Centre No. Paper		Paper Reference Surname	Other nat	mes	
Candi No.	date	6 7 3 5 / 2 C Signature			
		Edexcel			
		GCE	For Exan	niner's use	only
			For Team	n Leader's i	use only
		May/June 2009			
		Advanced Level			
Supe	ervisor's Data and Comments	Physics		Question numbers	Leave blank
А	Period T/s	Unit Test PHY5 Practical Test		A	
В	Tick box if candidate needed assistance to change the meter	if candidate assistance ge the meter Time: 1 hour 20 minutes			
	setting 11me: 1 nour 30 minutes			С	
	needed assistance to set up the circuit	Instructions to Candidates		Total	
	f/Hz	In the boxes above, write your centre number, candidate number, your surname, other names and signature.			
		PHY5 consists of questions A, B and C. Each question is allowed 20 minutes plus 5 minutes writing-up time. There is a further 15 minutes for writing-up at the end. The Supervisor will tell you which experiment to attempt first.			
		Write all your results, calculations and answers in the spaces provided in this question booklet.			
		In calculations you should show all the steps in your working, giving your answer at each stage.			
		Information for Candidates			
		The marks for individual questions and the parts of questions are shown in round brackets.			

The total mark for this paper is 48.

The list of data, formulae and relationships is printed at the end of this booklet.

0

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2009 Edexcel Limited.

 $\overset{\text{Printer's Log. No.}}{N33408A}$

W850/R6735/57570 6/4/5/5/4/

Turn over

edexcel advancing learning, changing lives

	Question A
(a)	Measure, as accurately as possible, the width a and the thickness b of the metre rule which is clamped to the bench.
	(3)
b)	Check that this metre rule is clamped so that a length $x = 950$ mm is projecting.
	You will need to measure the vertical depression y of the end of the rule when a mass $M = 400$ g is hung from the end of the rule.
	Secure the 400 g mass to the end of the rule with a small piece of tape.
	(i) Draw a diagram of your arrangement to show how you propose to measure the depression <i>y</i> .
	(ii) Record your measurements to determine <i>y</i> .

		$E = \frac{B}{yab^3}$	
		Use the data from your experiment to calculate a value for <i>E</i> .	
		(3)	
(c)	(i)	Give the mass a small vertical displacement, release it, and determine the period T of the ensuing vertical oscillations.	
		(3)	
	(ii)	Calculate a second value for <i>E</i> from the equation $16\pi^2 Mr^3$	
		$E = \frac{10\pi Mx}{ab^3 T^2}$	
	(iii)	(2) State, with a reason, which of your two values for <i>E</i> you consider to be the more reliable	

		Ουρ	ation R						
		Que		~					
(a) (i)	Check that the m the a.c. power su off.	eter is set on the pply, switch on	e 20 V a.c. rang , and record the	e. Connect the e potential diff	s voltmeter across ference V. Switch				
	<i>V</i> =								
	DO NOT ADJUST THE POWER SUPPLY ONCE YOU HAVE DONE THIS.								
	Change the meter setting so that it is on the 200 mA a.c. range.								
	Set up the circuit below with $C = 22 \ \mu$ F. Before switching on, you must ask to Supervisor to check your circuit. If your circuit is not correct, the Supervisor we correct it for you. You will only lose 2 marks for this.								
	12 V a.c.								
	100 Ω]	(A					
	¹¹ C (2)								
(ii)	ii) Switch on and record the current <i>I</i> . Put this value of <i>I</i> in the table below.								
	С/ µF	Ι/	Z /	Z ² /	$1/C^2/10^8 { m F}^{-2}$				
	22				20.7				
	32				9.8				
	47				4.5				
	57				3.1				
	69				2.1				
	79				1.6				

Using the capacitors singly and in *parallel* combinations, find the current for the values of capacitance shown in the table.

(ii)	Determine a value for the frequency f of the a.c. supply given that	
	$\epsilon = 1$	
	$J = \frac{1}{2\pi\sqrt{S}}$	
	(4)	QB
	(Total 16 marks)	

	\sim \sim
	Question C
ou are to p ou are the	an an investigation of how the resistance of a thermistor varies with temperature. In to analyse a set of data from such an experiment.
(a) (i)	Draw a diagram of the arrangement you would use to measure the resistance of a thermistor at different temperatures in the range 10 °C to 70 °C.
	(3)
(ii)	(3) Describe how you would carry out the experiment and state any precautions that you would take to improve the accuracy of your results.
(ii)	(3) Describe how you would carry out the experiment and state any precautions that you would take to improve the accuracy of your results.
(ii)	(3) Describe how you would carry out the experiment and state any precautions that you would take to improve the accuracy of your results.
(ii)	(3) Describe how you would carry out the experiment and state any precautions that you would take to improve the accuracy of your results.
(ii)	(3) Describe how you would carry out the experiment and state any precautions that you would take to improve the accuracy of your results.
(ii)	(3) Describe how you would carry out the experiment and state any precautions that you would take to improve the accuracy of your results.

Leave blank (b) A student suggests that the resistance R of a thermistor may be related to its celsius temperature θ by an equation of the form $R = R_0 e^{-a\theta}$ where R_0 is the resistance at 0 °C and *a* is a constant. Explain how a graph of $\ln R$ against θ would enable you to find values for R_0 and the constant *a*. -----..... (2) (c) The following data were obtained in such an experiment. $\theta / \,^{\circ}\mathrm{C}$ $R / \mathrm{k}\Omega$ 10.0 11.54 20.0 7.50 30.0 4.76 40.0 3.16 50.0 2.05 60.0 1.21 70.0 0.67

Add values of $\ln R$ to the table and then plot a graph of $\ln R$ against θ on the grid opposite.

	Le bla
(d) (i) Over what range of temperatures do the results of proposed equation is correct?	f this experiment suggest that the
(ii) Use your graph to estimate a value for R_0 , the 0 °C.	e resistance of the thermistor at
	(3) Q
	(Total 16 marks)
ТОТ	AL FOR PAPER: 48 MARKS
FND	
END	

List of data, formulae and relationships

Data

Speed of light in vacuum	$c = 3.00 \times 10^8 \mathrm{m \ s^{-1}}$			
Gravitational constant	$G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$			
Acceleration of free fall	$g = 9.81 \text{ m s}^{-2}$	(close to the Earth)		
Gravitational field strength	$g = 9.81 \text{ N kg}^{-1}$	(close to the Earth)		
Elementary (proton) charge	$e = 1.60 \times 10^{-19} \mathrm{C}$			
Electronic mass	$m_{\rm e} = 9.11 \times 10^{-31} \rm kg$			
Electronvolt	$1 \text{eV} = 1.60 \times 10^{-19} \text{ J}$			
Planck constant	$h = 6.62 \times 10^{-34} \text{ J s}$			
Unified atomic mass unit	$u = 1.66 \times 10^{-27} \text{ kg}$			
Molar gas constant	$R = 8.31 \mathrm{J \ K^{-1} \ mol^{-1}}$			
Permittivity of free space	$\varepsilon_0 = 8.85 \times 10^{-12} \mathrm{Fm}^{-1}$			
Coulomb law constant	$k = 1/4\pi\varepsilon_0$			
	$= 8.99 \times 10^9$ N m ² C ⁻²			
Permeability of free space	$\mu_0 = 4\pi \times 10^{-7} \ N \ A^{-2}$			
Rectilinear motion				
For uniformly accelerated motio	n:			
	v = u + at			
	$x = ut + \frac{1}{2}at^2$			
	$v^2 = u^2 + 2ax$			
Forces and moments				
Moment of F a	bout $O = F \times (Perpendicular distance)$	e from F to O)		

Sum of clockwise moments	_	Sum of anticlockwise moments
about any point in a plane	_	about that point

Dynamics

Force	$F = m \frac{\Delta v}{\Delta t} = \frac{\Delta p}{\Delta t}$		
Impulse	$F\Delta t = \Delta p$		
Mechanical energy			
Power	P = Fv		
Radioactive decay and the nuclea	r atom		
Activity	$A = \lambda N$		

(Decay constant λ)

Half-life $\lambda t_{\frac{1}{2}} = 0.69$

Electrical current and potential d	ifference	
Electric current	I = nAQv	
Electric power	$P = I^2 R$	
Electrical circuits		
Terminal potential difference	$V = \mathcal{E} - Ir$	(E.m.f. \mathcal{E} ; Internal resistance r)
Circuit e.m.f.	$\Sigma \boldsymbol{\mathcal{E}} = \Sigma I R$	
Resistors in series	$R = R_1 + R_2 + R_3$	
Resistors in parallel	$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$	
Heating matter		
Change of state: energy	transfer = $l\Delta m$ (Specific la	atent heat or specific enthalpy change <i>l</i>)
Heating and cooling: energy	transfer = $mc\Delta T$ (Specific h	eat capacity <i>c</i> ; Temperature change ΔT)
Celsius temperature	$\theta/^{\circ}\mathrm{C} = T/\mathrm{K} - 273$	
Kinetic theory of matter		
Temperature and energy	$T \propto$ Average kinetic er	nergy of molecules
Kinetic theory	$p = \frac{1}{3} \rho \langle c^2 \rangle$	
Conservation of energy		
Change of internal energy	$\Delta U = \Delta Q + \Delta W$	(Energy transferred thermally ΔQ ; Work done on body ΔW)
Efficiency of energy transfer	$=\frac{\text{Useful output}}{\text{Input}}$	
Heat engine maximum eff	iciency = $\frac{T_1 - T_2}{T_1}$	
Circular motion and oscillations		
Angular speed	$\omega = \frac{\Delta\theta}{\Delta t} = \frac{v}{r}$	(Radius of circular path r)
Centripetal acceleration	$a = \frac{v^2}{r}$	
Period	$T = \frac{1}{f} = \frac{2\pi}{\omega}$	(Frequency f)
Simple harmonic motion:		
displac	ement $x = x_0 \cos 2\pi f t$	
maximu	m speed = $2\pi f x_0$	
acceler	ration $a = -(2\pi f)^2 x$	
For a simple pendulum	$T = 2\pi \sqrt{\frac{l}{g}}$	

Waves		
Intensity	$I = \frac{P}{4\pi r^2}$	(Distance from point source <i>r</i> ; Power of source <i>P</i>)
Superposition of waves		
Two slit interference	$\lambda = \frac{xs}{D}$	(Wavelength λ ; Slit separation <i>s</i> ; Fringe width <i>x</i> ; Slits to screen distance <i>D</i>)
Quantum phenomena		
Photon model	E = hf	(Planck constant <i>h</i>)
Maximum energy of photoelectrons	$= hf - \varphi$	(Work function φ)
Energy levels	$hf = E_1 - E_2$	
de Broglie wavelength	$\lambda = \frac{h}{p}$	
Observing the Universe		
Doppler shift	$\frac{\Delta f}{f} = \frac{\Delta \lambda}{\lambda} \approx \frac{v}{c}$	
Hubble law	v = Hd	(Hubble constant <i>H</i>)
Gravitational fields		
Gravitational field strength	g = F / m	
for radial field	$g = Gm/r^2$,	numerically (Gravitational constant G)
Electric fields		
Electrical field strength	E = F / Q	
for radial field	$E = kQ/r^2$	(Coulomb law constant <i>k</i>)
for uniform field	E = V/d	
For an electron in a vacuum tube <i>e</i>	$e\Delta V = \Delta(\frac{1}{2}m_{\rm e}v)$	²)
Capacitance		
Energy stored	$W = \frac{1}{2}CV^2$	
Capacitors in parallel	$C = C_1 + C_2 + $	$+C_3$
Capacitors in series	$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2}$	$+\frac{1}{C_3}$
Time constant for capacitor discharge	= RC	

|____

Magnetic fields

Force on a wire	F = BIl	
Magnetic flux density (Magne	tic field strength)	
in a long solenoid	$B = \mu_0 nI$ (Perr	neability of free space μ_0)
near a long wire	$B = \mu_0 I / 2\pi r$	
Magnetic flux	$\Phi = BA$	
E.m.f. induced in a coil	$\mathcal{E} = -\frac{N\Delta\Phi}{\Delta t}$	(Number of turns <i>N</i>)
Accelerators		
Mass-energy	$\Delta E = c^2 \Delta m$	
Force on a moving charge	F = BQv	
Analogies in physics		
Capacitor discharge	$Q = Q_0 \mathrm{e}^{-t/RC}$	
	$\frac{t_{\frac{1}{2}}}{RC} = \ln 2$	
Radioactive decay	$N = N_0 \mathrm{e}^{-\lambda t}$	
	$\lambda t_{\frac{1}{2}} = \ln 2$	
Experimental physics		
Percentage	e uncertainty = $\frac{\text{Estimated unce}}{\text{Average}}$	rtainty × 100% ge value
Mathematics		
	$\sin(90^\circ - \theta) = \cos\theta$	
	$\ln(x^n) = n \ln x$	
	$\ln(e^{kx}) = kx$	
Equation of a straight line	y = mx + c	
Surface area	$cylinder = 2\pi rh + 2\pi r^2$	
	sphere = $4\pi r^2$	
Volume	cylinder = $\pi r^2 h$	
	sphere $=\frac{4}{3}\pi r^3$	
For small angles:	$\sin\theta \approx \tan\theta \approx \theta$	(in radians)
	$\cos\theta \approx 1$	

BLANK PAGE

|____

BLANK PAGE

