
Question Expected Answers
$1 \quad \mathbf{a} \quad \mathbf{i} \quad 3.8 \pm 0.3$ (N s)1
ii momentum (of the ball) accept impulse 1
iii $\quad \mathrm{mv}=3.8$ or $\mathrm{v}=3.8 / 0.16 ;=23\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \quad$ ecf a 2
iv use $\mathrm{F}=$ ma giving $24=0.16 \mathrm{a} ; \quad \mathrm{a}=150\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$ 2
b i exponential 1
ii e.g. $h_{1} / h_{2}=e^{k}=2.1(5)$; giving $k=0.74$ to 0.76
or substitution from a line of table; gives $0.748,0.757$ or 0.746 2 1
iii $\quad 1.5(\mathrm{~m})$
iii $\quad 1.5(\mathrm{~m})$
iv $\quad \Delta$ k.e. $=m g \Delta h ;=0.16 \times 9.8 \times 0.38(=0.60 \mathrm{~J})$626
Total 122 a i Fig. 2.1: x and a in opposite directions/acceleration towards equilibrium1
point/AW; Fig. 2.2 : proportional graph between x and a / AW 1Figures not identified max. of 1 mark
ii $\quad a=4 \pi^{2} f^{2} x ; \quad 50=4 \pi^{2} \mathrm{f}^{2} .50 \times 10^{-3} ;$ giving $\mathrm{f}^{2}=25$ and $\mathrm{f}=5.0 \mathrm{~Hz}$ 3
iii cosine wave with initial amplitude 25 mm ; decreasing amplitude; 2
correct period of 0.2 s (for minimum of 2.5 periods); 8
b i the acceleration towards A /centripetal acceleration or force; is constant 2
ii $\quad a=v^{2} / r$; so $50=v^{2} / 10 ; v^{2}=500$ giving $v=22.4 \mathrm{~m} \mathrm{~s}^{-1}$ 35
Total 13
3 a appropriate shape; lines perpendicular to and touching plate and sphere; arrows 2
towards negative sphere3b i By moments, e.g F $\cos 20=\mathrm{W} \sin 20$ / by triangle of forces / by resolution offorces / other suitable method; i.e. justification needed1
$\mathrm{F}=1.0 \times 10^{-5} \tan 20 ;=1.0 \times 10^{-5} \times 0.364 ;\left(=3.64 \times 10^{-6} \mathrm{~N}\right)$ 2
triangle of forces gives $\mathrm{W} / \mathrm{F}=\tan 70$, etc
ii $\quad \mathrm{E}=\mathrm{F} / \mathrm{Q} ;=3.64 \times 10^{-6} / 1.2 \times 10^{-9}=3.0 \times 10^{3} ; \mathrm{N} \mathrm{C}^{-1} / \mathrm{V} \mathrm{m}^{-1}$ 3
c $\mathrm{E}=\left(1 / 4 \pi \varepsilon_{0}\right) \mathrm{Q} / \mathrm{r}^{2} ; 3.0 \times 10^{3}=9 \times 10^{9} \times 1.2 \times 10^{-9} / \mathrm{r}^{2}$;2$\mathrm{r}^{2}=3.6 \times 10^{-3}$ giving $\mathrm{r}=6 \times 10^{-2}(\mathrm{~m})$6
or use $\mathrm{F}=\left(1 / 4 \pi \varepsilon_{0}\right) \mathrm{Q}^{2} / \mathrm{r}^{2}$;3d field line sketch minimum of 5 lines symmetrical about line joining centres with $\mathbf{1}$arrows ; Fig 3.1 sketch matches RHS of Fig 3.2/plate analogous to mirror/AW $\mathbf{1}$relating to symmetry

Mark Scheme	Unit Code	Session	Year	Final version

Page 2 of 3

Question

Expected Answers

Marks

$4 \quad \mathbf{a}$

29; 34
b $\quad \lambda=0.693 / \mathrm{T}=0.693 /\left(120 \times 3.2 \times 10^{7}\right)=\left(1.8 \times 10^{-10} \mathrm{~s}^{-1}\right)$ accept $\ln 2$
c i $\quad \mathrm{Q}=\mathrm{CV}=1.2 \times 10^{-12} \times 90$; evidence of calculation $\left(=1.1 \times 10^{-10} \mathrm{C}\right)$
2
ii $\quad \mathrm{n}=\mathrm{Q} / \mathrm{e}=1.1 \times 10^{-10} / 1.6 \times 10^{-19} ;=6.9 \times 10^{8} \quad$ allow sig. fig. variations $\quad \mathbf{2}$
iii $\quad \mathrm{A}=\lambda \mathrm{N} ; \mathrm{N}=6.9 \times 10^{8} / 1.8 \times 10^{-10} ;=3.8 \times 10^{18}$ using 7.0 gives 3.9
iv 1 y is less than 1% of 120 y so expect to be within $1 \% /$ using $\mathrm{e}^{-\lambda \mathrm{t}}$ gives exactly 1% fall/ problem of random emission or other relevant statement

3

Total
$5 \quad \mathbf{a} \quad \mathbf{i} \quad \mathrm{~F}$ is towards 'open' end of tube; using Fleming's L.H.rule $\quad 2$
ii $\quad \mathrm{F}=\mathrm{BIw}$ 1
iii $\quad \mathrm{F}=0.15 \times 800 \times 0.0025 ;=3.0(\mathrm{~N})$
2
b i A voltage is induced across moving metal as it cuts lines of flux/AW; $\quad \mathbf{1}$
voltage is proportional to flux change per second/AW; $\mathbf{1}$
the flux change per second is Bwv / is proportional to the area of metal moving through the field per second / is proportional to v or Faraday's law fully stated; with reasonable attempt to; $\mathbf{2}$ relate flux linkage per second proportionally to speed $\quad \mathbf{1}$
ii flux (linkage) doubles; so using Faraday's law V doubles/AW
Total
6 a Internal energy is the sum of the random kinetic and potential energies of the particles/molecules/atoms in the system/body
only 1 mark if random omitted
s.h.c. is the change in (internal) energy per unit mass/energy required to heat unit $\mathbf{1}$
mass $/ \mathrm{kg}$ per unit rise in temperature $/{ }^{\circ} \mathrm{C} / \mathrm{K}$
b Electrical heating of body for given time/ energy input = VIt; $\quad \mathbf{1}$ measurement of mass of body and temperature rise; $\quad 1$
hence VIt $=\operatorname{mc} \theta$ with c found; $\quad 1$
comment on heat loss and how avoided/compensated for; $\quad 1$ suitable description of apparatus,etc. max 4 marks
method of mixtures is an acceptable alternative
c $\quad \mathbf{i} \quad \mathrm{Q}=2.0 \times 920 \times 293$; evidence of calculation $(=540 \mathrm{~kJ}) \quad \mathbf{2}$
ii $\quad 2 \mathrm{~kg}$ contains $2 / 0.027=74$ moles; $\quad \mathbf{1}$
no. of atoms in $2 \mathrm{~kg}=74 \times 6.02 \times 10^{23}=4.46 \times 10^{25}$; $\quad 1$
energy per atom $=5.4 \times 10^{5} / 4.46 \times 10^{25}\left(=1.2 \times 10^{-20} \mathrm{~J}\right) \quad \mathbf{1}$
iii e.g $2 \times 920 / 74 ;=24.9 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ or alternative methods
1 mark for suitable method; 1 mark for correct solution
2

