

Mark scheme (Unused)

January 2022

Pearson Edexcel International Advanced Level In Physics (WPH15/01) Paper 5: Thermodynamics, Radiation, Oscillations and Cosmology

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Autumn 2020 Publications Code xxxxxxx* All the material in this publication is copyright © Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question	Answer	Mark
Number		
1	B is the correct answer	(1)
	A is not correct, as binding energy is not related to temperature	
	C is not correct, as a high collision rate is determined by the density	
	D is not correct, as a very high temperature doesn't mean a high density	
2	C is the correct answer, as $g = \frac{GM}{r^2}$ and $M = \rho V$	(1)
3	B is the correct answer	(1)
	A is not correct, as the electronic charge has been used to convert the mass	
	C is not correct, as the conversion of mass to kg is incorrect	
	D is not correct, as the conversion of mass to kg is incorrect	
4	D is the correct answer,	(1)
	A is incorrect, as the amplitude decreases over time for a damped oscillation	
	B is incorrect, as the amplitude stays constant over time for a free oscillation	
	C is incorrect, as the amplitude may stay constant or decrease over time for a natural oscillation	
5	D is the correct answer, as the count rate halves for each thickness of 1.5 cm	(1)
6	C is the correct answer, as $v_{\text{max}} = 2\pi f A$	(1)
7	A is the correct answer, as $I = \frac{L}{4\pi d^2}$ gives d, so I and L must be known	(1)
8	B is the correct answer, as it is incorrect to say frequency decreases over time	(1)
9	B is the correct answer	(1)
	A is incorrect, as X is a diagram for a very old star cluster (white dwarf	
	stars present)	
	C and D are incorrect, as Z is a diagram for a medium age star cluster	
	(red giant, but no white dwarf stars present)	
10	C is the correct answer	(1)
	A is incorrect, as there are for more nucleons in a nucleus of ²³⁸ U than in ¹²⁰ Sn	
	B is incorrect, as a nucleus of ¹²⁰ Sn has a higher B.E./nucleon than ¹⁶ O	
	D is incorrect, as we cannot deduce this statement from the graph.	

Question	Answer	Mark
Number		
11	Use of $V = \frac{4}{3}\pi r^3$ (1)	
	Use of $pV = NkT$ (1)	
	Conversion of temperature to kelvin (1)	
	$N = 6.76 \times 10^{23} \tag{1}$	4
	Example of calculation	
	$V = \frac{4}{3}\pi (0.185 \text{ m})^3 = 2.65 \times 10^{-2} \text{ m}^3$	
	$N = \frac{pV}{kT} = \frac{1.04 \times 10^5 \text{Pa} \times 2.65 \times 10^{-2} \text{ m}^3}{1.38 \times 10^{-23} \text{ J K}^{-1} \times (273 + 22.5) \text{ K}} = 6.76 \times 10^{23}$	
	Total for question 11	4

Question	Answer	Mark
Number		
12	Use of $\frac{v}{c} = \frac{\Delta\lambda}{\lambda}$ (1) Use of $w = H d$ (1)	
	$d = 1.4 \times 10^{24} \mathrm{m} \tag{1}$	3
	Example of calculation $v = \frac{\Delta\lambda}{c} c = \frac{(438.6 - 434.1) \times 10^{-9} \text{ m}}{c} \times 3.00 \times 10^8 \text{ m s}^{-1} = 3.11 \times 10^6 \text{ m s}^{-1}$	
	$\lambda = \frac{434.1 \times 10^{-9} \text{ m}}{2.3 \times 10^{-18} \text{ s}^{-1}} = 1.35 \times 10^{24} \text{ m}$	
	Total for question 12	3

Question	Answer		Mark
Number			
13	MAX 4 The student is correct to say that the rate of decay decreases over time	(1)	
	However, the uranium doesn't become more stable, the number of unstable uranium nuclei decreases.	(1)	
	The student should have said that radiation is emitted from the nucleus [accept atom]	(1)	
	The student was wrong to say that the particles emitted are radioactive	(1)	
	Because the emitted particles do not decay	(1)	
	In a time equal to the half-life the number of unstable nuclei (and not the mass) decreases by 50%.	(1)	
	Because the product nuclei are nearly as massive as the unstable nuclei	(1)	4
	Total for question 13		4

Question	Answer	Mark
Number 14(a)	The star is viewed from two positions at 6 month intervals Or the star is viewed from opposite ends of the diameter of the Earth's orbit about the Sun (1) The change in angular position of the star against backdrop of distant/fixed stars is measured (1) Trigonometry is used to calculate the distance to the star [Do not accept Pythagoras] (1) The diameter/radius of the Earth's orbit about the Sun must be known (1) Full marks may be obtained from a suitably annotated diagram E_{2} $R = 14.0$ C_{1} C_{1} C_{2} C_{2} C_{1} C_{2} C_{2} C_{1} C_{2} C_{2} C_{1} C_{2} C_{2} C_{2} C_{1} C_{2} C_{2} C_{1} C_{2} C_{2} C_{2} C_{1} C_{2} C_{2} C_{2} C_{2} C_{1} C_{2} $C_$	4
14(b)	Use of $s = ut$ (1)	
	$s = 9.7 \times 10^{16} \text{ (m)} $ (1) Example of calculation	2
	<u>Example of calculation</u>	
	$s = 3.00 \times 10^8 \text{ m s}^{-1} \times 10.3 \times (365 \times 86400) \text{ s} = 9.74 \times 10^{16} \text{ m}$	
	Total for question 14	6

Question	Answer		Mark
Number	1 - (1)		
15(a)	Use of $E_{\rm k} = \frac{1}{2}mv^2$ (1)		
	2 (1)		
	Use of $E = mc\Delta\theta$ (1)		
	Use of efficiency= $\frac{\text{useful energy output}}{(1)}$		
	total energy input		
	Required energy = 1.9×10^4 J		
	Or temperature rise = 29 K		
	Or number of hits = 850 (1)		
	$\mathbf{C} = 1 + $		5
	Conclusion based on calculated values of energy transfer		5
	Or Conclusion based on calculated value of temperature rise		
	Or Conclusion based on calculated value of number of hits		
	[conclusion must include a comparison of appropriate data]		
	Example of coloulation		
	Example of calculation		
	1		
	$E_{\rm k} = \frac{1}{2} \times 1.1 \rm kg \times (7.5 m s^{-1})^2 = 30.9 \rm J$		
	$F = 1000 \times 30.9 \text{ J} \times 0.72 = 2.23 \times 10^4 \text{ J}$		
	$E = 1000 \times 50.9 \text{ J} \times 0.72 = 2.23 \times 10^{-3} \text{ J}$		
	$F = (1.1 \pm 0.45) \text{ kg} \times 490 \text{ J} \text{ kg}^{-1} \text{ K}^{-1} \times 25 \text{ K} = 1.90 \times 10^4 \text{ J}$		
	$L = (111 + 0.10) \text{ Mg} \times 100 \text{ J} \text{ Mg} \times 120 \text{ M} = 1.00 \text{ M} \text{ U}$		
	[If mass of hammer neglected, $E = 0.45 \text{ kg} \times 490 \text{ J kg}^{-1}$		
	$K^{-1} \times 25 K = 5.51 \times 10^3 I$		
	n Abon DiotAto j		
15(b)	No thermal energy is transferred (from the steel plate) to surroundings		
- 12	Or hammer comes to rest after hitting the steel plate		
	(1))	1
	[Allow no energy is used to deform the steel]		
	Total for question 15		6

Question Number	Answer		Mark
16(a)	Use of $\omega = \frac{2\pi}{2\pi}$	(1)	
	T T		
	Use of $v = r\omega$	(1)	
	$v = 1.02 \times 10^3 \text{ m s}^{-1}$	(1)	3
	Example of calculation	(-)	-
	$\omega = \frac{2\pi}{27.3 \times 86400 \text{ s}} = 2.66 \times 10^{-6} \text{ rad s}^{-1}$		
	$v = 3.84 \times 10^8 \text{ m} \times 2.66 \times 10^{-6} \text{ rad s}^{-1} = 1023 \text{ m s}^{-1}$		
16(b)(i)	$\Delta E_{grav} = mg\Delta h$ is appropriate for situations in which g is approximately constant	(1)	
	As the distance moved is only a small fraction of the distance to the Earth, the value of g hardly changes	(1)	2
16(b)(ii)	Use of $g = \frac{GM}{r^2}$	(1)	
	Use of $\Delta E_{grav} = mg\Delta h$	(1)	
	$\Delta E_{ m grav} = 7.6 imes 10^{19} m J$	(1)	
	OR		
	Use of $V_{\text{grav}} = -\frac{GM}{r}$	(1)	
	Recognises that $\Delta E_{\text{grav}} = m \times \Delta V_{\text{grav}}$	(1)	
	$\Delta E_{ m grav} = 7.6 imes 10^{19} m J$	(1)	3
	Example of calculation		
	$g = \frac{6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2} \times 6.02 \times 10^{24} \text{ kg}}{(3.84 \times 10^8 \text{ m})^2} = 2.72 \times 10^{-3} \text{ N kg}^{-1}$		
	$\Delta E_{grav} = 7.35 \times 10^{22} \text{kg} \times 2.72 \times 10^{-3} \text{N kg}^{-1} \times 0.38 \text{ m} = 7.61 \times 10^{19} \text{ J}$		8

Question Number	Answer					Mark	
*17	This question assesses a student's ability to show a coherent and logically structured answer with linkages and fully-sustained reasoning.						
	Marks are aw shows lines c	Marks are awarded for indicative content and for how the answer is structured and shows lines of reasoning.					
	The followin reasoning.	g table shows	how the marks show	uld be awarded fo	or structure and lines of		
				Number of mar answer and sust	ks awarded for structure of tained line of reasoning		
	Answer sho structure wi lines of reas	ws a coherent th linkages ar soning demon	t and logical ad fully sustained strated throughout		2		
	Answer is p linkages and	artially struct	ured with some oning		1		
	Answer has is unstructur	no linkages t red	between points and		0		
	Total marks a structure and	awarded is the lines of reaso	e sum of marks for in oning	ndicative content	and the marks for		
	IC points	IC mark	Max linkage mark	Max final mark]		
	6	4	2	6			
	5	3	2	5			
	4	3	1	4			
	3	2	1	3			
	2	2	0	2	1		
	1	1	0	1			
	0	0	0	0			
	Indicative co	ntent					
	ICI Grav	utational for	ces act on objects	with mass	-0A		
	IC3 Elec	tric forces ca	an be attractive or	repulsive, but g	ravitational		
	force Or e grav	es are always electric poter itational pote	s attractive atial can be positive ential is always neg	e or negative, bi gative.	ut		
	IC4 Both Or b	n fields have both fields ar	an infinite range e an example of "a	action at a distar	ice"		
	IC5 Both field	the gravitat around a po	ional field around int charge obey an	a point mass an 1 inverse square	d the electric law	6	
	IC6 The inter Or t grav	interaction b action betwee he electric for itational force	etween unit charg een unit masses (at orce between point ce between unit ma	es is larger than a given separat charges is large asses (at a given	the ion) er than the separation).		
	[for 2 linkag Total for qu	e marks ther estion 17	e must be at least	1 similarity and	1 difference]	6	
	1.					Ť	

Question	Answer		Mark
18(a)(i)	Use of $P = \frac{\Delta E}{\Delta t}$	(1)	
	Use of $\Delta E = a^2 \Delta m$	(1)	
	Use of $\Delta E = c^{-}\Delta m$	(1)	
	$\frac{\Delta m}{\Delta t} = 5.04 \times 10^9 (\mathrm{kg}\mathrm{s}^{-1})$	(1)	3
	Example of calculation		
	$\frac{\Delta m}{\Delta t} = \frac{4.54 \times 10^{26} \text{ W}}{(3.00 \times 10^8 \text{ m})^2} = 5.04 \times 10^9 \text{ kg s}^{-1}$		
18(a)(ii)	Use of 0.08 %	(1)	
	Use of $\frac{\Delta m}{\Delta t}$ from (a)	(1)	
	$t = 9.9 \times 10^9$ years (ecf from (i))	(1)	3
	Example of calculation		
	$\Delta m = \frac{0.08}{100} \times 1.97 \times 10^{30} \text{ kg} = 1.576 \times 10^{27}$		
	$t = \frac{1.576 \times 10^{27} \text{ kg}}{5.04 \times 10^9 \text{ kg s}^{-1}} = 3.13 \times 10^{17} \text{ s} = 9.90 \times 10^9 \text{ years}$		
18(b)	(Gamma Pavonis is more massive so) there is a greater temperature (and pressure) in the core	(1)	
	Rate of fusion is (much) higher than in delta Pavonis	(1)	
	Hence the time spent on main sequence is less and the suggestion is incorrect	(1)	3
	MP3 dependent on MP2		
	Total for question 18		9

Question Number	Answer	Mark
19(a)(i)	Use of $\Delta F = k\Delta x$ with $F = mq$ (1)	
	$k = 213 \text{ (N m}^{-1})$ (1)	2
	Example of calculation	
	$k = \frac{mg}{\Delta x} = \frac{65.0 \text{ kg} \times 9.81 \text{ N kg}^{-1}}{(48.0 - 45.0) \text{ m}} = 212.6 \text{ N m}^{-1}$	
19(a)(ii)	(For simple harmonic motion the) acceleration is:	
	 (directly) proportional to displacement from equilibrium position (1) acceleration is in the opposite direction to displacement 	
	Or (always) acting towards the equilibrium position (1)	
	(For simple harmonic motion the resultant) force is:	
	• (directly) proportional to displacement from equilibrium position (1)	
	• force is in the opposite direction to displacement	
	(1)	2
		2
19(a)(iii)	Use of $T = 2\pi \sqrt{\frac{m}{k}}$ with $f = \frac{1}{T}$ (1)	
	f = 0.27 (Hz) (1)	2
	Example of calculation	
	$f = \frac{1}{2\pi} \sqrt{\frac{k}{m}} = \frac{1}{2\pi} \sqrt{\frac{210 \text{ N m}^{-1}}{75 \text{ kg}}} = 0.266 \text{ Hz}$	
19(a)(iv)	Use of $\omega = 2\pi f$ (1)	
	Use of $a = -\omega^2 x$	
	(1)	
	$a = 3.4 \text{ m s}^{-2} (\text{ect trom (111)})$	
	Example of calculation (1)	3
	$\omega = 2\pi \times 0.266 \text{ s}^{-1} = 1.67 \text{ rad s}^{-1}$	
10(b)	$\frac{a = (1.67 \text{ rad s}^{-1})^2 \times 1.2 \text{ m} = 3.35 \text{ m s}^{-2}}{\text{Work is done against air register as}}$	
13(0)	Or air resistance causes damping (1)	
	(1)	
	So energy is transferred to the surroundings (1)	
	Amplitude decreases to zero	3
	Total for question 19	12

Question Number	Answer		Mark				
20(a)	Top line correct	(1)					
	Bottom line correct	(1)	2				
	$^{210}_{82}\text{Pb} \rightarrow ^{210}_{83}\text{Bi} + ^{0}_{-1}\beta^{-} + ^{0}_{0}\overline{\nu}_{e}$						
20(b)	Use of $\lambda = \frac{\ln 2}{2}$	(1)					
	$t_{1/2}$	(1)					
	Use of $\frac{\Delta N}{\Delta t} = (-)\lambda N$						
	$t = -\lambda t$						
	Use of $A = A_0 e^{-\pi t}$						
	Activity is 25 Bq after 1.87 years, so claim is false.	(1)	4				
	Example of calculation:						
	$\lambda = \frac{\ln 2}{t_{1/2}} = \frac{0.693}{372 \times 86400\mathrm{s}} = 2.16 \times 10^{-8}\mathrm{s}^{-1}$						
	$\frac{\Delta N}{\Delta t} = \lambda N = 2.16 \times 10^{-8} \text{ s}^{-1} \times 4.15 \times 10^{9} = 89.6 \text{ Bq}$						
	$25 = 89.6 \times e^{-2.16 \times 10^{-8} t}$						
	$-2.16 \times 10^{-8} \mathrm{s}^{-1} \times t = \ln\left(\frac{25 \mathrm{Bq}}{89.6 \mathrm{Bq}}\right)$						
	$t = \frac{-1.28}{-2.16 \times 10^{-8} \mathrm{s}^{-1}} = 5.91 \times 10^7 \mathrm{s} = 1.87 \mathrm{year}$						
20(c)	One pair of readings taken from graph and Rx^2 calculated	(1)					
	2 more pairs of readings taken from graph and Rx^2 calculated	(1)					
	Check if Rx^2 is constant and conclusion consistent with calculations	(1)	3				
	Example of calculation						
	$P_{1}(z^{-1})$ $P_{2}(z^{-1})$ $P_{2}(z^{-1})$						
	$\frac{1}{150.0}$ 20.0 60000						
	45.0 40.0 72000						
	22.5 60.0 81000						
	15.0 80.0 96000						
20(d)	I he tracks are thick indicating a heavily ionizing radiation	(1)					
	The tracks are straight indicating that the radiations are massive						
	Or the tracks are all about the same length so all the radiations have the same energy (1						
	Therefore the tracks are made by radiation from an alpha source [dependent on MP1 or MP2]	<- <i>y</i>	-				
	Total for question 20						

Question Number	Answer	Mark
21(a)	Use of $\lambda_{\text{max}}T = 2.898 \times 10^{-3} \text{ m K}$ (1)	
	T = 5800 (K) (1)	2
	Example of calculation	
	$T = \frac{2.898 \times 10^{-3} \text{ m K}}{5.0 \times 10^{-7} \text{ m}} = 5796 \text{ K}$	
21(b)	Use of $I = \frac{L}{4\pi d^2}$ (1)	
	Use of $L = \sigma A T^4$ (1)	
	Use of $A = 4\pi r^2$ (1)	
	$r = 7.0 \times 10^8 \mathrm{m} (\mathrm{ecf from} (\mathrm{a}))$ (1)	4
	Example of calculation	
	$L = 590 \text{ W m}^{-2} \times 4\pi \times (2.3 \times 10^{11} \text{ m})^2 = 3.92 \times 10^{26} \text{ W}$	
	$A = \frac{3.92 \times 10^{26} \text{ W}}{5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4} \times (5800 \text{ K})^4} = 6.11 \times 10^{18} \text{ m}^2$	
	$r = \sqrt{\frac{6.11 \times 10^{18} \text{ m}^2}{4\pi}} = 6.97 \times 10^8 \text{ m}$	
21(c)	Use of 22% (1)	
	Use of efficiency = $\frac{\text{useful energy output}}{\text{total energy input}}$ (1)	
	Use of $I = P/A$ with $A = \pi r^2$ (1)	
	P = 1030 W (1.03 kW) so the power requirement is met. (1)	4
	Example of calculation	
	$I = 0.78 \times 590 \text{ W m}^{-2} = 460 \text{ W m}^{-2}$	
	$A = \pi \times (1.1 \text{ m})^2 = 3.8 \text{ m}^2$	
	$P = 0.295 \times 460 \text{ W m}^{-2} \times 3.8 \text{ m}^{2} \times 2 = 1030 \text{ W}$	
	Total for question 21	10

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom