Unit 1 Topic 2 Materials Target sheet

I can:

Statement	Spec ref	
Understand and use the terms <i>density</i> , <i>laminar flow</i> , <i>streamline flow</i> ,	1.4.18	
terminal velocity, turbulent flow, upthrust and viscous drag, for example in		
transport design or in manufacturing		
Recall, and use primary r secondary data to show that the rate of flow of a	1.4.19	
fluid is related to its viscosity		
Recognise and use the expression for Stokes's Law, $F = 6\pi\eta rv$ and upthurst	1.4.20	
= weight of fluid displaced		
Investigate, using primary or secondary data, and recall that the viscosities	1.4.21	
of most fluids change with temperature. Explain the importance of this for		
industrial applications		
Obtain and draw force-extension, force-compression and	1.4.22	
tensile/compressive stress-strain graph. Identify the <i>limit of proportionality</i> ,		
elastic limit and yield point		
Investigate and use Hooke's law, $F = k\Delta x$, and know that it applied only to	1.4.23	
some materials		
Explain the meaning and use of, and calculate <i>tensile/compressive stress</i> ,	1.4.24	
tensile/compressive strain, strength, breaking stress, stiffness and Young		
Modulus. Obtain the Young modulus for a material		
Investigate elastic and plastic deformation of a material and distinguish	1.4.25	
between them		
Explore and explain what is meant by the terms brittle, ductile, hard,	1.4.26	
malleable, stiff and tough. Use these terms, give examples of materials		
exhibiting such properties and explain how these properties are used in a		
variety of applications, for example, safety clothing, foodstuffs		
Calculate the elastic strain energy $E_{e'}$ in a deformed material sample, using	1.4.27	
the expression $E_{e'} = \frac{1}{2}$ FX, and from the area under its force/extension graph		