1 (a) (b) (c)(i)	Voltmeter connected in parallel with X Same reading / no effect / no change LDR / light-dependent resistor	B1 B1 B1
(c)(ii) (c)(iii)	The resistance decreases (as the intensity of light increases) $3.5 - 4.0 \times 10^{-7}$ (m) (to) $6.5 - 7.5 \times 10^{-7}$ (m)	B1 B1
(d)(i)	$R = \frac{V}{I} \qquad I \qquad R = \frac{1.8}{4.8(\times 10^{-3})}$	C1
(d)(ii)1	resistance = $375 \approx 380 \ (\Omega)$ $Q = It$ (Allow with or without the Δ notation) $Q = 4.8 \times 10^{-3} \times 30$	A1 C1 C1
(d)(ii)2	charge = $0.144 \approx 0.14$ (C) W = VQ / $W = VItW = 1.8 \times 0.144 / W = 1.8 \times 4.8 \times 10^{-3} \times 30$	A1 C1
	energy = $0.259 \approx 0.26$ (Possible ecf) unit: joule / J / VC /VAs (Allow 1/3 if power is 0.0086 (W))	A1 B1
		[Total: 13]
2 (a) (b) (c) (d)	Kirchhoff's <u>second</u> Ohm's Resistance Electronvolt (Allow eV)	B1 B1 B1 [Total: 4]
3		
(a)(i)	$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} \qquad / \qquad R = \frac{R_1 R_2}{R_1 + R_2}$	C1
	$\frac{1}{R} = \frac{1}{20} + \frac{1}{30} \qquad / \qquad R = \frac{20 \times 30}{20 + 30}$ resistance = 12 (\Omega)	A1
(a)(ii)	R = 10 + 12 resistance = 22 (Ω) (Possible ecf)	B1
(b)	$R = 10 (\Omega)$ / Resistance between B and C = 0 $I = \frac{5.0}{12}$	M1
	10 reading = 0.5 (A)	A1 [Total: 5]

4 (a)	 Any <u>two</u> from: 1. Concentric circle(s). (Judge by eye) 2. Separation between successive circles increases with distance from wire 	B1 × 2
(b)(i)	3. Correct direction of field (clockwise). Three correct: 2/2 Two correct: 1/2 One correct 0/2 first finger: (magnetic) field second finger: (conventional) current thumb: force / motion	B2
(b)(ii)	The field is parallel to the current / wire	B1
(b)(iii) (b)(iv)	Out of (plane of) paper. (Do not allow 'up') AB and CD experience forces in opposite directions (Allow reference to either torque or couple)	B1 B1
(b)(v)	F = BIL (Allow any subject)	C1
	$B = \frac{3.8 \times 10^{-2}}{5.2 \times 0.023}$	C1
	magnetic flux density = $0.318 \approx 0.32$ (T)	A1 Fotal: 10]
5	Any <u>four</u> from:	B1 imes 4
	1(As temperature increases) the resistance of the thermistor / T decreases2The total resistance decreases(Possible of3The current increases (in the circuit)(Possible of4The (voltmeter) reading increases / voltage across R increases(Possible of5The voltage across the thermistor / T decreases(Possible of6Correct use of the potential divider equation / comment on the 'sharing'of voltage / correct use of $V = IR$	ecf) ecf) e ecf) ecf) ecf)
6		[lotal: 4]
(a)	$R = \frac{\rho L}{A}$ (Allow any subject)	B1
(b)	The resistance decreases by a factor of four (because resistance is inversely proportional to radius ²)	M1 A1
(c)(i)	$2200 = \frac{3.5 \times 10^{-5} \times 1.3 \times 10^{-2}}{A} \qquad / \qquad A = \frac{\rho L}{R}$	C1
	$(A =)\frac{3.5 \times 10^{-4} \times 1.3 \times 10^{-4}}{2200}$	C1
	$(A =) 2.07 \times 10^{-10} \text{ (m}^2) \approx 2 \times 10^{-10} \text{ (m}^2)$	A0
(c)(ii)	$P = I^2 R$ / $P = VI$ and $V = IR$	C1
	$0.50 = l^{2} \times 2200$	C1
	CUTETL – U.UTD (A) (2.23 \times 10 ⁻⁴ scores 2/3 – answer not square rooted)	AT
	$(2.20 \land 10)$ scores $2/0 - answer not square rooted)$	[Total: 8]

7 (a)	 Electromagnetic waves - Any two from: 1. EM wave / light behave like 'particle'/ photon / quantum of energy 2. E = hf / E = hc/λ 3. E is the energy of photon and f is the frequency (of EM waves) / λ is the wavelength 						
	Moving elect 4. Moving / t 5. Mention o 6. $\lambda = \frac{h}{mv}$	<i>rons - Any <u>four</u> from:</i> ravelling particle / elect f the <u>de Broglie</u> (equati	ron behaves lik on)	e a wave	B1 × 4		
	 7. λ is the wavelength of <u>particle/electron</u>, <i>m</i> is the mass (of particle) and <i>v</i> is speed 8. Electrons can be diffracted (Can score on diagram) 9. Electrons travelling through matter /graphite (show diffraction effects) (Can score on diagram if not scored in 8 above) 10. Electrons diffract because their wavelength is comparable to the size of atoms /gap between atoms (Do not allow 'particles in place of atoms) 						
	QWC	Spelling, punctuation	and grammar		B1		
		Organisation			B1		
(b)(i) (b)(ii)1 (b)(ii)2 (b)(iii)1 The gr (b)(iii)2 The lin	The minimum Line extended $(\phi =) h \times 5.0$ work function radient / slope of The gradient is shifted to the The threshold	frequency needed to find intersects (the <i>f</i> axis at $\times 10^{14}$ / (ϕ =) (ϕ =	ree an electron at) this value / A $5.63 \times 10^{-34} \times 5.$ adent of the met (AW)	(from the surface of a t this frequency, $E_k =$ $.0 \times 10^{14}$	metal) B1 0 B1 C1 A1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1		