quantities plotted. Ignore units.
Do not allow more than three large squares without a scale label.
If false origin, indicate with "FO"
One mark for each correct axis.
(e) Size of graph 2/1/0

Plotted points must occupy at least half the graph grid in both $x$ and $y$ directions
(i.e. $4 \times 6$ large squares).

One mark for each correct axis.
(e) Plotting of points

Count the number of plots and write as a ringed number on the graph grid.
All observations must be plotted. Check a suspect plot. Tick if correct otherwise indicate the correct position. If plots are omitted then Zero.
If the plot is accurate $\leq$ half a small square, then two marks awarded.
One mark if the plot is out by $>$ half a small square and $<$ than one small square.
(e) Line of best fit

Judge by scatter of points about the line.
There must be a fair scatter of points either side of the line of best fit.
Allow line through five trend plots for full credit (if done well).
Do not allow a line through a curved trend.
(f) (i) Gradient
The hypotenuse of the $\Delta$ must be $\geq$ half the length of the drawn line. 1 mark. Read-offs must be accurate to half a small square and ratio correct. 1 mark.
(f) (ii) $y$-intercept
Expect the value to be read from the $y$-axis to an accuracy of half a small square.
Or correct substitution from point on line into $y=m x+c$.
(g) (i) Candidate's gradient value equated with $\rho / A E$ (can be implied from working)
Method of calculating $\rho$ using gradient (gradient $\mathrm{x} A \times E$ )
Value of $\rho$ using gradient between $1 \times 10^{-6}$ and $3 \times 10^{-6}$
Sig Figs of $\rho$ : allow 2 or 3 only
Unit of $\rho(\Omega \mathrm{m})$
5/4/3/2/1/0
(g) (ii) $y$-intercept equated with $R / E$ (can be implied from working)
Method of calculating $R$ using $y$-intercept ( $y$-intercept $\times E$ )
Sig Figs of $R$ : allow 2 or 3 only
Unit of $R(\Omega)$
4/3/2/1/0

28 marks available. Write the mark as a ringed total at the bottom of page 6.

## Question 2

(a) (vi) Calculates $T$ correctly ignore minor rounding errors
(b) Percentage uncertainty in $L$
$\Delta L=1-5 \mathrm{~mm}$
1
ratio idea correct ( $\Delta L / L x 100 \%$ ) POT loses this mark 1
A bald answer with no working loses both of these marks.
(c) $\quad L$ approximately halved, $T$ calculated and smaller
(d) Direct proportionality ideas

Method to prove or disprove proportionality
(e.g. determines constant of proportionality twice or calculates constant then calculates new value of $T$ )
Appropriate conclusion based on their method of proving or disproving proportionality. Vague answers will not score this second mark.
No method loses both these marks
(e) Evaluation of procedure

Relevant points from the table must be underlined and ticked with the appropriate marking letter.

|  | Problem | Solution |
| :--- | :--- | :--- |
| A | Difficulty in making equilateral <br> triangle or keeping sides same length | Use protractor ; use a template; measure sides of <br> triangle |
| B | Problems with keeping sides of the <br> triangular structure - coplanar | Use a mould or guide or plane surface (e.g. table <br> top) |
| C | Difficulty in knowing when to stop <br> timing | Use of a reference mark (e.g. plumb line), slow <br> motion video. |
| D | Oscillations not always in the vertical <br> plane or wobbling or blu-tack distorts <br> the orientation of the triangle. Do <br> not allow blu-tack affects period. | Use a stiffer (stronger/harder) wire/solder the ends <br> or glue triangle, make the join in the centre of the <br> bottom side. |
| E | Time taken for 10 oscillations is too <br> short | Time more oscillations / repeat timings and find <br> average |
| F | Two readings of $L$ and $T$ are not <br> enough to verify the suggestion | Take many readings of $L$ and plot a graph (e.g. $T^{2}$ <br> v $L$ or $T \mathrm{v} L$ ) |

One mark for each box to a maximum of 8 .
No credit for simple 'repeats' or 'using a computer'.
Do not allow vague human error in measuring $L$ or $T$.
Quality of written communication (i.e. spelling, punctuation and grammar).
Correct spelling scores one mark. Allow max two errors.
Capital letters at the beginning of sentences, full stops at the end scores one mark.
This mark may only be assessed if there is at least half a page or writing.
16 marks available. Write the mark as a ringed total at the bottom of page 11..

## Results

## Question 1

Using analogue meter

| $\mathrm{x} / \mathrm{m}$ | $\mathrm{I} / \mathrm{A}$ | $1 / \mathrm{I} / \mathrm{A}^{-1}$ |
| :---: | :---: | :---: |
| 0.200 | 0.44 | 2.27 |
| 0.250 | 0.38 | 2.63 |
| 0.300 | 0.34 | 2.94 |
| 0.350 | 0.30 | 3.33 |
| 0.400 | 0.28 | 3.57 |
| 0.450 | 0.25 | 4.00 |
| 0.500 | 0.23 | 4.35 |

Plotting a graph of $1 / I$ against $x$ gives:
Gradient $=6.85$
Intercept $=0.90$
$\mathrm{E}=5 \mathrm{~V}$
$\mathrm{A}=0.0590 \mathrm{~mm}^{2}$
$\rho=2.0 \times 10^{-6} \Omega \mathrm{~m}$
$\mathrm{R}=4.5 \Omega$

## Question 2

(a) $\mathrm{L}=16.0 \mathrm{~cm}$
$\mathrm{t}=7.78 \mathrm{~s}, 7.69 \mathrm{~s}$, average $\mathrm{t}=7.735 \mathrm{~s}$
$\mathrm{T}=0.77 \mathrm{~s}$
(d) $\mathrm{L}=8.0 \mathrm{~cm}$
$\mathrm{t}=5.56 \mathrm{~s}, 5.50 \mathrm{~s}$, average $\mathrm{t}=5.53 \mathrm{~s}$
$\mathrm{T}=0.55 \mathrm{~s}$
(e) If directly proportional $T^{2} / L=$ constant, $k$

When $L=16.0 \mathrm{~cm}, k=3.70$
When $L=8.0 \mathrm{~cm}, k=3.78$

## Summary of shorthand notation which may be used in annotating scripts:

SFP Significant figure penalty
ECF Error carried forward
AE Arithmetical error
POT Power of ten error
NV Not valid
NR Not relevant
GAP Insufficient scale markings on an axis
NBL Not best line
FO False origin
NGE Not good enough
BOD Benefit of the doubt
R Point repeated (no further credit)
NA Not allowed
SV Supervisor's value
SR Supervisor's report
OOR Candidate's value is out of range
CON contradictory physics not to be credited
$\checkmark \Delta \quad$ Used to show that the size of a triangle is appropriate (gradient calculation)
$\checkmark$ A1 Used to show the type of mark awarded for a particular piece of work
$\checkmark_{\mathrm{C}} \quad$ Used to show that the raw readings are consistent
$\checkmark$ Used to show that the raw readings have correct spacing
$\checkmark_{\text {SF }} \quad$ Used to show calculated quantities have been given to an appropriate number of significant
figures
$\wedge \quad$ Piece of work missing (one mark penalty)
$\wedge \quad$ Several pieces of work missing (more than one mark penalty)
$\leftrightarrow \quad$ Scale can be doubled in the x-direction
$\downarrow \quad$ Scale can be doubled in the $y$-direction
AWK Scale is difficult to use

## Mark Scheme 2824 <br> June 2006

| Abbreviations, | $/$ | $=$ alternative and acceptable answers for the same marking point |
| :--- | :--- | :--- |
| annotations and | $;$ | $=$ separates marking points |
| conventions used | () | $=$ words which are not essential to gain credit |
| in the Mark Scheme | ecf | $=$ error carried forward |
|  | AW | $=$ alternative wording |

Question Expected Answers ..... Marks
1 a $(\mathrm{mv}=) 300 ; \mathrm{kg} \mathrm{m} \mathrm{s}^{-1}$ or N s ..... 2
b i (The speed of the bar increases so) it is accelerated forwards/AW; this1
requires a resultant (forward) force $/ \mathrm{F}=$ ma idea ..... 1
ii Arrow in direction of motion/to right ..... 1
iii $\quad(\mathrm{t}=\mathrm{s} / \mathrm{v}=3.0 / 0.60=5.0 \mathrm{~s}$ ..... 1
iv $\quad \mathrm{F}=\mathrm{m}(\mathrm{v}-\mathrm{u}) / \mathrm{t} ;=500 \times 1.2 / 5.0 ;=120(\mathrm{~N})$ ecf b (iii) ..... 3
c $\gamma$ ray source; the only radiation with sufficient penetrating power/ability1
Total
to discriminate between different thicknesses/AW12
ii $\quad \mathrm{g}=\mathrm{GM} / \mathrm{R}^{2}$ ..... 1iii Choosing a correct pair of values from the graph, e.g. $6.4 \times 10^{6} \& 9.8$,$10 \times 10^{6} \& 4.0$;1
substitute, $9.8=6.67 \times 10^{-11} \times \mathrm{M} /\left(6.4 \times 10^{6}\right)^{2}$ to show $\mathrm{M}=6.0 \times 10^{24} \mathrm{~kg}$ ..... 1
iv linear graph through origin/from 0 to $R$ ..... 1
v $64 \mathrm{~km} ; 1 / 100$ of R as linear graph under Earth/AW ..... 2
$64000 \mathrm{~km} ; \mathrm{g} \propto 1 / \mathrm{r}^{2}$ so for $1 / 100 \mathrm{~g} \mathrm{r}=10 \mathrm{R}$9
b $\mathrm{GM}_{\mathrm{e}} / \mathrm{R}_{1}{ }^{2}=\mathrm{GM}_{\mathrm{m}} / \mathrm{R}_{2}{ }^{2} ; \mathrm{M}_{\mathrm{e}}=81 \mathrm{M}_{\mathrm{m}}$; ..... 2
$\mathrm{M}_{\mathrm{m}}=6.0 \times 10^{24} / 81=7.4 \times 10^{22}(\mathrm{~kg})$ ecfa(iii) ..... 1or any acceptable alternative method i.e. correct method; correct figures;processed to correct answer
Total
12
3 a i A motion in which the acceleration/force is proportional to the ..... 1
displacement; directed towards the centre of oscillation/equilibrium ..... 1
position/AW or $a \alpha-x$ or $a=-\omega^{2} x$ or $a=-4 \pi^{2} f^{2} x$;symbols must be identifiedii $\quad \mathrm{T}=0.25 \mathrm{~s}$ or $\mathrm{f}=1 / \mathrm{T} ; \mathrm{f}=4(\mathrm{~Hz})$2
iii $\quad \mathrm{a}=-4 \pi^{2} \mathrm{f}^{2} \mathrm{~A} ;=4 \times 9.87 \times 16 \times 0.005 ;=3.2\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \quad$ ecf a (ii) ..... 3
b i Resonance occurs at /close to the natural frequency of an oscillating ..... 1
object/system; caused by driving force (at this frequency); when ..... 1maximum energy transfer between driver and driven/maximum amplitude $\mathbf{1}$achieved 3 marking points in any sensible order
ii. 1 reduced amplitude; as resonance frequency lower ..... 2or resonance will occur at lower frequency; as greater inertia/reducednatural frequency/AW in terms of amplitude change
2 reduced amplitude; as resonance frequency higher ..... 2
or resonance will occur at a higher frequency; as larger restoringforce/increased natural frequency/AW in terms of amplitude change7

## Question

Expected Answers
4 a i $5.0(\mathrm{~V}) \quad \mathbf{1}$
ii $10.0(\mathrm{~V}) \quad \mathbf{1}$
b i $\quad \mathrm{Q}=\mathrm{CV} ;=1.0 \times 10^{-3}(\mathrm{C}) \quad 2$
b ii The total capacitance of each circuit is the same (namely $100 \mu \mathrm{~F}$ ); $\mathbf{1}$ because capacitors in series add as reciprocals/ in parallel add/ supply $\quad \mathbf{1}$ voltage is the same and $\mathrm{Q}=\mathrm{VC}$, etc. max 2 marks
c i A1 will give the same reading as A2; because the two ammeters are $\quad \mathbf{1}$ connected in series /AW $\quad \mathbf{1}$ answer only in terms of exponential decrease for a maximum of 1 mark
ii A4 will show the same reading as A2 at all times; $\mathbf{1}$ A 3 will show half the reading of A2 initially; and at all subsequent times

Total

2

1

5 a Positive as E-field is downwards/top plate is positive/like charges
b i $\begin{aligned} & \mathrm{repel} / \mathrm{AW} \\ & \mathrm{k} . \mathrm{e} . \\ & =\mathrm{QV} ;=300 \times 1.6 \times 10^{-19}=\left(4.8 \times 10^{-17} \mathrm{~J}\right)\end{aligned}$
ii $\quad 1 / 2 \mathrm{mv}^{2}=4.8 \times 10^{-17} ;=0.5 \times 2.3 \times 10^{-26} \mathrm{xv}^{2}$ so v $^{2}=4.17 \times 10^{9}$;
(giving $\mathrm{v}=6.46 \times 10^{4} \mathrm{~m} \mathrm{~s}^{-1}$ )
c $\quad \mathrm{E}=\mathrm{V} / \mathrm{d}$; so $\mathrm{d}=\mathrm{V} / \mathrm{E}=600 / 4 \times 10^{4}=0.015 \mathrm{~m}$
d i semicircle to right of hole ecf(a); (a) and d(i) to be consistent 1
ii $\mathrm{mv}^{2} / \mathrm{r}$; $=\mathrm{BQv}$;
giving $\mathrm{r}=\mathrm{mv} / \mathrm{BQ}=2.3 \times 10^{-26} \times 6.5 \times 10^{4} /\left(0.17 \times 1.6 \times 10^{-19}\right)$;
$\mathrm{r}=55 \mathrm{~mm}$;so distance $=2 \mathrm{r}=0.11 \mathrm{~m}$
b i $\quad \lambda=0.693 / 1600 \times 3.16 \times 10^{7}=1.4 \times 10^{-11} \mathrm{~s}^{-1}$ 1
ii $\quad \mathrm{A}=\lambda \mathrm{N} ; \mathrm{N}=6.02 \times 10^{23} / 226$; evidence of calculation to give 3.6 or $\quad 2$ $3.7 \times 10^{10} \mathrm{~Bq}$
c $\Delta \mathrm{m}=0.0053 \mathrm{u}\left(=8.8 \times 10^{-30} \mathrm{~kg}\right)$; $\mathrm{E}=\mathrm{c}^{2} \Delta \mathrm{~m} ;=9 \times 8.8 \times 10^{-14}=7.9 \times 10^{-13}(\mathrm{~J})$

$$
\text { d } \quad \mathrm{Q}=\mathrm{mc} \theta ; \text { so } 0.8 \times 3.7 \times 10^{10} \times 7.9 \times 10^{-13}=0.001 \times 110 \theta:
$$

$$
\text { giving } \theta=0.213 \mathrm{~K} \mathrm{~s}^{-1} \text {; and } \mathrm{t}=1 / \theta=4.7 \mathrm{~s}
$$2

or $\mathrm{Q}=\mathrm{mc} \theta ; \mathrm{Q} / \mathrm{K}=0.001 \times 110=0.11 \mathrm{~J} \mathrm{~K}^{-1}$; ..... 2
$\mathrm{Q} / \mathrm{s}=0.0234 \mathrm{~J} ; \mathrm{so} \mathrm{t}=0.11 / 0.0234=4.7 \mathrm{~s}$ ..... 2
Question Expected Answers ..... Marks
7 a Faraday's law: the emf/voltage induced across a coil/component/circuit is ..... 1
proportional to the rate of change of flux (linkage) through it /AW ..... 1
magnetic flux $=\mathrm{BA}$; ..... 1
meanings of B and A, i.e. flux density or field strength and area ( $\perp$ to it) ..... 1
magnetic flux linkage refers to the flux linking/passing through a coil; ..... 1
and equals N x flux where N is the number of turns of the coil max 5 ..... 1
b sine or cosine wave of regular period and amplitude ..... 1
V doubles when the speed v of rotation of the coil doubles; ..... 1
when v doubles the rate of change of flux linking the coil doubles; ..... 1
the frequency of the a.c. signal doubles/period halves/AW ..... 1
V doubles when the number n of turns on the coil doubles; ..... 1
when $n$ doubles there is twice as much flux linking the coil/AW; ..... 1
the frequency/period of the signal is unchanged; ..... 1
without iron core flux linking coil is much less/flux would spread in all directions/flux not channelled through low reluctance path/AW ..... 1
amplitude of output voltage is smaller actually is tiny/negligible/mV ..... 1
rather than $V$ max 7 ..... 7
Quality of Written Communication ..... 4

## Mark Scheme 2825/01 <br> June 2006

1. Maximum of $\mathbf{6}$ marks
Copernicus: heliocentric ..... [1]
Copernicus:circular orbits ..... [1]
Kepler: elliptical motion Sun at one focus ..... [1]
Kepler/ Copernicus correct reference to epicycles ..... [1]
Any 3 from:
Newton imagined gravitational forces between bodies/ gravitational force changes planetary path ..... [1]
Use Newton's law to predict position of planets/moons ..... [1]
force $\alpha$ mass ..... [1]
force $\alpha 1 / \mathrm{r}^{2}$ ..... [1]
universe static/universe infinite in extent ..... [1]
[total 6]
2.(a) (i)planet less than $1 / 4$ way around ..... [1]
(ii)planet sweeps out equal areas in equal times ..... [1]speed increases moving closer to Sun/ area swept outfrom $P$ to $X$ is $1 / 4$ total area of ellipse[1]
(b) $\mathrm{T}^{2} / \mathrm{r}^{3}=$ constant ..... [1]
$80^{2} / \mathrm{r}^{3}=\mathrm{T}^{2} /(0.4 \mathrm{r})^{3}$ ..... [1]
$\mathrm{T}=20.2 \mathrm{y}$ ..... [1]
3.(a) absolute magnitude/luminosity on y-axis (accept $\mathbf{M}$ ) ..... [1]
temperature /spectral class on x-axis (accept $\mathbf{T}$ ) ..... [1]
main sequence indicated in correct orientation ..... [1]
white dwarfs in bottom left, labelled correctly ..... [1]
red giants in top right, labelled correctly ..... [1]
(b) any 4 from:end of H burning/red giant/supergiant[1]
onset of He fusion/fusion of heavier nuclei ..... [1]
gravitational collapse of core ..... [1]
supernova explosion/star explodes ..... [1]
suitable mass limit (chanderasekha limit 1.4 M ) ..... [1]supported against gavity by neutron gas pressure/ ref toFermi pressure[1]
internal structure protons and electrons combined/ verythin atmosphere/ metallic crust[1] [4]
(c) (i)volume $=4 \pi(10,000)^{3} / 3=4.2 \times 10^{12}$ ..... [1]
density $=3.5 \times 10^{30} / 4.2 \times 10^{12} \mathrm{ecf}$ ..... [1]
density $=8.4 \times 10^{17} \mathrm{~kg} / \mathrm{m}^{3}$ ..... [1]
(ii)any two fromdensity (very) much greater than material on Earth[1]
quotes typical density on Earth $1-10^{4} \mathrm{~kg} \mathrm{~m}^{-3}$ ..... [1]
atomic structure collapsed / density same as atomicnucleus[1] [2]
[total 14]

## Downloaded from http://www.thepaperbank.co.uk

4.(a) (i) apparent magnitude: brightness seen from Earth ..... [1]
absolute magnitude: brightness at 10pc ..... [1]
(ii) absolute magnitude uses same distance for all stars/ compares luminosities (true brightness/energy) of stars[1]
(b) (i) $\mathrm{m}-\mathrm{M}=5 \lg (\mathrm{r} / 10) \quad$ [1] substitution of $\mathrm{m}_{2}$ and $\mathrm{r}_{2}$[1]
(ii) $\mathrm{m}_{1}=-26.7+5 \lg \left(2.7 \times 10^{17} / 1.5 \times 10^{8}\right)$ ..... [1]
$\mathrm{m}_{1}=19.5(8)$ ..... [1]
(iii) any two from
absorption by interstellar gas/ stellar objects in light path/ deflection of light by gravitational fields[2]
5.(a) (i) energies/temperatures irreproducible on Earth / laws of Physics break down ..... [1]
(ii)temperature decreases ..... [1]universe expanding/work done against attractive forces/ energyconverted to mass[1]
(iii)any 3 from protons and electrons separate initially ..... [1]
matter-radiation equilibrium/charge prevents passage of em waves ..... [1]
proton-electron recombination /formation of atoms ..... [1]
gamma/ em waves no longer absorbed ..... [1][3]
(b) any $\mathbf{5}$ from:
star-light shows red shift ..... [1]
galaxies (stars) receding from Earth ..... [1]
recessional velocity proportional to distance ..... [1]
cosmological microwave background radiation (CMBR) ..... [1]
uniform intensity in all directions ..... [1]
small ripple ..... [1]
(black body temperature) $2.7 \mathrm{~K}(3 \mathrm{~K})$ ..... [1]
High ratio of helium to hydrogen ..... [1]
Indicates very high temperatures existed ..... [1]
ratio too high to originate from stellar fusion ..... [1]
6.(a) isotropic ..... [1]
homogenous ..... [1]
(b) (i) $\mathrm{H}_{0}=75 / 3.1 \times 10^{19}$ ..... [1]$\mathrm{t}_{0}=1 / \mathrm{H}_{0}=4.13 \times 10^{17} \mathrm{~s}$$\mathrm{t}_{0}=4.13 \times 10^{17} \mathrm{~s} / 365 \times 24 \times 3600=1.3 \times 10^{10} \mathrm{y}$[1][1]
(ii)any two fromuniverse expands to a limit/ flat universe[1]
but never reaches that limit ..... [1]
density of universe $=$ critical density ..... [1]
(iii)curve: passes through P ..... [1]curves over and back to time axis[1]iv)Universe not so old (no ecf from (iii)/ Universe will endin big crunch(no ecf from iii) / universe has finite lifetime[1]
7.(a) Newton; measured/ (rate of ) time is same for all observers/ everywhere[1]
Relativity: measured/ (rate of ) clocks dependent on inertial frame ..... [1]
(b) (i)both correct: - $0.65,-0.82$.[1]
(ii)any 5 points correct ..... [1]
sixth point correct ..... [1]
(iii)best straight line drawn ..... [1]
$(\mathrm{iv}) \mathrm{k}=(-)$ gradient of graph ..... [1]
value of k between $-1.6 \times 10^{-4}$ and $-1.7 \times 10^{-4} \mathrm{~m}^{-1}$ ..... [1]
(v) $\mathrm{T}_{1 / 2}=0.693 / 3 \times 10^{8} \times 1.6 \times 10^{-4}$
$\mathrm{T}_{1 / 2}=\mathrm{s}$[1][1]
(vi) $1.44 \times 10^{-5}=\mathrm{t}_{0} / \sqrt{ }\left(1-\mathrm{v}^{2} / \mathrm{c}^{2}\right)$ ..... [1]
$\sqrt{ }\left(1-v^{2} / \mathrm{c}^{2}\right)=0.11$ ..... [1][1]
(vi)ref. to experimental evidence for special theory of relativity ..... [1]
[2]
[ total 14]


| (f) | $\begin{aligned} & \text { Number of nuclei required }=\mathrm{A} / \lambda=2.5 \times 10^{13} / 2.5 \times 10^{-10} \\ & =1.0 \times 10^{23} \\ & \text { (allow mark for formula } \mathrm{A}=\lambda \mathrm{N} \text { ) } \\ & \text { Mass required }=\quad 1.0 \times 10^{23} \times 238 / 6.02 \times 10^{23} \\ & =\quad 40 \mathrm{gms} \quad=0.040 \mathrm{~kg} \end{aligned}$ <br> On launch, the rocket gives the spacecraft a huge kinetic energy (in order to escape) <br> Failure at this point could cause spacecraft and contents to "burn up" in atmosphere <br> But plutonium would still be radioactive and being vaporised it could be ingested. <br> Sensible comment on danger periods of launch (or re-entry) <br> Sensible comment on mechanism of ingesting Plutonium <br> Allow one sensible comment on no risks in the isolation of deep space | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ <br> 1 <br> 1 $11$ |
| :---: | :---: | :---: |

## Mark Scheme 2825/02 <br> June 2006

1 (a) correct order
(1)
overlapping (1
within visible range (1) allow $350-780 \mathrm{~nm}$
(b)(i) daytime vision / only occurs at high intensity / in bright light (1) the adding of the response of each cone gives colour discrimination / colour vision / the cones are responsible (1)
(ii) colour fades / clarity fades / vision becomes black and white (1) rods (1)

2(a)(i) $61.3-2.50$ (1) $\quad$ or $61.3=1 / 0.4+1 / \mathrm{v}$
58.8 D (1)
(ii) $58.8=1 / \infty+1 / \mathrm{v} \quad$ ecf $2 \mathrm{a}(\mathrm{i}) \quad$ (1) (allow $\mathrm{f}=\mathrm{v}$ )
$\mathrm{v}=0.017 \mathrm{~m}$
(b) $\mathrm{p}=1 / 0.25+1 / 0.017$ (1) $\operatorname{ecf}$ (ii)
$\mathrm{p}=62.8 \mathrm{D}$ (required) (1)
$62.8-\underline{61.3}=(+) 1.5 \mathrm{D}$ (1)
3 (a)(i) $\mathrm{Il}=10 \lg \left(3.00 \times 10^{-7}\right) /\left(1.0 \times 10^{-12}\right)=54.8 \mathrm{~dB}$ (1)
$\mathrm{Il}=10 \lg \left(6.00 \times 10^{-7}\right) /\left(1.0 \times 10^{-12}\right)=57.8 \mathrm{~dB} \quad$ (1)
$57.8-54.8=3.0 \mathrm{~dB}$ (1)
alternative method: change in I.L. $=10 \log \left(\mathrm{I}_{2} / \mathrm{I}_{1}\right) \quad$ (1)

$$
\begin{align*}
& =10 \log \left(6.0 \times 10^{-7} / 3.0 \times 10^{-7}\right)  \tag{1}\\
& =\underline{\log 2} \text { or } \underline{\underline{3.01} \mathrm{~dB}}(1) \tag{1}
\end{align*}
$$

(ii) sensitivity increases with frequency (to a maximum) and then decreases with increasing frequency (1) maximum sensitivity at $\underline{1-3 \mathrm{kHz} \text { (1) }}$
(b) $35=10 \lg \mathrm{I} / 10^{-12}$
$\mathrm{I}=3.16 \times 10^{-9}$
$75=10 \lg \mathrm{I} / 10^{-12} \quad \mathrm{I}=3.16 \times 10^{-5}$

$$
\begin{equation*}
3.16 \times 10^{-5} / 3.16 \times 10^{-9}=10^{4} \tag{1}
\end{equation*}
$$

alternative method: $40=10 \log \left(\mathrm{I}_{2} / \mathrm{I}_{1}\right)$ (2)

$$
10^{4}=\mathrm{I}_{2} / \mathrm{I}_{1}
$$

or

$$
\text { change in I.L. }=75-35=40 \mathrm{~dB}
$$

$$
40 / 3=13.3
$$

$$
\begin{equation*}
2^{13.3}=10^{4} \tag{2}
\end{equation*}
$$

(c) $\mathrm{I}=\mathrm{p} / \mathrm{a} \quad \mathrm{p}=\mathrm{I} \times \mathrm{a}$ (1)
$\mathrm{p}=3.16 \times 10^{-5} \times 60 \times 10^{-6}$
$\mathrm{p}=1.9 \times 10^{-9} \mathrm{~W}$ (1) allow $2 \times 10^{-9}$ with working
4 (a)(i) $v=f x \lambda$ (1)
$330 / 2000=(1)$
0.165 m (1)
(ii) length $=\lambda / 4=0.041 \mathrm{~m}$ (1) ecf(i)
(b) eardrum vibrates (1)
ossicles vibrate / ossicles connected to ear drum or oval window
oval window vibrates / oval window connected to fluid or ossicles (1)
area of eardrum is large compared wih the oval window (1)
so as $p=f / a$, pressure is amplified (1)
ossicles / bones arranged as a lever system (1) (allow diagram with fulcrum labelled)
amplifying force to the oval window (1) (allow numerical explanation) detail mark (1)
to maximum of 7
5 X-ray (photons) penetrate patient (1) attenuation by different media / bones attenuate more than soft tissue (1) less X-rays reach film under bone / shadow effect (1) intensity of X-rays is proportional to darkening of film / ref. To fogging or blackening (1)

X-ray photons hit crystals / atoms in intensifying layer (1) atoms become excited / fluorescence occurs (1) emitting light (photons) (1)
detail: as they return to ground state (1)
so extra fogging of film (1)
detail: metal backing stops X-rays passing through / film more sensitive to light than X-rays / most X-rays pass through the film / double sided / photographic film / more contrast but not clearer (1)

Response is quicker / less X-rays needed (1) so less exposure (1) to maximum of 8

6(a) the total charge (of one sign) produced (by ionisation) per unit mass of air (1)
(b)(i) $\mathrm{D}=f x$ Exposure (0)

$$
\begin{align*}
& \mathrm{D}=80 \times 2.5 \times 10^{-5}  \tag{0}\\
& \mathrm{D}=2.0 \times 10^{-3} \tag{1}
\end{align*}
$$

Gy or $\mathrm{Jkg}^{-1}$
(ii) 1 ref. to type of radiation / energy distributed by the radiation $\mathrm{m}^{-1}$ penetrated (1)
2
$\mathrm{H}=\mathrm{Q} \times \mathrm{D}(0)$
$\mathrm{H}=1.2 \times 2.0 \times 10^{-3}=\underline{2.4 \times 10^{-3}}$
(1) $\operatorname{ecf}(\mathrm{i})$
Sv (1)

7 (a) alternating voltage or alternating E-field across crystal (1) at resonant frequency (1) allow reference to resonance of crystal
(b) (i) position of 3 lower oxygen ions closer to positive plate (1)
(ii) ref. to change in dimension / shape / distort/ it gets longer (1)
(c) (i) $Z$ for air is $429\left(\mathrm{~kg} \mathrm{~m}^{-2} \mathrm{~s}^{-1}\right)$ and
$Z$ for skin is $1.71 \times 10^{6}\left(\mathrm{~kg} \mathrm{~m}^{-2} \mathrm{~s}^{-1}\right)$
Substitution into equation leading to $F=0.999$ (1)
(ii) with gel, more ultrasound enters body / without gel, most ultrasound is reflected (1)
most ultrasound is reflected (without gel) when the difference in $Z$ is large
or
most ultrasound enters body when the different in $Z$ is small (1)
(d) $\quad 1.5 \mathrm{~cm} \mathrm{x} 1 \times 10^{-5}=1.5 \times 10^{-5} \mathrm{~s}$
$\mathrm{s}=\mathrm{vt}$ or $4080 \times 1.5 \times 10^{-5}$
$\mathrm{s}=6.12 \mathrm{~cm}$
(1) ecf if speed is wrong
$/ 2=3.06 \mathrm{~cm}$
8 (a)(i) any sensible comment e.g.
cell death / failure of cell division / function / uncontrolled cell division /
cancer (1)
disruption of functions e.g. failure of nervous system / bone marrow
function (1)
skin burn (1)
death of whole body (1)
change to DNA (1)
reference to mutation (1)
cancer (1)
damage to cell membrane (1) to a max of 3
(ii) sensible comment e.g.
nature of the radiation (1)
tissue type / part of the body exposed to radiation (1)
dose received / time of exposure (1)
intensity / rate at which dose is received (1)
in fractions or all at once (1)
ref.to distance from source (1)
ref. to cell multiplying (1)
to a max 3
(b) all rows correct (2) 2 rows correct (1)



## Mark Scheme 2825/03 <br> June 2006

(c) (i) Use of $1.8 \times 10^{-10} \mathrm{~N}$;

Tensile force needed $=2.5 \times 10^{15} \times 1.8 \times 10^{-10} \mathrm{~N}=4.5 \times 10^{5} \mathrm{~N}$.
(ii) Cross-section may have grain boundaries;
impurity atoms;
missing atoms;
dislocations;
Plastic deformation may take place before fracture;
Rod may form a neck;
There may be cracks on surface of a brittle material.
Forces may not be vertical.

2 (a)
(I) zero;
(ii) infinity.
(ii) (Very) large current can be passed without heat generation;

No need for iron core / Space inside solenoid is available;
Long running times possible (as no need to switch off for cooling down).
Field produced is very stable
Cool below $\mathrm{T}_{\mathrm{c}}$;
Pass a (very) large current through the solenoid.
(c) (i) Correct substitution;
$B=0.152 \mathrm{~T}$
(ii) (Since B a I) maximum B means maximum I / Current in solenoid generates the field.
(iii) $\left(\mathrm{At} \mathrm{T}=\mathrm{T}_{\mathrm{c}}, \mathrm{B}=0 \mathrm{so}\right) \mathrm{I}=0$.

3 (a) (i) Atomic magnets / dipoles within a domain are aligned.
(ii) 1. Random array / Domains include closure showing zero net magnetisation.
2. Domains in direction of field larger;

Not all parallel to field.
3. Single domain or few domaina all parallel to field.
(b) (i) Count of squares for hard iron: allow $60-70$;

Count of squares for soft iron: allow 14-18;
Ratio correct from candidate's count of squares.
(Allow 1 mark for realisation of correct approach but with subsequent errors.)
(ii) $\mathrm{Q}=\mathrm{mc} \Delta \Theta / \Delta \Theta=\mathrm{Q} / \mathrm{mc}$
$Q=0.030 \times 50 \times 60(=90 \mathrm{~J})$
$\Delta \Theta=0.030 \times 50 \times 60 /(0.15 \times 450)=1.33 \mathrm{~K}$
(iii) (Eddy) currents in the ring;
induced by the changing magnetic field;
causing heating effects due to the resistance of the ring $/ P=I^{2} R$.
(First mark required to gain subsequent mark)

4 (a) (i) $3.9 \mathrm{eV}=3.9 \times 1.6 \times 10^{-19} \mathrm{~J}\left(=6.24 \times 10^{-19} \mathrm{~J}\right)$
$\lambda=h c / E=6.63 \times 10^{-34} \times 3.0 \times 10^{8} / 3.9 \times 1.6 \times 10^{-19} \quad\left(=320 \times 10^{-9} \mathrm{~m}\right)$
(ii) Visible light has wavelengths greater than 320 nm ;
so energy of all visible light photons is less than 3.9 eV ;
This energy is lower than the band gap (so cannot be absorbed by / will pass through the insulator).
(b) (i) Circuit with variable d.c. power supply / fixed voltage power supply with potentiometer;
connected to LED, correct symbol or labelled, with voltmeter in appropriate position. Orientation of LED ignored at this stage.
f
(ii) Connect LEDs in turn to power supply;
with LED is in forward direction (mark obtainable from circuit in (b)(i));
View LED through tube made of dark material / perform measurements in darkened room;
For each LED increase voltage (from zero) until LED just begins to glow;
Record the voltage / calculate voltage from potentiometer position;
Relevant equation stated;
Calculate frequency / (1/ wavelength) for light emitted from LEDs; this may be shown in heading of a column of a table;
Plot graph of voltage against $f$ or $1 / \lambda /$ Show axes of graph with $y$-axis labelled voltage and $x$-axis labelled $f$ or $1 / \lambda$;
Determine gradient of graph;
Gradient of graph is (h/e)/(hc/e)
Gradient of graph is (h/e) / (hc/e)

## Downloaded from http://www.thepaperbank.co.uk

5 (a) An electron in the conduction band (of the copper); able to take part in conduction.
(b) With no current in the wire:
r.m.s.speed is square root of mean of squares of the speed of free electrons;
r.m.s. speed depends on / increases with increasing temperature;
free electrons move (fast) in random directions; colliding with atoms (in the lattice);

With current in the wire:
free electrons move in opposite direction to current / electric field;
free electrons accelerate between collisions with atoms;
this motion is superimposed on the random motion;
Drift velocity is the mean value of electrons' velocities due to this motion;
value depending on current, cross-section of wire, free electron concentration and electron charge / I, A, n and e.
(c) (i) $\mathrm{n}=\mathrm{I} / \mathrm{Aev}$

$$
\begin{equation*}
=0.75 /\left(4.0 \times 10^{-7} \times 1.6 \times 10^{-19} \times 1.4 \times 10^{-4}\right)=8.4 \times 10^{28} \tag{1}
\end{equation*}
$$

(ii) 1 drift velocity $=4.7 \times 10^{-5} \mathrm{~m} \mathrm{~s}^{-1}$

2 drift velocity $=3.5 \times 10^{-5} \mathrm{~m} \mathrm{~s}^{-1}$

6 (a) (i) At least 3 field lines inside solenoid parallel to axis;
Lines equally spaced over some of length of solenoid.
Arrows on lines pointing left to right.
(ii) (Large faces of Hall wafer) perpendicular to field lines.
(b) (i) $\mathrm{B}=\mathrm{V}_{\mathrm{H}} / \mathrm{vd}$

$$
\begin{align*}
& =46 \times 10^{-6} /\left(36 \times 5.0 \times 10^{-3}\right)  \tag{1}\\
& =2.56 \times 10^{-4} \mathrm{~T} \tag{1}
\end{align*}
$$

(ii) Reference to Earth's field or external field.

| 7 (a) | 2825 SYNOPTIC QUESTION JUNE 2006 Light energy is reflected or |  |
| :---: | :---: | :---: |
| (b) (i) | Light energy is absorbed and converted to heat or thermal energy | 1 |
|  | Minimum surface area $=360 / 1500 \times 100 / 16$ | 1 |
| (ii) | $=\quad 1.5 \mathrm{~m}^{2}$ <br> The satellite will sometimes be in the shadow cast by Earth - so no sunlight (or not in direct sunlight) <br> The electrical circuits or battery are not themselves 100\% efficient energy wasted as heat <br> Satellite requires extra power for position control or other stated | 1 |
|  | Panels may not be perpendicular to sunlight Radiation damage (from cosmic rays) reduces number of useful cells (ignore any reference to any variation in solar output) | Any two <br> 1, 1 |
| (c) | The intensity of sunlight is too small (inverse square law) or The area of panel required would be too large/massive to launch | 1 |
| (d)(i) | Energy required = V It |  |
|  | $=\quad 12 \times 5 \times 120 \times 60$ | 1 |
|  | $=4.32 \times 10^{5} \mathrm{~J}$ | 1 |
| (ii) | Steady power required $=\left(4.32 \times 10^{5} \times 100 / 25\right) \div 24 \times 3600$ | 11 |
|  | 20 W (18.5W if 0.40MJ used) |  |
|  | ```(or P = VI = 12 x 5 = 60W for 2h so only 5W for 24h if 100% efficient but = 5/0.25 = 20W )``` |  |
| (iii) | Energy carried by alpha $=5 \times 10^{6} \times 1.6 \times 10^{-19}=8.0 \times 10^{-13} \mathrm{~J}$ | 1 |
|  | $\begin{array}{ll} \text { Activity required } & =20 \div\left(8 \times 10^{-13}\right) \\ & =2.5 \times 10^{13} \mathrm{~Bq} \end{array}$ | 1 |
|  | (or $\quad 0.432 \mathrm{MJ} / 8 \times 10^{-13} \mathrm{~J}$ alphas per day $=0.432 \mathrm{MJ} / 8 \times 10^{-13} /$ $24 \times 3600$ alphas per sec) |  |
| (e) | $\begin{aligned} \text { Decay constant of Pu } 238= & 0.69 / \mathrm{T}_{1 / 2} \\ & =0.69 / 88 \times 365 \times 24 \times 3600 \end{aligned}$ |  |
|  | $\begin{gathered} =\quad 2.5 \times 10^{-10} \mathrm{sec}^{-1} \\ \text { (allow mark for conversion of } 88 \text { years to } 2.78 \times 10^{9} \text { seconds) } \end{gathered}$ |  |

## Downloaded from http://www.thepaperbank.co.uk



## Mark Scheme 2825/04 <br> June 2006

| Question | Expected Answers | Marks |
| :---: | :---: | :---: |
| $1 \text { (a)(i) }$ <br> (ii) | $r$ : radius of nucleus / nuclei <br> $r_{0}$ : radius of nucleon / proton / neutron / hydrogen nucleus; <br> $A$ : number of nucleons / (protons + neutrons) / mass number; <br> line curves in correct sense from origin but doesn't become horizontal; any part drawn with ruler loses this mark | $\begin{array}{ll} 1 & \\ 1 & {[2]} \\ 1 & {[1]} \end{array}$ |
| (b)(i) <br> (ii) | $\begin{aligned} r=r_{0} A^{1 / 3} & =1.41 \times 10^{-15} \times 56^{1 / 3} \\ & =5.39 \times 10^{-15} \mathrm{~m} \end{aligned}$ <br> do not allow $5.4 \times 10^{-15} \mathrm{~m}$ $\begin{aligned} m & =V \rho \quad \text { allow } m=4 / 3 \pi r^{3} \rho \\ & =4 / 3 \pi\left(5.39 \times 10^{-15}\right)^{3} \times 1.44 \times 10^{17} \quad\left(=9.45 \times 10^{-26} \mathrm{~kg}\right) \end{aligned}$ | $\begin{array}{ll}1 & \\ 1 & \text { [2] }\end{array}$ <br> $\begin{array}{ll}1 & \\ 1 & \text { [2] }\end{array}$ |
| (c)(i) <br> (ii) | protons: 26 , neutrons: 30 ; $\text { mass }=26 \times 1.673 \times 10^{-27}+30 \times 1.675 \times 10^{-27}=9.37(48) \times 10^{-26} \mathrm{~kg}$ <br> allow ecf from (c)(i) allow 2 sf | $\begin{array}{ll} 1 & {[1]} \\ 1 & {[1]} \end{array}$ |
| (d) |  ```wrong unit 0/1 allow ecf from (b)(ii) and (c)(ii)``` | 1 [1] |


| (e) | ```E = (\Delta)m\mp@subsup{c}{}{2} = 8 < 10-28 }\times(3\times1\mp@subsup{0}{}{8}\mp@subsup{)}{}{2}=7.21\mp@subsup{0}{}{-11}\textrm{J}\quad\mathrm{ accept 6.3-9.0 < 10-11 J allow ecf from (d) allow 1 sf``` | $\begin{align*} & 1  \tag{2}\\ & 1 \end{align*}$ $12$ |
| :---: | :---: | :---: |
| 2(a) | similar mass means large momentum transfer (in collision); hence fewer collisions are needed; <br> neutron colliding with heavy nucleus bounces off with similar speed / k.e. scores $1 / 2$ max. <br> neutron colliding with similar mass nucleus transfers large k.e. / speed scores $1 / 2$ max. | $\begin{array}{ll} 1 & \\ 1 & \text { [2] } \end{array}$ |




| 4(a) | (consists of) positive ions / nuclei and electrons; not just electrons stripped from nuclei | 1 [1] |
| :---: | :---: | :---: |
| (b) | ions / nuclei/ electrons are charged; moving charge / ions / electrons experience force in magnetic field; ions / nuclei / electrons spiral along field lines; | $\begin{array}{ll} 1 & \\ 1 & \\ 1 & {[3]} \end{array}$ |
| (c)(i) <br> (ii) | $\begin{array}{\|rl} \text { calculates b.e. per nucleus: } 1.11 \times 2(=2.22) \\ & 2.57 \times 3(=7.71) \\ \text { so energy released } & =7.71-2 \times 2.22(=3.27 \mathrm{MeV}) \quad \text { both expressions } \\ & =3.27 \times 10^{6} \times 1.6 \times 10^{-19} \\ & =5.2(3) \times 10^{-13} \mathrm{~J} \end{array}$ <br> omits multiplication by 2 and $3, \quad 1 / 3$ max. <br> reaction 2 generates more energy (than reaction 1); | $\begin{array}{ll} 1 & \\ 1 & \\ 1 & {[3]} \\ 1 & {[1]} \end{array}$ |
| (d) | $80 \%$ unsupported scores $1 / 5$ <br> k.e. stated to be proportional to $1 /($ mass) scores $2 / 5$ if correct answer obtained |  |
| (e) | 1. neutron carries most of available energy / a lot of / high energy <br> 2. neutron can escape from / is unaffected by $B$ field because it is uncharged | $\begin{array}{ll} 1 & \\ 1 & {[2]} \end{array}$ |



| (b)(i) | In J: $E=m c^{2}$ <br> In $=\left(2 \times 1.67 \times 10^{-27}\right) \times\left(3.0 \times 10^{8}\right)^{2} \quad\left(=3.0 \times 10^{-10} \mathrm{~J}\right) \quad$ subs. <br> In GeV: $3.0 \times 10^{-10}=3.0 \times 10^{-10} /\left(1.6 \times 10^{-19} \times 10^{9}\right)$ $=1.88 \mathrm{GeV}$ <br> ans. <br> allow 1.9 GeV <br> uses only one mass, can get $2 / 3$ max. <br> particle mass increases with energy / speed; accelerating voltage gets out of step with passage of particle between electrodes / if voltage out of synch. proton energy cannot increase or AW; 1.88 GeV is high enough to cause (significant) mass increase; | 1 1 <br> 1 [3] <br> 1 <br> 1 <br> [3] |
| :---: | :---: | :---: |
| 6(a) | Np graph: graph has exponential shape / there is exponential decay of Np nuclei / number (of Np nuclei) is halved in 2.3 days / constant time / in its half life; <br> Pu graph: sum of $\mathrm{Pu}+\mathrm{Np}$ nuclei $=3.0 \times 10^{20}$ at all times; <br> either because one Np nucleus decays to one Pu nucleus or rate of decay of Np and formation of Pu are equal; and half life of $\mathrm{Pu} \gg$ / much bigger than half life of Np ; | $1$ |
| (b) |  | 1 <br> 1 1 1 <br> [4] |

## Downloaded from http://www.thepaperbank.co.uk

calculates time for Np to fall to $2.7 \times 10^{20} / \mathrm{Pu}$ to rise to $0.3 \times 10^{20}=0.36$ day gets 0111 = 3/4
uses $T_{1 / 2}$ for plutonium can get $2 / 4$ max.
attempts to use repeated halving of $N$ can get $2 / 4$ max. if using 0.3 (not 2.7)


| (f) | (allow mark for conversion of 88 years to $2.78 \times 10^{9}$ seconds) |  |
| :---: | :---: | :---: |
|  | $\begin{gathered} \text { Number of nuclei required }=\mathrm{A} / \lambda=2.5 \times 10^{13} / 2.5 \times 10^{-10} \\ =\quad 1.0 \times 10^{23} \\ \text { (allow mark for formula } \mathrm{A}=\lambda \mathrm{N} \text { ) } \end{gathered}$ | 1 1 |
|  | $\begin{aligned} & \text { Mass required } \quad=\quad 1.0 \times 10^{23} \times 238 / 6.02 \times 10^{23} \\ &=40 \mathrm{gms}=0.040 \mathrm{~kg} \end{aligned}$ | 1 1 |
|  | On launch, the rocket gives the spacecraft a huge kinetic energy (in order to escape) <br> Failure at this point could cause spacecraft and contents to "burn up" in atmosphere <br> But plutonium would still be radioactive and being vaporised it could be ingested. <br> Sensible comment on danger periods of launch (or re-entry) <br> Sensible comment on mechanism of ingesting Plutonium <br> Allow one sensible comment on no risks in the isolation of deep space | 11 |

Downloaded from http://www.thepaperbank.co.uk

## Mark Scheme 2825/05 <br> June 2006

1 (a) At frequencies up to 3.4 kHz we can recognise a caller's voice
The early system was never designed for Hi Fi music so higher frequencies were unnecessary
Limiting the bandwidth of the information means more efficient use of channel bandwidth any one sensible point
(b)
(i) Sampling frequency $=1 / 125 \mu \mathrm{~s}$

$$
\begin{equation*}
=8000 \mathrm{~Hz} \tag{1}
\end{equation*}
$$

This is more than 2 x highest frequency $(3.4 \mathrm{kHz})$ in audio signal
or
This is necessary to avoid the generation of an Alias frequency
(ii) Total number of bits produced $=30 \times 60 \mathrm{sec} \times 8000 \mathrm{samples} / \mathrm{sec} \times$ 8 bits/sample

$$
\begin{equation*}
=\quad 1.152 \times 10^{8} \quad \text { bits } \tag{1}
\end{equation*}
$$

(iii) Total bit duration of 30 min call $=1.152 \times 10^{8} \times 2.5 \mathrm{~ns}$

$$
\begin{equation*}
=\quad 0.288 \text { seconds } \tag{1}
\end{equation*}
$$

(accept use of $1.2 \times 10^{8}$ which produces 0.3 sec )
(c) Multiplexing The process of allowing two or more users to share same line

TDM Information from each user is broken up into samples every $125 \mu \mathrm{~s}$
Each sample lasts for much less than $125 \mu \mathrm{~s}$
Each sample is fitted into a time slot

## In the "dead" time between samples, other user's samples are fitted in

Why important Because it reduces the cost per user (or wtte)
(d) Maximum number $=30$ minutes $/ 0.288$ seconds

$$
\begin{equation*}
=6250 \tag{1}
\end{equation*}
$$

(e) In practice, some of the time slot has to be used for addressing / identifying / control codes (do not allow "because of time added to avoid overlap")

2 (a) TX
LED or Laser
(1)

RX Photodiode or phototransistor (do not allow LDR)
(b) Frequency of signal $=1 /$ period of $40 \mu \mathrm{~s}$

$$
\begin{equation*}
=\quad 25 \mathrm{kHz} \tag{1}
\end{equation*}
$$

(c)
(i) Time delay $=6$ divisions $=24 \mu \mathrm{~s}$
(ii) Speed of light in fibre $=3 \times 10^{8} / 1.5$

$$
\begin{equation*}
=2 \times 10^{8} \mathrm{~ms}^{-1} \tag{1}
\end{equation*}
$$

(iii) Length of fibre $=$ speed x time

$$
\begin{align*}
& =\quad 2 \times 10^{8} \times 24 \times 10^{-6}  \tag{1}\\
& =\quad 4800 \mathrm{~m} \tag{1}
\end{align*}
$$

(d) Area The voltage / power / energy in the received pulse is less
due to attenuation (energy loss) in the fibre.
(1)

Duration The pulse lasts for a longer time due to multipath dispersion (1)

Different rays take different length paths through fibre
Depending on the angle of incidence / number of multiple reflections
$\begin{array}{ll}\text { Outline } & \text { The signal appears to have picked up noise } \\ \text { Apparent as random fluctuations in signal voltage } & \text { (1) } \\ \text { Conclusion } & \text { This must be a multi-mode step-index optic fibre }\end{array}$

3 (a) Period 24 hours
Satellite must stay locked into Earth's period of rotation (or wtte)

Plane Equatorial
Centre of orbit must be centre of Earth because axis of orbit must be spin axis of Earth
(gravitational force above equator is only force available to provide centripetal force in a synchronised orbit, otherwise an engine is required)

Direction Same as Earth's rotation
(otherwise satellite and Earth would counter rotate)
(b)

Terrestrial TV coverage from a single broadcast aerial is only of the order of 40 km

Satellite TV uses one single transmitter to broadcast to huge area

Analogue TV signals require an information bandwidth in MHz.
So carrier frequencies are chosen from VHF or UHF wavebands
Therefore many hundreds of transmission aerials would have to be erected
And many different carrier frequencies used to avoid interference
Very quick and politically very economical method of TV coverage over many countries
Each satellite can carry multiple channels
Very easy to pick up and study foreign cultures

## Downloaded from http://www.thepaperbank.co.uk

(c)
(i) Polar orbit correctly drawn (passing over both poles - low Earth orbit)
(ii) Low earth orbit means satellite moves quickly (time period much less than 24 hrs )

Earth itself spins slowly under fast moving satellite
Therefore sooner or later satellite will be above every point on Earth
This makes them ideal for remote and efficient sensing
(iii) Uses Military reconnaissance

Meteorology
Geological prospecting
Oceanography
Cartography

4 (a)
The circuit of Fig.4.1 is known as a ... VIRTUAL (1) ... earth amplifier. This is because..NEGATIVE (1).. feedback

Is used to keep both .INPUTS (1). at the same potential. As the ..NON-INVERTING (1).. input is
directly connected to zero volts then the .INVERTING (1) input must be ..ZERO VOLTS (1)..
(if symbols + and - or positive and negative are incorrectly used instead of words non-inverting and inverting then deduct 1 mark)
(b) Voltage gain $=\quad \mathrm{V}_{B} / \mathrm{V}_{A}$
(allow $\mathrm{V}_{B}=4 \mathrm{~V}_{A}$ )
(c) Voltage gain $=(-) \mathrm{R}_{\mathrm{f}} / \mathrm{R}_{\mathrm{i}}$
$=(-) 60 / 15$
$=(-) 4$
(ignore omission of -ve sign but penalise in (d))
(d) Drawing of $\mathrm{V}_{B} \quad$ Any triangular waveform of same frequency

# $180^{\circ}$ out of phase with input signal 

Slope shows a voltage gain of 4
(allow ecf from (c))

Saturation at $\pm 12 \mathrm{~V}$
( or thereabouts)
5. (a) User's computer links into PSTN (makes telephone call)

To their Internet Service Provider (ISP) who provides access to internet

File Transfer Protocol (or HTTP) causes information / data to be broken into packets

Packets contain limited volume of information + addresses etc

Packets are not transmitted as one continuous stream

Packets from the same database do not necessarily follow the same switched line / route

## Packets do not necessarily arrive in the same order as that in which they were sent

Packets contain a time to live code which reduces as they pass nodes / routers

Missing packets are noticed and requests to resend are made

Receiver's ISP links back to PSTN (makes telephone call) to receiving computer
(b) Many jobs have been created to provide technical maintenance for Internet

Many jobs have been created to provide software for Internet

Many jobs have been created to sell goods and services over the Internet

Internet provides alternative to traditional shopping

Internet allows easy communication by e-mail

Internet allows people with little expertise easy access to huge volumes of information

Internet allows remote information gathering (eg medical without visiting doctor)

Internet allows many individuals to work from home
(any four sensible and valid points


| (f) |  <br> On launch, the rocket gives the spacecraft a huge kinetic energy (in order to escape) <br> Failure at this point could cause spacecraft and contents to "burn up" in atmosphere <br> But plutonium would still be radioactive and being vaporised it could be ingested. <br> Sensible comment on danger periods of launch (or re-entry) <br> Sensible comment on mechanism of ingesting Plutonium <br> Allow one sensible comment on no risks in the isolation of deep space | 11 11 1 1 1 1 1 1 1 |
| :---: | :---: | :---: |

Downloaded from http://www.thepaperbank.co.uk

## Mark Scheme 2826/01 <br> June 2006

1. (a) use tape measure to find thickness of book
(b) count a (large) number of paperclips and divide total mass by the number
(c)(i) (wrap tape measure around column to) find circumference
(ii) (parallax) problem in lining up tape markings with ends of diameter
(d)(i) measure size of one (or a few) paving slabs or kerb stones
count number of slabs and multiply number of slabs by size of each
\{1\} [2]
OR by repeated measurements $\{1\}$ for statement and $\{1\}$ for indication of use of assistant or careful marking. Maximum 1 for pacing
(ii) time car over measured distance and divide distance by time
accuracy of obtaining position of car against distance measured

2 (a) coulomb
\{1\} [1]
(b) farad
\{1\} [1]
(c) hertz
\{1\} [1]
(d) pascal OR newton per square metre
(e) newton per kilogram
(f) weber
\{1\} [1]
(g) becquerel
\{1\} [1] 7

3 (a)(i) use of area beneath graphs
acceleration section 125 m and deceleration section 50 m
constant velocity sections and total $50 \mathrm{~m}+200 \mathrm{~m}+125 \mathrm{~m}+50 \mathrm{~m}=425 \mathrm{~m}$
(ii) 2 straight line sections correct

2 acceleration / deceleration sections correct
smooth transition between sections OR zero speed at end
(b)(i) at least three points correctly calculated and drawn
straight line towards origin
\{1\} [2]
(ii) 240 (V)
\{1\} [1]
(iii) gradient is reciprocal of the e.m.f.
(c)(i) e.g. $\frac{0.18-1.16}{7.2-6.7}=-\frac{0.98}{0.5}=-1.98$ correct approach for gradient
1.96, 1.97, 1.98 as values for accuracy mark

- sign scores 1
\{1\} [3]
$g \propto 1 / r^{2}$ OR $g$ inversely proportional to the
square of the distance from the centre of the Earth

4. (a) solid $\rightarrow$ liquid
not much change in separation
increase in speed only associated with increase in temperature
more random movement in liquids
more vibration in solids
some change in p.e. component of internal energy
other sensible suggestion
MAXIMUM 4
liquid $\rightarrow$ gas
separation vastly increased
speed in, say water at $100^{\circ} \mathrm{C}=$ speed in steam at $100^{\circ} \mathrm{C}$
molecules in gas have random movement
increased distance of travel (between collisions)
p.e. component of internal energy increased (to nearly zero)

MAXIMUM 4
solid $\rightarrow$ liquid compared with liquid $\rightarrow$ gas
solid $\rightarrow$ liquid takes place at lower temperature
speed of molecules less
smaller increase in internal energy
change of state in both cases
MAXIMUM 2
OVERALL MAXIMUM 9
(b) less energy at 200 K than at 200000000 K
at 200 K hydrogen gas is in molecular form
2 atoms per molecule, each atom 1 p and 1 e
at 200000000 K hydrogen is a plasma
no molecular form OR enough energy to separate atoms / electrons
electrons separated from protons OR a soup of electrons and protons
fusion possibility between protons ( to make He )
MAXIMUM 3
[3] 12
(e) (i) atoms with the same number of protons (in the nucleus) but with different numbersof neutrons\{1\} [1]
(ii) the mass of each of the isotopes is different ..... \{1\}so the average mass of a silicon atom can only be known accurately if theproportions of each of the three isotopes is known\{1\} [2]
(iii) e.g. the isotopes cannot be separated by conventional (chemical) methods\{1\}mass spectrometer/ diffusion methods might have to be used to separate the isotopes\{1\}separation has to depend only on the atoms difference in mass

## Mark Scheme 2826/03 <br> June 2006

## Marking scheme for A2 Physics 2826/03 June 2006

A1 Use Hall probe to measure field / Helmholtz formula at correct separation / Gauss probe
/ Tesla meter / Current balance / search coil used correctly ..... 1
A2 Correct orientation of field with respect to vibrating sheet ..... 1
Could be shown on diagram. Vibration must be correct mode.
A3 Workable method ..... 1(i.e. measure amplitude and field strength, change field strength and repeat)
A4 Vary current / turns in coil(s) to change magnetic flux density ..... 1
B1 Place magnet at antinode (usually at centre of strip) ..... 1
B2 Method of initiating vibrations. ..... 1E.g. AC passed through strip, external magnet / S.G. and oscillator / pluck
B3 Method of measuring amplitude of vibration ..... 2/1/0
Motion sensor facing (plane of) vibrating sheet; one mark
Motion sensor connected to datalogger/computer; one mark Measure amplitude from trace on screen; one markAny two. N.B. Allow any sensible type of motion sensor.
D Any further relevant detail, e.g. ..... 4/3/2/1/0
Method of fixing edges of sheet, e.g. clamps
Suitable sampling rate for logging, e.g. 1 kHz
Further details of Hall probe
Perform zero adjustment away from stray magnetic fieldsCoil shown with soft iron core / use of Helmholtz coilsCircuit diagram containing coil and variable psu / resistor
Evidence of relevant preliminary experimental work done in the laboratory
Allow other creditworthy responses
R Evidence of research of material ..... 2/1/0i.e. at least two detailed independent references have been given (i.e. chapter and/or pagenumbers must be given). Allow Internet pages to be sourced. (one slash or more)Two or more vague references (i.e. no chapter or page reference) scores one mark.One detailed reference scores one mark. One vague reference scores zero.

Underline and tick each relevant point in the body of the text. The ticks must have a subscript showing which marking point is being rewarded (e.g. $\checkmark_{\text {DI }}$ ).
Q 2 marks are reserved for quality of written communication (organisation) ..... 2
Rambling and poorly presented material cannot score both marks.
16 marks in total.

## Question 1

(a) (ii) Card area

1
(a) (iii)Percentage uncertainty in $A$

Absolute uncertainty in side length, $\pm 0.5 \mathrm{~mm}$ to $\pm 1 \mathrm{~mm}$. One mark $\%$ uncertainty in side length, one mark OR \% uncertainty in area, two marks $\%$ uncertainty in area from $2 \times \%$ uncertainty in side length, one mark
(b) (i) Repeated readings for first value of $X_{20}$
(b) (ii) Difficulty \& improvement.
E.g. Difficulty of seeing moving pin / not at eye level; trial and improvement, or video.
OR, possible pendulum motion; carefully release vertically.
One mark each. NOT hitting clamp stand.
(c) (ii) New card area

1
(d) Readings

Write the number of readings as a ringed total by the results table.
6 sets of values for $X_{20}$ and $A$ scores three marks; 5 sets scores two marks; 4 sets scores one mark. Less than 4 sets scores zero.
If minor help is given, then -1. If excessive help is given, then -2 .
Please indicate when help has been given to a candidate by writing SR at the top of the front page of the candidate's script. Also, please indicate the type of help that has been given by writing a brief comment by the table of results.
(d) Check a value for $\ln X_{20}$. If correct then one mark. If incorrect, write in correct value and do not award the mark. Do not allow $\lg X_{20}$, but allow ecf in $\mathrm{f}(\mathrm{i})$.
(d) Column headings

The columns for $X_{20}$ and $A$ must be headed with a quantity and a unit. One mark each. There must be some distinguishing mark between the quantity and its unit.
Please $\checkmark$ each correct column heading to show that it has been seen.
(d) Consistency of raw readings in the table of results

Apply to $X_{20}$ only. Expect all the values to be given to the nearest millimetre.
Values in the table must agree with the unit at the head of the column.
Trailing added zeros lose this mark.
(e) (i) Axes

Each axis must be labelled with a quantity.
Scales must be such that the plotted points occupy at least half the graph grid in both the $x$ and $y$ directions.
Do not allow more than 3 large squares between scale markings.
Do not allow awkward scales (e.g. 3:10, 6:10, 7:10, 8:10 etc.).

## Downloaded from http://www.thepaperbank.co.uk

(e) (i) Plotting of points

Count the number of plots on the grid and write this value by the line and ring it.
Do not allow plots in the margin area.
The number of plots must correspond to the number of observations.
Do not award these marks if the number of plots is less than the number of observations.
Check one suspect plot. Circle this plot. Tick if correct.
If incorrect then mark the correct position with a small cross and use an arrow to indicate where the plot should have been.
Allow errors up to and including half a small square.
(e) (ii) Line of best fit

1
There must be a reasonable balance of points about the line, for 5 or more trend plots.
This mark can only be awarded if a straight line has been drawn through a linear trend.
(e) (ii) Quality of results

Judge by scatter of points about the line of best fit ( 5 or 6 trend plots needed).
There must be at least five plots on the graph for this mark to be awarded.
(e) (iii) Measurement of gradient

Hypoteneuse of $\Delta$ must be $\geq$ half the length of the drawn line.
Read-offs must be accurate to half a small square and the ratio must be correct.
Please indicate the vertices of the triangle used by labelling with $\Delta$.
One mark for read-offs and ratio correct.
One mark for negative value of gradient.
(e) (iii) $y$-intercept. Allow correct substitution $( \pm 0.5$ square) into $\mathrm{y}=\mathrm{mx}+\mathrm{c}$.
(f) (i) Analysis
$\ln X_{20}=-k A+\ln X_{0}$ scores one mark (can be implied from working)
Value of $X_{0}$ from $\ln X_{0}=$ intercept or $X_{0}=\mathrm{e}^{\text {intercept }}$, one mark. Allow ecf from (d), i.e. $X_{0}=10^{\text {intercept }}$ if logs used.

Value of $k$ (= -gradient) scores one mark. $k$ must be positive.
Unit of $X_{0}$, one mark.
Unit of $k$, one mark.
If the working is clear and correct allow $k$ and $X_{0}$ wrong way round in error.
(f) (ii) Alteration to give larger value of $k$

1
e.g. use more resistive medium / more than 20 oscillations

28 marks in total.

## Question 2

(a) (ii) Explanation of measurement of $\theta=15^{\circ}$. Plumbline should be included in explanation.
(a) (iv) Value of $t_{15}$
(b) (iii) Value of $t_{65}$, which must be $>t_{15}$.
(c) Ratio $\sin \theta / t$ is not constant (not within 10\%)

One mark for calculation of $\sin \theta$
One mark for ratio idea, or calculation of $k$ 's
One mark for conclusion that $\sin \theta$ is not directly proportional to $t$ which follows from the reasoning. Allow ecf if calculated ratios are within $10 \%$.
(d) Evaluation of procedure

Relevant points must be underlined and ticked. Some of these might be:

$$
\mathrm{P}=\text { problem; } \quad \mathrm{S}=\text { solution }
$$

P/S Timing inaccurate because tap might not be fully open / repeat with tap open
P Human error in timing
S Perform several expts. and take the average time
P Tilted meniscus/burette makes it difficult to read scale
S Mark the level of water in the burette after tilting / use same part of meniscus / empty into measuring container
S Place card behind scale to make reading easier
P Colourless liquid is difficult to see
S Add dye to the water
P Two readings is not enough to form a firm conclusion
S Take many readings of $t$ and $\theta$, and plot a graph
P Parallax error in reading scale on protractor / Difficult to align zero line on protractor and plumbline because protractor is not clamped (all only one marking point)
S Clamp protractor
P Difficult to open tap and start watch at the same time
S Use an assistant / fill above 50 mark and time from 50.
P Difficult to get accurate tilt
S Use projection / predrawn lines on card
Do not allow draughts / video / motion sensor etc.
Allow other relevant points (8 maximum). Each line above is a marking point.
2 marks are reserved for quality of written communication (SPAG)
16 marks maximum to be awarded.

## Sample results for damping investigation.

| $l / \mathrm{cm}$ | $A / \mathrm{cm}^{2}$ | $X_{20} / \mathrm{cm}$ | $\ln \left(X_{20} / \mathrm{cm}\right)$ |
| :---: | :---: | :---: | :---: |
| 21 | 441 | 2.2 | 0.788 |
| 19 | 361 | 2.8 | 1.030 |
| 17 | 289 | 3.6 | 1.281 |
| 15 | 225 | 4.4 | 1.482 |
| 13 | 169 | 5.4 | 1.686 |
| 11 | 121 | 6.2 | 1.825 |

The graph of $\ln \left(X_{20} / \mathrm{cm}\right)$ against $A$ gives a straight line with a negative gradient of $-3.3 \times 10^{-3}$. The $y$-intercept is 2.23 .

## Sample results for burette experiment.

| $\theta$ | $\sin \theta$ | $t_{1 / 2} / \mathbf{s}$ | $\sin \theta / t_{1 / 2}$ |
| :---: | :---: | :---: | :---: |
| $45^{\circ}$ | 0.707 | 21.03 | 0.0336 |
| $65^{\circ}$ | 0.906 | 27.23 | 0.0333 |

When $\theta=15^{\circ}, t=17.72 \mathrm{~s}$. The ratio is then 0.0146 , so not proportional. For angles $>45^{\circ}$ the ratio is fairly constant

Downloaded from http://www.thepaperbank.co.uk

Graph of sample results for question 1


## Summary of shorthand notation which may be used in annotating scripts:

SFP Significant figure penalty
ECF Error carried forward
AE Arithmetical error
POT Power of ten error
NV Not valid
NR Not relevant
GAP Insufficient scale markings on an axis
NBL Not best line
FO False origin
NGE Not good enough
BOD Benefit of the doubt
R Point repeated (no further credit)
NA Not allowed
SV Supervisor's value
SR Supervisor's report
OOR Candidate's value is out of range
wtte Words to that effect
CON Contradictory physics not to be credited
$\checkmark \Delta \quad$ Used to show that the size of a triangle is appropriate (gradient calculation)
$\checkmark_{\text {A3 }}$ Used to show the type of mark awarded for a particular piece of work
$\checkmark_{\mathrm{C}} \quad$ Used to show that the raw readings are consistent
$\checkmark_{\mathrm{SF}}$ Used to show calculated quantities have been given to an appropriate number of significant figures
$\wedge \quad$ Piece of work missing (one mark penalty)
$\wedge \quad$ Several pieces of work missing (more than one mark penalty)
$\leftrightarrow \quad$ Scale can be doubled in the x-direction
$\downarrow \quad$ Scale can be doubled in the $y$-direction

Advanced GCE Physics A 3883/7883 June 2006 Assessment Series

## Unit Threshold Marks

| Unit |  | Maximum | a | b | c | d | e | u |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2821 | Raw | 60 | 43 | 37 | 32 | 27 | 22 | 0 |
|  | UMS | 90 | 72 | 63 | 54 | 45 | 36 | 0 |
| 2822 | Raw | 60 | 50 | 45 | 40 | 35 | 30 | 0 |
|  | UMS | 90 | 72 | 63 | 54 | 45 | 36 | 0 |
| 2823A | Raw | 120 | 96 | 85 | 75 | 65 | 55 | 0 |
|  | UMS | 120 | 96 | 84 | 72 | 60 | 48 | 0 |
| 2823B | Raw | 120 | 96 | 85 | 75 | 65 | 55 | 0 |
|  | UMS | 120 | 96 | 84 | 72 | 60 | 48 | 0 |
| 2823C | Raw | 120 | 92 | 83 | 74 | 65 | 57 | 0 |
|  | UMS | 120 | 96 | 84 | 72 | 60 | 48 | 0 |
| 2824 | Raw | 90 | 60 | 53 | 46 | 40 | 34 | 0 |
|  | UMS | 90 | 72 | 63 | 54 | 45 | 36 | 0 |
| 2825A | Raw | 90 | 69 | 62 | 56 | 50 | 44 | 0 |
|  | UMS | 90 | 72 | 63 | 54 | 45 | 36 | 0 |
| 2825B | Raw | 90 | 68 | 61 | 54 | 48 | 42 | 0 |
|  | UMS | 90 | 72 | 63 | 54 | 45 | 36 | 0 |
| 2825C | Raw | 90 | 65 | 58 | 51 | 45 | 39 | 0 |
|  | UMS | 90 | 72 | 63 | 54 | 45 | 36 | 0 |
| 2825D | Raw | 90 | 60 | 53 | 47 | 41 | 35 | 0 |
|  | UMS | 90 | 72 | 63 | 54 | 45 | 36 | 0 |
| 2825E | Raw | 90 | 70 | 63 | 57 | 51 | 45 | 0 |
|  | UMS | 90 | 72 | 63 | 54 | 45 | 36 | 0 |
| 2826A | Raw | 120 | 88 | 79 | 70 | 61 | 53 | 0 |
|  | UMS | 120 | 96 | 84 | 72 | 60 | 48 | 0 |
| 2826B | Raw | 120 | 88 | 79 | 70 | 61 | 53 | 0 |
|  | UMS | 120 | 96 | 84 | 72 | 60 | 48 | 0 |
| 2826C | Raw | 120 | 84 | 77 | 70 | 63 | 56 | 0 |
|  | UMS | 120 | 96 | 84 | 72 | 60 | 48 | 0 |

## Specification Aggregation Results

Overall threshold marks in UMS (i.e. after conversion of raw marks to uniform marks)

|  | Maximum <br> Mark | A | B | C | D | E | U |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{3 8 8 3}$ | 300 | 240 | 210 | 180 | 150 | 120 | 0 |
| $\mathbf{7 8 8 3}$ | 600 | 480 | 420 | 360 | 300 | 240 | 0 |

The cumulative percentage of candidates awarded each grade was as follows:

|  | A | B | C | D | E | U | Total Number of <br> Candidates |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{3 8 8 3}$ | 19.1 | 37.6 | 55.5 | 70.9 | 83.3 | 100.0 | 6982 |
| $\mathbf{7 8 8 3}$ | 26.9 | 48.7 | 69.4 | 85.0 | 95.9 | 100.0 | 5452 |

For a description of how UMS marks are calculated see; www.ocr.org.uk/OCR/WebSite/docroot/understand/ums.jsp

Statistics are correct at the time of publication

OCR (Oxford Cambridge and RSA Examinations)<br>1 Hills Road<br>Cambridge<br>CB1 2EU<br>\section*{OCR Information Bureau}<br>(General Qualifications)<br>Telephone: 01223553998<br>Facsimile: 01223552627<br>Email: helpdesk@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

[^0]
[^0]:    Oxford Cambridge and RSA Examinations
    is a Company Limited by Guarantee
    Registered in England
    Registered Office; 1 Hills Road, Cambridge, CB1 2EU
    Registered Company Number: 3484466
    OCR is an exempt Charity
    OCR (Oxford Cambridge and RSA Examinations)
    Head office
    Telephone: 01223552552
    Facsimile: 01223552553

