Jan 2006

Mark Scheme			Unit Code 2824	Session January	Year 2006	Final version		
Pag	ge 1 of 3	3						
Ab anr con in t	breviat lotation lvention he Mai	ions, 1s and 1s used rk Sche	$ \begin{array}{c} / & = alt \\ ; & = sep \\ () & = wo \\ end & ecf & = err \\ AW & = alt \end{array} $	ernative and accepta parates marking poi ords which are not e for carried forward ternative wording	able answers for the same nts essential to gain credit	marking point		
Qu	estion		Expected Answers				Ma	rks
1	a b	i ii iv i ii	3.8 ± 0.3 (N s) momentum (of the ball mv = 3.8 or v = 3.8/0.1 use F = ma giving 24 exponential e.g. h ₁ /h ₂ = e ^k = 2.1(5) or substitution from a	1) accept impulse $16; = 23 \text{ (m s}^{-1})$ = 0.16a; a = 150 ; giving k = 0.74 to line of table; gives	<i>ecf a</i> (m s ⁻²) 0.76 0.748, 0.757 or 0.746		1 1 2 2 1 2	6
		iii iv	1.5 (m) $\Delta k.e. = mg\Delta h; = 0.16 s$	$x 9.8 \times 0.38 (= 0.60)$	J)	Total	1 2	6 12
2	a	i ii iii	Fig. 2.1 : x and a in op point/AW; Fig. 2.2 : pr <i>Figures not identified</i> $a = 4\pi^2 f^2 x; 50 = 4\pi^2 f^2$ cosine wave with initia	posite directions/act roportional graph be max. of 1 mark 2.50 x 10 ⁻³ ; giving f al amplitude 25 mm	celeration towards equilibre etween x and a/AW $^{2} = 25$ and f = 5.0 Hz ; decreasing amplitude;	rium	1 1 3 2	0
	b	i ii	the acceleration toward $a = v^2/r$; so $50 = v^2/10$;	dis A/centripetal acc $v^2 = 500$ giving v =	eleration or force; is const = 22.4 m s ⁻¹	ant Total	1 2 3	o 5 13
3	a	:	appropriate shape; line towards negative spher	s perpendicular to a re $20 = W \sin 20 / by$	nd touching plate and sph	ere; arrows	2 1	3
	IJ	1	forces / other suitable $F = 1.0 \times 10^{-5} \tan 20$;	method; <i>i.e. justifica</i> = $1.0 \times 10^{-5} \times 0.364$ s W/F = tan 70. etc	the second seco		1 2	
	c	ii	E = F/Q ; = 3.64 x 10 ⁻⁶ E = (1/4 $\pi\epsilon_0$)Q/r ² ; 3.0 x or use F = (1/4 $\pi\epsilon_0$)Q ² /r	$\frac{1}{2} / \frac{1}{1.2} \times 10^{-9} = 3.0 \text{ x}$ $\frac{1}{10^3} = 9 \times 10^9 \times 1.2^{-2}$;	10^3 ;N C ⁻¹ / V m ⁻¹ x $10^{-9}/r^2$;		3 2	6
	d		$r^2 = 3.6 \times 10^{-3}$ giving r field line sketch <i>minim</i>	$= 6 \times 10^{-2} \text{ (m)}$ num of 5 lines symmetry	etrical about line joining c	centres with	1 1	3
			<i>arrows</i> ; Fig 3.1 sketch relating to symmetry	n matches RHS of F	ig 3.2/plate analogous to n	nirror/AW	1	2
						Total		14

Jan 2006

Mark Scheme			Unit Code 2824	Session January	Year 2006	Final versi	on		
Page 2	of 3			-					
Question			Expected Answers					Marks	
4	a b c	i ii iii iv	29; 34 $\lambda = 0.693/T = 0.693/Q$ $Q = CV = 1.2 \times 10^{-12}$ $n = Q/e = 1.1 \times 10^{-10}$ $A = \lambda N$; N =6.9 x 1 1 y is less than 1% o 1% fall/ problem of p	$f(120 \times 3.2 \times 10^7) = ($ x 90; evidence of c $f(1.6 \times 10^{-19}) = 6.9 \times 10^{8}$ $0^{8}/1.8 \times 10^{-10}$; = 3.8 f 120 y so expect to random emission or	(1.8 x 10^{-10} s ⁻¹) accept ealculation (= 1.1 x 10 10^8 allow sig. fig x 10^{18} using 7.0 give be within 1%/ using e other relevant stateme	t ln 2 $^{-10}$ C) t. variations s 3.9 $^{-\lambda t}$ gives exactly ent	2 2 3	2 1 8	
			-			Total		11	
5	a	i ii iii	F is towards 'open' $e^{F} = BIw$ F = 0.15 x 800 x 0.00	end of tube; using Flore $0.25 = 3.0$ (N)	eming's L.H.rule		2 1 2	5	
	b	i	A voltage is induced voltage is proportion the flux change per s	across moving meta al to flux change per second is Bwv / is pr	I as it cuts lines of flu r second/AW; oportional to the area	x/AW; of metal moving	1 1 1	5	
		ii	or Faraday's law ful relate flux linkage pe flux (linkage) doubl	ly stated; with reason er second proportion es; so using Faraday	nable attempt to; ally to speed 's law V doubles/AW		1 2 1 2	5	
						Total		10	
6	a		Internal energy is the particles/molecules/a only 1 mark if rando s.h.c. is the change in	e sum of the <u>random</u> atoms in the system/l <i>m omitted</i> n (internal) energy p	kinetic and potential body er unit mass/energy re	energies of the	2	3	
	b		mass/kg per unit rise Electrical heating of measurement of mas	in temperature/ ^O C/H body for given time, s of body and tempe	K / energy input = VIt; rature rise;	1	1 1		
			hence $VIt = mc\theta$ with comment on heat loss suitable description of mathed of mintanges is	h c found; s and how avoided/c of apparatus,etc.	compensated for; max	4 marks	1 1 1	4	
	c	i ii	Q = 2.0 x 920 x 293 2 kg contains 2/0.02' no. of atoms in 2 kg	; evidence of calcula 7 = 74 moles; = 74 x 6.02 x 10^{23} =	$4.46 \ge 10^{25}$;		2 1 1		
		iii	energy per atom = 5. e.g 2 x $920/74$;= 24.9	$4 \times 10^{5}/4.46 \times 10^{25}$ (9 J mol ⁻¹ K ⁻¹ or altern	$= 1.2 \times 10^{-20} \text{ J}$ native methods		1	_	
			I mark for suitable n	nethod; 1 mark for c	orrect solution	Total	2	7 14	

Jan 2006

Mark Scheme	Unit Code 2824	Session January	Year 2006	Final vers	inal version		
Page 3 of 3		•					
Question	Expected Answers					Marks	
7 a	nature and features: α -particle is 2p + 2n/ mass 4 u charge of +2e very short range/heavily ionizing/absorbed by paper spontaneous; and random nature of radioactive decay energetically more favourable to eject four particles together than a single one/other comment about energy minimisation/mainly occurs from higher A nuclei/AW small mass decrease/loss provides kinetic energy of α -particle particle energy of a few MeV; particular decay is monoenergetic α -particle scattering: suitable diagram and/or description to illustrate experiment <i>up to 2 marks</i> most particles have little if any deflection large deflection of very few shows nucleus is small; and very massive (Coulomb's law enables closest approach to) estimate nuclear size (in case of α - particle back scattering with conservation of energy argument) <i>max 7</i>				1 1 2 1 1 2 1 2 1 2 1 7		
b	description: (4) hydrogen or light helium/heavier/large two positrons must a the process is more c mass reduction provi the process requires y normally achieved in comparison: Energy release in fus because mass reducti decay/AW; as the helium nucleus also energy release fi Quality of Written C	nuclei/protons are f r nucleus; lso be released; to co complicated than the des energy release/ very high temperatur side a star; only by sion is much greater ion/change in fusion s is so strongly bour rom annihilation of p ommunication	Sused together to for onserve charge; summary equation $\Delta m = \Delta E/c^2$ res (to bring the pro- man in a bomb so fa than in radioactive is much greater than ad; positrons;	m a suggests/AW; tons together); ar; decay; n in radioactive <i>max 5</i> Total	1 2 1 1 2 1 1 1 1 1	5 4 16	