

Mark Scheme (Results)

June 2019

Pearson Edexcel International Advanced Subsidiary Level In Physics (WPH11) Paper 01 Mechanics and Materials

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

June 2019 Publications Code WPH11_01_MS_1906 All the material in this publication is copyright © Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Mark scheme notes

Underlying principle

The mark scheme will clearly indicate the concept that is being rewarded, backed up by examples. It is not a set of model answers.

For example:

(iii) Horizontal force of hinge on table top

66.3 (N) or 66 (N) and correct indication of direction [no ue]
I [Some examples of direction: acting from right (to left) / to the left / West / opposite direction to horizontal. May show direction by arrow. Do not accept a minus sign in front of number as direction.]

This has a clear statement of the principle for awarding the mark, supported by some examples illustrating acceptable boundaries.

1. Mark scheme format

- 1.1 You will not see 'wtte' (words to that effect). Alternative correct wording should be credited in every answer unless the ms has specified specific words that must be present. Such words will be indicated by underlining e.g. 'resonance'
- 1.2 Bold lower case will be used for emphasis.
- 1.3 Round brackets () indicate words that are not essential e.g. "(hence) distance is increased".
- 1.4 Square brackets [] indicate advice to examiners or examples e.g. [Do not accept gravity] [ecf].

2. Unit error penalties

- 2.1 A separate mark is not usually given for a unit but a missing or incorrect unit will normally mean that the final calculation mark will not be awarded.
- 2.2 Incorrect use of case e.g. 'Watt' or 'w' will not be penalised.
- 2.3 There will be no unit penalty applied in 'show that' questions or in any other question where the units to be used have been given, for example in a spreadsheet.
- 2.4 The same missing or incorrect unit will not be penalised more than once within one question (one clip in epen).
- 2.5 Occasionally, it may be decided not to penalise a missing or incorrect unit e.g. the candidate may be calculating the gradient of a graph, resulting in a unit that is not one that should be known and is complex.
- 2.6 The mark scheme will indicate if no unit error penalty is to be applied by means of [no ue].

3. Significant figures

- 3.1 Use of an inappropriate number of significant figures in the theory papers will normally only be penalised in 'show that' questions where use of too few significant figures has resulted in the candidate not demonstrating the validity of the given answer.
- 3.2 The use of $g = 10 \text{ m s}^{-2}$ or 10 N kg^{-1} instead of 9.81 m s⁻² or 9.81 N kg⁻¹ will be penalised by one mark (but not more than once per clip). Accept 9.8 m s⁻² or 9.8 N kg⁻¹

4. Calculations

- 4.1 Bald (i.e. no working shown) correct answers score full marks unless in a 'show that' question.
- 4.2 If a 'show that' question is worth 2 marks then both marks will be available for a reverse working; if it is worth 3 marks then only 2 will be available.
- 4.3 **use** of the formula means that the candidate demonstrates substitution of physically correct values, although there may be conversion errors e.g. power of 10 error.
- 4.4 **recall** of the correct formula will be awarded when the formula is seen or implied by substitution.
- 4.5 The mark scheme will show a correctly worked answer for illustration only.
- 4.6 Example of mark scheme for a calculation:

'Show that' calculation of weight

Use of $L \times W \times H$

Substitution into density equation with a volume and density

Correct answer [49.4 (N)] to at least 3 sig fig. [No ue] [If 5040 g rounded to 5000 g or 5 kg, do not give 3rd mark; if conversion to kg is omitted and then answer fudged, do not give 3rd mark] [Bald answer scores 0, reverse calculation 2/3]

3

Example of answer:

 $80 \text{ cm} \times 50 \text{ cm} \times 1.8 \text{ cm} = 7200 \text{ cm}^3$

 $7200 \text{ cm}^3 \times 0.70 \text{ g cm}^{-3} = 5040 \text{ g}$

 $5040 \times 10^{-3} \text{ kg} \times 9.81 \text{ N/kg}$

= 49.4 N

5. Quality of Written Communication

- 5.1 Indicated by QoWC in mark scheme. QWC Work must be clear and organised in a logical manner using technical wording where appropriate.
- 5.2 Usually it is part of a max mark, the final mark not being awarded unless the QoWC condition has been satisfied.

6. Graphs

- 6.1 A mark given for axes requires both axes to be labelled with quantities and units, and drawn the correct way round.
- 6.2 Sometimes a separate mark will be given for units or for each axis if the units are complex. This will be indicated on the mark scheme.
- 6.3 A mark given for choosing a scale requires that the chosen scale allows all points to be plotted, spreads plotted points over more than half of each axis and is not an awkward scale e.g. multiples of 3, 7 etc.
- 6.4 Points should be plotted to within 1 mm.
 - Check the two points furthest from the best line. If both OK award mark.
 - If either is 2 mm out do not award mark.
 - If both are 1 mm out do not award mark.
 - If either is 1 mm out then check another two and award mark if both of these OK, otherwise no mark.
 - For a line mark there must be a thin continuous line which is the best-fit line for the candidate's results.

Question	Answer	Mark
Number		
1	The only correct answer is D because kg m ⁻³ is the unit for density (scalar)	(1)
	A is not the correct answer as $m s^{-1}$ is the unit for velocity (vector) and speed (scalar) D is used to a superscript for a speed (scalar)	
	B is not the correct answer as $m s^{-2}$ is the unit for acceleration (vector)	
2	C is not the correct answer as kg m s is the unit for force (vector)	(1)
2	changing) and N2 describes a resultant force (due to the gravitational force of the	(1)
	earth) causing a change in velocity	
	A is not the correct answer as the velocity is changing	
	B is not the correct answer as the velocity is changing and N2 describes a	
	changing velocity due to unbalanced forces	
	D is not the correct answer as N^2 describes a changing velocity due to unbalanced	
3	Jorces The only correct answer is B because	(1)
5	Upthrust is equal to weight of sphere (2.5 N).	(1)
	Weight of displaced water if half sphere submerged = 2.5 N	
	Weight of displaced water if all of sphere submerged = 5.0 N	
	Total upwards force acting on sphere when completely submerged = 5.0 N	
	Total downwards force on sphere if completely submerged (and stationary) = 5.0 N	
	F must be equal to 2.5 N	
	L is not the connect surgeon as $\Gamma = 2.5$ M	
	A is not the correct answer as $F = 2.5$ N C is not the correct answer as $F = 2.5$ N	
	D is not the correct answer as $F = 2.5 N$	
4	The only correct answer is B as $s = vt$ and $s = 1.2 \times 0.9$	(1)
	A is not the correct answer as $s = vt$ and $s = 1.2 \times 0.9$	
	C is not the correct answer as $s = vt$ and $s = 1.2 \times 0.9$	
-	D is not the correct answer as $s = vt$ and $s = 1.2 \times 0.9$	(1)
5	The only correct answer is D	(1)
	A is not the correct answer as smaller particles of sand have a lower terminal	
	velocity so take longer to reach the bottom of the beaker	
	B is not the correct answer as a lower temperature would increase the viscosity	
	and increase the time taken for the particles to reach the bottom of the beaker	
	(lower terminal velocity)	
	C is not the correct answer as the sand particles take longer to reach the bottom of	
	the beaker with a smaller terminal velocity	(1)
6	The only correct answer is C	(1)
	A is not the correct answer as it has a high elastic limit	
	B is not the correct answer as it has a high elastic limit and a small region of	
	plastic deformation	
	$\mathbf{\hat{D}}$ is not the correct answer as it has a small region of plastic deformation	

r		
7	The only correct answer is B as power output = kinetic energy per second of the	(1)
	ejected water.	
	$D_{D} = \frac{1}{2} \times 0.2 \ kg \times (3 \ m \ s^{-1})^2 = 0.2 \times 3^2$	
	$P = \frac{1}{1 \text{ second}} = \frac{2}{2}$	
	A is not the correct answer because the mass has not been converted into ke which	
	is required for a power in watts	
	C is not the correct answer because the mass is in σ and the velocity has not been	
	squared	
	D is not the correct answer because the velocity has not been squared	
8	The only correct answer is C as the acceleration is positive while the fuel is still	(1)
0	burning. It then becomes negative, while still travelling unwards, as the only forces	(1)
	outining. It then becomes negative, while sum travening upwards, as the only forces	
	acting on it are downwards (weight and drag).	
	A is not the correct answer because the acceleration should be constant as there is	
	a constant unwards thrust from the fuel	
	B is not the correct answer because the acceleration should be constant as there is	
	a constant unwards thrust from the fuel. The acceleration should become negative	
	hefore T	
	D is not the correct answer because the acceleration becomes negative as the fuel	
	b is not the correct unswer because the acceleration becomes negative as the fact runs out and not at the maximum height	
0	The only correct answer is B	
,		(1)
	final displacement 20 km	
	12 km	
	A is not the correct answer as the length and direction of the line are incorrect	
	\mathbf{C} is not the correct answer as the length and direction of the line are incorrect	
	D is not the correct answer as the length and direction of the line are incorrect	
10	The only correct answer is C because taking upwards as positive	(1)
10	force of floor of lift on student – weight of student = mass \times acceleration	(1)
	$800 - 70\sigma = 70\sigma$	
	800 - 70g - 70d	
	\mathbf{A} is not the correct answer because the force of the lift on the student was omitted	
	and the direction of the weight is incorrect	
	B is not the correct answer because the weight of the student has been omitted	
	D is not the correct answer because the weight and the force of the lift on the	
	b is not the correct answer because the weight and the jorce of the lift of the student are in the wrong direction	
1	sindeni dre in the wrong direction	1

Question	Answer	Mark
Number		
11	Max 4	
	• Initial momentum (of the child, ball and skateboard/total) is zero (1)	
	• Due to conservation of momentum, the total momentum before the ball is thrown = total momentum after the ball is thrown (so final total momentum is zero) (1)	
	• The momentum of the child/skateboard is equal to the momentum of the ball (1)	
	• The momentum of the child/skateboard is opposite in direction to the momentum of the ball (1)	
	• As the mass of the child/skateboard greater (than the mass of ball), the velocity (of the child/skateboard) will be lower (1)	4
	(all symbols to be defined, ' <i>mv</i> ' to be defined if used for momentum) (MP3 accept to the right/positive for forwards)	
	Total for question 11	4

Question	Answer	Mark
12	Either (1)	
	• Use of $\sin \theta = \frac{2.0}{15}$ Or use of $\theta = 7.7$ ° (1)	
	• Use of Work done = $F\Delta s$ Or use of $E_{\text{grav}} = mg\Delta h$ (1)	
	• Use of efficiency = $\frac{\text{useful energy output}}{\text{total energy input}} (\times 100 \%)$ (1)	
	• Efficiency = 83 or 84 % so less than 90 %	
	(MP4 dependent on scoring all points MP1& 2 &3)	
	Example of calculation (1)	
	$\sin^{-1}\left(\frac{2.0}{15}\right) = 7.7 ^{\circ} \tag{1}$	
	$W_{50} = 50 \text{ kg} \times 9.81 \text{ N kg}^{-1} \times 2.0 \text{ m} \times \frac{2.0}{45} = 130.8 \text{ J}$ (1)	
	$W_8 = 8.0 \text{ kg} \times 9.81 \text{ N kg}^{-1} \times 2.0 \text{ m} = 157.0 \text{ J} $ (1)	4
	Efficiency = $\frac{130.8 \text{ J}}{157.0 \text{ J}} \times 100 \% = 83 \%$	
	Total for question 12	4

Question	Answer	Mark			
13(a)	• Use of $v = s/t$ Or use of gradient				
	(1)				
	• $v = (\pm) 1.1$ to 1.2 (m s ⁻¹) (1)				
	• Scaling of the velocity axis so that the graph covers at least 50% of				
	the paper above and below the axes. (1)				
	(A minimum of 1 number on each axis required e.g. 1 and -1)				
	• A positive constant velocity from 0 to 42 s and the same negative				
	constant velocity from 48 s to 90 s with connecting line/curve (1)	4			
	(tolerance of ± 1 s)				
	Example of calculation				
	Initial velocity = $\frac{46 \text{ m}}{40 \text{ s}}$ = 1.15 m s ⁻¹				
	1.0				
	\sim 0.0 Time /s				
	$\frac{10}{20}$ 0 10 20 30 40 50 60 70 80 90 100				
	\rightarrow -0.5				
	-1.0				
	-1.5				
13(b)(i)	The graph should be a curve initially (1)				
	with a decreasing gradient up to 15 m (by eye) (1)	2			
	(Ignore any part of the graph above 15 m)				

13(b)(ii)	1 mark for a simplification(1)				
	1 mark for a corresponding explanation				
	Simplification Explanation				
	Velocity constant	• Variation in velocity during each stroke			
	Or velocity doesn't change	• The force applied to the swimmer/water			
	Or velocity is an average	varies (within the stroke)			
	Or no regions of	• As the swimmer moves above/below			
	acceleration/deceleration	water to breathe, the velocity changes			
	• The speed would change as they went				
	from gliding to swimming				
	The velocity of the swimmer has	The swimmer may have tired and this could			
	the same magnitude in both parts	be less for the second half of the race			
	of the race				
	The initial velocity after the turn	The swimmer would probably glide			
	Would be greater	(underwater) after the turn			
	Gradient should initially increase	Swimmer initially pushes off from starting			
	Irom zero	block/turn			
	Treat references to drag as neutra	1.			
	Total for question 13			8	

Question Number	Answer		Mark
14(a)(i)	• Use of equation(s) of motion to determine u_v		
	Or Use of $E_k = E_{grav}$	(1)	
	• $u_{\rm v} = 83 \ ({\rm m \ s^{-1}})$	(1)	2
	(for mp2 must have used $v = 0$ and $-g$)	(1)	2
	Example of calculation		
	$0^2 = u^2 + 2(-9.81 \text{ m s}^{-2}) (350 \text{ m})$		
14(a)(ii)	$u = 82.9 \text{ m s}^{-1}$	(1)	
14(a)(11)	• Launch angle increasing as initial velocity decreases (i.e. negative gradient)	(1)	
	Curve drawn	(1)	
	• Minimum initial velocity marked, and graph passes through (90, 82.9/80)		
	Or other correct pair of points labelled and plotted	(1)	
	• Initial velocity axis asymptotic	(1)	4
	82.9 (m s ⁻¹)		
	0 0 0 0 Launch angle/ °		
14(b)		(1)	
14(0)	(Perpendicular) distance to firework= time (counted) \times speed of sound	(1)	
	Diameter of firework = $2 \times \text{distance} \times \tan(\phi/2)$	(1)	2
	(allow Diameter of firework = distance $\times \tan(\phi/2)$)		
	Total for question 14		8

Question Number	Answer	Mark
15(a)	• Estimate of length of forearm 30 – 50 (cm) (1)	
	 Use of trig to determine the perpendicular component of the tension Or see Tsin70 Or see Tcos20 	
	• Use of moment = Fx with a corresponding force and distance (1)	
	• Use of the principle of moments (1)	
	• Value for T in range 85 N to 150 N ($l = 30$ cm, $T = 85$ N and $l = 50$ cm, $T = 150$ N) (1)	5
	Example of calculation (for $l = 0.40$ m)	
	$(0.04 \text{ m} \times T \times \sin 70) = (0.31 \text{ m} \times 4.5 \text{ N}) + (0.20 \text{ m} \times 15 \text{ N})$	
	T = 117 N	
	145	
	135	
	E 115 − − − − − − − − − − − − − − − − − −	
	105	
	95	
	85 40 45 50	
	length of forearm / cm	
15(b)	• The forcer is not uniform/symmetrical (1)	
13(0)	• The forearm is not uniform/symmetrical (1)	2
	• The centre of gravity is not in the middle (1)	
	Total for question 15	7

Question	Answer		Mark
16(a)	 Use a micrometer (screw gauge) Or (vernier)digital calipers At different orientations and/or positions along the wire 	(1) (1)	
	• Calculate/determine/take/find a mean/average value	(1)	3
16(b)	 Use of A = π (^d/₂)² Calculate gradient of linear section (up to 3 × 10⁻³ m, 6.8 N) of graph Or use of a corresponding pair of points for E and Δx from the linear 	(1)	
	• Use of $\sigma = \frac{F}{A}$ and $\varepsilon = \frac{Ax}{l}$ Or use of $F = \frac{Fl}{A}$	(1)	
	Or Use of $E = \text{gradient} \times \frac{l}{A}$	(1)	
	• $E = (1.2 - 1.3) \times 10^{11} \text{ Pa}$ (MP4 conditional on scoring MP1 & MP2 & MP3)	(1)	4
	Example of calculation using gradient $A = \pi \left(\frac{2.3 \times 10^{-4} \text{ m}}{2}\right)^2 = 4.15 \times 10^{-8} \text{ m}^2$ Gradient = $\frac{6.5 \text{ N}}{2.9 \times 10^{-3} \text{ m}} = 2.2 \times 10^3 \text{ N m}^{-1}$ $E = 2.2 \times 10^3 \text{ N m}^{-1} \times \frac{2.4 \text{ m}}{4.15 \times 10^{-8} \text{ m}^2} = 1.27 \times 10^{11} \text{ Pa}$		

*16(c)	• This question assesses a studen answer with linkages and fully- Marks are awarded for indicative shows lines of reasoning. • The following table shows how Number of indicative marking points seen in answer 6 5-4 3-2 1 0 • The following table shows how lines of reasoning. Answer shows a coherent and logid structure with linkages and fully sustained lines of reasoning demonstrated throughout Answer is partially structured with linkages and lines of reasoning demonstrated throughout Answer has no linkages between p and is unstructured Total marks awarded is the sum of n structure and lines of reasoning Indicative content • For long(er) wire, the extens • (For the same load) extension Or $\frac{\text{extension}}{\text{original length}} = \text{constant}$ • For a thin(ner) wire, the extens • (For the same load) extension (may be explained in terms of this will be greater for the are	t's abil sustain ve cont the ma n fc po the ma cal cal cal cal cal cal cal cal cal ca	ity to show a coherent and logically structured eed reasoning. ent and for how the answer is structured and arks should be awarded for indicative content. umber of marks awarded or indicative marking <u>bints</u> 4 3 2 1 0 arks should be awarded for structure and Number of marks awarded for structure of answer and sustained line of reasoning 2 (a minimum of at least 5 IC points including: IC1 and IC2/IC5 and IC3 and IC4/IC5 (a minimum of 3 IC points including: either IC1 and IC2/IC5 Or IC3 and IC4/IC5 0 o or indicative content and the marks for Il be large(r) oportional to the original length will be large(r) versely proportional to cross-sectional area rand ε) extension/length will be lower (although priored area)	
	(may be explained in terms of	of E , σ	and ε)	
	• The percentage uncertainty is this will be greater for the creater for the c	n the e oss-sec	extension/length will be lower (although ctional area)	
	• A small(er) load can be used with a long/thin wire			
				6
	Total for question 16			13

Question	Answer		Mark
Number		(4)	
17(a)(i)	Use of fall factor = $\frac{\text{height fallen before the rope begins to stretch}}{\text{total unstructed length of rope}}$	(1)	
	total unstretched length of rope		
	Use of $c = \frac{\Delta x}{\Delta r}$ with $r = 15.0$ m		
	$\frac{1}{x}$ $\frac{1}{x}$ $\frac{1}{x}$ $\frac{1}{x}$ $\frac{1}{x}$ $\frac{1}{x}$ $\frac{1}{x}$ $\frac{1}{x}$	(1)	
	Use of $E_{\text{grav}} = mg\Delta h$	(1)	
	Use of $E_{\text{grav}} = E_{\text{el}}$ with their Δx	(1)	
			_
	$F_{\rm max} = 14\ 000\ (N)$	(1)	5
	Example of colculation		
	$\frac{1}{1} \frac{1}{1} \frac{1}$		
	Height failen = 15.0 III × 0.6 = 12 III $\Delta x = 0.09 \times 15.0$ III = 1.55 III		
	$E_{\text{grav}} = 71 \text{ kg} \times 9.81 \text{ N kg}^{-1} \times 12 \text{ m} = 8358 \text{ J} \text{ (from fall)}$		
	$E_{\text{grav}} = 71 \text{ kg} \times 9.81 \text{ N kg}^{-1} \times 1.35 \text{ m} = 940.3 \text{ J} \text{ (from extension)}$		
	8358 J + 940.3 J = $\frac{1}{2} \times F_{\text{max}} \times 1.35$ m		
	$F_{\rm max} = 13\ 775\ { m N}$		
17(a)(ii)	• This would not be a good idea, as the climber would reach a higher velocity		
17((((())))))))))))))))))))))))))))))))	(just before the rone stretches)	(1)	
	(Harrow) the climber's deceleration (former (or the norm structures) mould be	(1)	
	• (Hence) the chimber's deceleration/force (as the rope stretches) would be	(1)	2
	greater	(1)	2
17(b)	Max 6		
	• Use of area under the graph to determine the stored energy	(1)	
	• Energy = 800 J (new)	(1)	
	• Energy = 700 L (old)	(1)	
	• The old range would abcorb/store loss anarray		
	• The old tope would absolo/stole less energy	(1)	
		(1)	
	• Use of $F = k\Delta x$ to determine k		
	(accept gradient of a tangent)	(1)	
	• Calculation of k for both ropes at same applied force	(1)	
	• The old rope is not as stiff as the new rope	(1)	
	Or The old rope extends more		
	- ·····	(1)	6
	• The old rope would break at a smaller applied force/stress		-
	• The old tope would bleak at a smaller applied force/stress		10
	Lotal for question 17		13

Question Number	Answer	Mark
18(a)(i)	 Explanation Terminal velocity is the constant/maximum velocity the rain reaches Or terminal velocity is the velocity when acceleration = 0 When weight = Drag (+ upthrust) Or when forces is equilibrium Or when resultant force = 0 (accept when the total upward force = total downward force) Diagram Weight and air resistance (and upthrust) only drawn with correct directions (arrowed lines must touch dot, and labels included) Arrow lengths of weight and air resistance same length (if upthrust drawn, upthrust line + drag line = weight line) (MP4 dependent on MP3) Air resistance/F/D Weight/W/mg 	4

18(a)(ii)	• Use of $A = \pi r^2$ and $V = \frac{4}{3}\pi r^3$	(1)	
	• Use of $\rho = \frac{m}{V}$ and $W = mg$	(1)	
	• Use of $W = F$	(1)	
	• $v = 6.5 - 7.0 \text{ m s}^{-1}$	(1)	4
	Example of calculation $A = \pi \times (0.002)^2 = 1.26 \times 10^{-5} \text{ m}^2$		
	$V = \frac{4}{3} \pi \times (0.002 \text{ m})^3 = 3.35 \times 10^{-8} \text{ m}^3$		
	$m = 1000 \text{ kg m}^{-3} \times 3.35 \times 10^{-8} \text{ m}^3 = 3.35 \times 10^{-5} \text{ kg}$		
	$W = 3.35 \times 10^{-5} \text{ kg} \times 9.81 \text{ N kg}^{-1} = 3.29 \times 10^{-4} \text{ N}$		
	3.29×10^{-4} N = 0. 45 × 1.2 kg m ⁻³ × 1.26 × 10 ⁻⁵ m ² × v ²		
	$3.29 \times 10^{-4} \text{ N} = 6.80 \times 10^{-6} \times v^2$		
	$v = 6.96 \text{ m s}^{-1}$		
18(b)(i)	Vertical displacement increasing	(1)	
	• Horizontal displacement constant (same as first two drops)	(1)	2
	(Mark all added drops but there must be a minimum of 2 additional drops to award MP1 &2)		
	•		
18(b)(ii)	• Use of $s = ut + \frac{1}{2} at^2$ with $u = 0$	(1)	
	(accept use of t = 0.2 s, 0.23 s, 0.73 s, 1.0 s)		
	• See 0.8 s for the time since the drop left the leaf	(1)	
	• $s = 3.1 \text{ m}$	(1)	3
	Example of calculation		
	$s = \frac{1}{2} \times 9.81 \text{ N kg}^{-1} \times (0.8 \text{ s})^2 = 3.14 \text{ m}$		
	Total for question 18		13