| Centre<br>No.         |                                                                                                          |                                                                                                                                                                                                                                                         |                   | Pape           | er Refer | ence    |        |          | Surname          |                  | Other na       | mes         | ]        |
|-----------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------|----------|---------|--------|----------|------------------|------------------|----------------|-------------|----------|
| Candidate<br>No.      |                                                                                                          | 6                                                                                                                                                                                                                                                       | 7                 | 3              | 5        | /       | 2      | B        | Signature        |                  |                |             |          |
|                       | E                                                                                                        | dey                                                                                                                                                                                                                                                     | XC(               | el             |          |         |        |          |                  |                  |                |             |          |
|                       | G                                                                                                        | CE                                                                                                                                                                                                                                                      |                   | • -            |          |         |        |          |                  |                  | For Exar       | niner's use | only     |
|                       | Phy                                                                                                      | vsia                                                                                                                                                                                                                                                    | 25                |                |          |         |        |          |                  |                  | For Tear       | n Leader's  | use only |
| Supervisor's Comments | $\neg$ Adv                                                                                               | ance                                                                                                                                                                                                                                                    | d Le              | evel           | l        |         |        |          |                  |                  |                |             |          |
|                       | – Unit<br>– Grou                                                                                         | Unit Test PHY5 Practical Test<br>Group 2                                                                                                                                                                                                                |                   |                |          |         |        |          |                  | Question numbers | Leave<br>blank |             |          |
|                       | - Wednesday 20 May 2009 – Morning                                                                        |                                                                                                                                                                                                                                                         |                   |                |          |         |        | <b>,</b> |                  | А                |                |             |          |
|                       | Time                                                                                                     | Time: 1 hour 30 minutes                                                                                                                                                                                                                                 |                   |                |          |         |        |          |                  | В                |                |             |          |
|                       |                                                                                                          |                                                                                                                                                                                                                                                         |                   |                |          |         |        |          |                  |                  |                | С           |          |
|                       | Instru                                                                                                   | uction                                                                                                                                                                                                                                                  | s to (            | Cano           | didat    | es      |        |          |                  |                  |                | Total       |          |
|                       | In the boxes above, write your centre number, candidate number, your surname, other names and signature. |                                                                                                                                                                                                                                                         |                   |                |          |         |        | our      |                  |                  |                |             |          |
|                       | <ul> <li>PHY5</li> <li>20 min</li> <li>minutes</li> <li>experin</li> </ul>                               | <ul> <li>PHY5 consists of questions A, B and C. Each question is allowed 20 minutes plus 5 minutes writing-up time. There is a further 15 minutes for writing-up at the end. The Supervisor will tell you which experiment to attempt first.</li> </ul> |                   |                |          |         |        |          | ved<br>15<br>ich |                  |                |             |          |
|                       | Write a in this of                                                                                       | ll your r<br>question                                                                                                                                                                                                                                   | results,<br>bookl | , calcu<br>et. | lation   | s and a | answei | rs in th | e spaces provid  | ded              |                |             |          |
|                       | In calcu<br>your an                                                                                      | ulations<br>iswer at                                                                                                                                                                                                                                    | you sh<br>each s  | nould<br>tage. | show     | all the | steps  | in you   | ır working, givi | ing              |                |             |          |
|                       | Infor                                                                                                    | matio                                                                                                                                                                                                                                                   | n for             | Car            | ndida    | ites    |        |          |                  |                  |                |             |          |
|                       | The ma                                                                                                   | rks for i<br>d bracke                                                                                                                                                                                                                                   | ndividı<br>ets.   | ual qu         | estion   | s and t | he par | ts of qu | lestions are sho | wn               |                |             |          |

The total mark for this paper is 48.

The list of data, formulae and relationships is printed at the end of this booklet.

0

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2009 Edexcel Limited.

 $\overset{\text{Printer's Log. No.}}{N33405A}$ 

W850/R6735/57570 6/4/5/5/4/



## Turn over

edexcel advancing learning, changing lives

|                          | Question 2A                                                                                                                                                                                                                                                                      |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| On the lare used tube to | ourette there are three pieces of tape labelled H, M and L. The upper edges of these d to mark the level of water in the burette. There is a beaker under the capillary collect the outflow. This arrangement should not be disturbed.                                           |
| (a) (i)                  | Measure the height of the capillary tube outlet above the bench.                                                                                                                                                                                                                 |
|                          | Measure the height from the bench to the top of tape H.                                                                                                                                                                                                                          |
|                          | Hence calculate the height $h_0$ of the top of tape H above the capillary outlet.                                                                                                                                                                                                |
|                          | Make further measurements to find the heights <b>above the capillary outlet</b> of the tops of the other two pieces of tape on the burette; make sure you measure to the upper edge of the tape each time. Let these two heights be $h_1$ and $h_2$ , where $h_1$ is the larger. |
|                          | Calculate the ratios $h_1/h_0$ and $h_2/h_1$ .                                                                                                                                                                                                                                   |
|                          | (3)                                                                                                                                                                                                                                                                              |
| (ii)                     | Check that the burette is filled above tape H.                                                                                                                                                                                                                                   |
|                          | Open the tap on the burette and measure the time $t_1$ for the water to fall from the upper edge of tape H to the upper edge of tape M. Close the tap.                                                                                                                           |
|                          | Add a few cm <sup>3</sup> of water from the top-up beaker to the burette to take the level above tape M.                                                                                                                                                                         |
|                          |                                                                                                                                                                                                                                                                                  |
|                          | Measure the time $t_2$ for the water to fall from the upper edge of tape M to the upper edge of tape L. Close the tap.                                                                                                                                                           |









| from th               | re now to take me<br>he start as the cap  | easurements to rec<br>acitor charges thre  | cord the current after ough the resistor.     | er 15.0 s and 30.0 s  |
|-----------------------|-------------------------------------------|--------------------------------------------|-----------------------------------------------|-----------------------|
| First di<br>time us   | ischarge the capac<br>sing the spare lead | citor. Do this by co<br>d.                 | onnecting point X to                          | o point Y for a short |
| Discor<br>Record      | nnect the spare lead the current $I_1$ at | d from X and Y. C $15.0$ s and $I_2$ at 30 | Connect A to X and .0 s.                      | start the stopwatch.  |
|                       | I <sub>1</sub>                            | I <sub>2</sub>                             | <i>I</i> <sub>0</sub> / <i>I</i> <sub>1</sub> | $I_1 / I_2$           |
| _                     |                                           |                                            |                                               |                       |
| Mean values           |                                           |                                            |                                               |                       |
|                       |                                           |                                            |                                               | (6)                   |
| (ii) Calcul           | ate the percentag                         | e difference betw                          | een the two ratios.                           | (6)<br>Comment on the |
| (ii) Calcul<br>sugges | ate the percentag<br>tion that these rat  | e difference betw<br>ios have the same     | een the two ratios.<br>value.                 | (6)<br>Comment on the |
| (ii) Calcul<br>sugges | ate the percentage<br>tion that these rat | e difference betw<br>ios have the same     | een the two ratios.<br>value.                 | (6)<br>Comment on the |
| (ii) Calcul<br>sugges | ate the percentage<br>tion that these rat | e difference betw<br>ios have the same     | een the two ratios.<br>value.                 | (6)<br>Comment on the |
| (ii) Calcul<br>sugges | ate the percentage<br>tion that these rat | e difference betw<br>ios have the same     | een the two ratios.<br>value.                 | (6)<br>Comment on the |
| (ii) Calcul<br>sugges | ate the percentag<br>tion that these rat  | e difference betw<br>ios have the same     | een the two ratios.<br>value.                 | (6)<br>Comment on the |







Leave blank

(b) Take five further readings of the current I in the diode as you raise the temperature  $\theta$ by about 50 °C. Record all your readings for I and  $\theta$  below. Ensure that you adjust the variable resistor such that the reading on the voltmeter is V each time you take your readings.

Disconnect the battery after you have taken your readings and move the Bunsen burner from under the boiling tube.

| <i>θ</i> / °C | I / mA | <i>T /</i> K | $\ln(I / mA)$ |
|---------------|--------|--------------|---------------|
|               |        |              |               |
|               |        |              |               |
|               |        |              |               |
|               |        |              |               |
|               |        |              |               |
|               |        |              |               |

(6)

(c) It is suggested that *I* and *T* are related by the equation

 $I = I_0 e^{bT}$ 

and hence

$$\ln I = bT + \ln I_0$$

where  $I_0$  and b are constants and T is the temperature of the diode in kelvin.

Add values of T and  $\ln I$  to your table and then plot a graph of  $\ln I$  against T on the grid opposite.

(3)







| (d) (i) Use the gradient of your graph to find a value for the constant b.       Image: Constant b.         (ii) Explain how you would use your graph to find a value for $I_0$ .       Image: Constant b.         (iii) Explain how you would use your graph to find a value for $I_0$ .       Image: Constant b.         (iii) What is the physical significance of $I_0$ ?       Image: Constant b.         (4) Q       Image: Constant b. |         |                                                                            | Leav | ve<br>1- |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------|------|----------|
| (ii) Explain how you would use your graph to find a value for <i>I</i> <sub>0</sub> .                                                                                                                                                                                                                                                                                                                                                         | (d) (i) | Use the gradient of your graph to find a value for the constant <i>b</i> . | bian | к        |
| (ii) Explain how you would use your graph to find a value for <i>I</i> <sub>0</sub> .                                                                                                                                                                                                                                                                                                                                                         |         |                                                                            |      |          |
| (ii) Explain how you would use your graph to find a value for $I_0$ .                                                                                                                                                                                                                                                                                                                                                                         |         |                                                                            |      |          |
| (ii) Explain how you would use your graph to find a value for $I_0$ .                                                                                                                                                                                                                                                                                                                                                                         |         |                                                                            |      |          |
| What is the physical significance of $I_0$ ?                                                                                                                                                                                                                                                                                                                                                                                                  | (ii)    | Explain how you would use your graph to find a value for $I_0$ .           |      |          |
| What is the physical significance of $I_0$ ?<br>(4)                                                                                                                                                                                                                                                                                                                                                                                           |         |                                                                            |      |          |
| What is the physical significance of $I_0$ ?<br>(4)                                                                                                                                                                                                                                                                                                                                                                                           |         |                                                                            |      |          |
| What is the physical significance of $I_0$ ?<br>(4)                                                                                                                                                                                                                                                                                                                                                                                           |         |                                                                            |      |          |
| What is the physical significance of $I_0$ ?<br>(4)                                                                                                                                                                                                                                                                                                                                                                                           |         |                                                                            |      |          |
| (4) Q                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | What is the physical significance of $I_0$ ?                               |      |          |
| $(4) \qquad Q$                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                            |      |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | (4)                                                                        | Q2   | B        |
| (lotal 16 marks)                                                                                                                                                                                                                                                                                                                                                                                                                              |         | (Total 16 marks)                                                           |      |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                                            |      |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                                            |      |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                                            |      |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                                            |      |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                                            |      |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                                            |      |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                                            |      |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                                            |      |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                                            |      |          |



|                      | Question 2C                                                                                                                                                                                                                                                                                                                            | blan |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| u are to<br>ta. You  | o plan an experiment on a sample of gas using computer technology to capture the<br>will then analyse a set of data from a similar experiment.                                                                                                                                                                                         |      |
| (a) A<br>g<br>n<br>T | A calibrated syringe is filled with the gas at atmospheric pressure. The pressure of the gas is monitored by a pressure sensor attached to the end of the syringe. This sensor neasures the difference between the pressure of the gas and atmospheric pressure. The output from this sensor is sent to a computer to record the data. |      |
| Г                    | The block diagram for measuring and recording the pressure sensor is shown below:                                                                                                                                                                                                                                                      |      |
|                      | Sensor Interface Computer                                                                                                                                                                                                                                                                                                              |      |
| T<br>T<br>s          | The method is to vary the volume of the gas whilst keeping the temperature constant.<br>The computer records the sensor reading. The volume of the gas is read from the cale on the syringe and the values are entered manually using the keyboard.<br>What must be done to avoid a systematic error in the pressure of the gas?       |      |
| S<br>a               | Suggest two experimental precautions that you would take to ensure that the data are accurate.                                                                                                                                                                                                                                         |      |
|                      |                                                                                                                                                                                                                                                                                                                                        |      |
| S                    | Suggest an advantage of using computer technology for this experiment.                                                                                                                                                                                                                                                                 |      |
|                      | Suggest an advantage of using computer technology for this experiment.                                                                                                                                                                                                                                                                 |      |
|                      |                                                                                                                                                                                                                                                                                                                                        |      |

|\_\_\_\_



| · •         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                        |               |          |               |       |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------|----------|---------------|-------|
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | pV = nRT                                                                                               |               |          |               |       |
| explain v   | why a graph of $p$ against the second secon | inst $1/V$ will be                                                                                     | a straight li | ne throu | gh the origin |       |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                        |               |          |               |       |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                        |               |          |               |       |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                        |               |          |               | ••••• |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                        |               |          |               |       |
| Write do    | wn the expression fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | r the gradient o                                                                                       | f such a gra  | ph.      |               |       |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                        |               |          |               | (3)   |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                        |               |          |               |       |
| In such a   | n avpariment the fal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lowing data wa                                                                                         | ra raaardad   |          |               | (3)   |
| In such a   | in experiment the fol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lowing data we                                                                                         | re recorded.  |          |               | (3)   |
| In such a   | In experiment the fol<br>p / kPa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lowing data we $V/ \text{ cm}^3$                                                                       | re recorded.  |          |               | (3)   |
| In such a   | n experiment the fol<br>p / kPa<br>101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lowing data were $V/ \text{ cm}^3$<br>60.0                                                             | re recorded.  |          |               | (3)   |
| In such a   | $\frac{p / kPa}{101}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lowing data wer<br><i>V</i> / cm <sup>3</sup><br>60.0<br>54.0                                          | re recorded.  |          |               | (3)   |
| In such a   | $\frac{p / kPa}{101}$ 112 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lowing data wer<br><i>V</i> / cm <sup>3</sup><br>60.0<br>54.0<br>50.2                                  | re recorded.  |          |               | (3)   |
| In such a   | p / kPa $101$ $112$ $120$ $135$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lowing data wer<br>V / cm <sup>3</sup><br>60.0<br>54.0<br>50.2<br>45.0                                 | re recorded.  |          |               | (3)   |
| In such a   | p / kPa $101$ $112$ $120$ $135$ $150$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lowing data wer<br>V / cm <sup>3</sup><br>60.0<br>54.0<br>50.2<br>45.0<br>40.2                         | re recorded.  |          |               | (3)   |
| In such a   | $ \begin{array}{r} p \ / \ kPa \\ \hline 101 \\ \hline 112 \\ \hline 120 \\ \hline 135 \\ \hline 150 \\ \hline 167 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lowing data wer<br>V / cm <sup>3</sup><br>60.0<br>54.0<br>50.2<br>45.0<br>40.2<br>36.5                 | re recorded.  |          |               |       |
| In such a   | in experiment the fol<br>p / kPa<br>101<br>112<br>120<br>135<br>150<br>167<br>179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V / cm <sup>3</sup> 60.0         54.0         50.2         45.0         36.5         34.0              | re recorded.  |          |               |       |
| ) In such a | in experiment the fol<br>$ \begin{array}{r} p / kPa \\ \hline 101 \\ 112 \\ 120 \\ \hline 135 \\ \hline 150 \\ \hline 167 \\ \hline 179 \\ \hline 190 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V / cm <sup>3</sup> 60.0         54.0         50.2         45.0         36.5         34.0         32.0 | re recorded.  |          |               |       |

Plot a graph of p against 1/V on the grid opposite. Use the additional column for any processed data.





### List of data, formulae and relationships

#### Data

| Speed of light in vacuum       | $c = 3.00 \times 10^8 \mathrm{m \ s^{-1}}$                        |                      |
|--------------------------------|-------------------------------------------------------------------|----------------------|
| Gravitational constant         | $G = 6.67 \times 10^{-11} \mathrm{N}\mathrm{m}^2\mathrm{kg}^{-2}$ |                      |
| Acceleration of free fall      | $g = 9.81 \text{ m s}^{-2}$                                       | (close to the Earth) |
| Gravitational field strength   | $g = 9.81 \text{ N kg}^{-1}$                                      | (close to the Earth) |
| Elementary (proton) charge     | $e = 1.60 \times 10^{-19} \mathrm{C}$                             |                      |
| Electronic mass                | $m_{\rm e} = 9.11 \times 10^{-31}  \rm kg$                        |                      |
| Electronvolt                   | $1 \mathrm{eV} = 1.60 \times 10^{-19} \mathrm{J}$                 |                      |
| Planck constant                | $h = 6.62 \times 10^{-34} \text{ J s}$                            |                      |
| Unified atomic mass unit       | $u = 1.66 \times 10^{-27} \text{ kg}$                             |                      |
| Molar gas constant             | $R = 8.31 \mathrm{J} \mathrm{K}^{-1} \mathrm{mol}^{-1}$           |                      |
| Permittivity of free space     | $\varepsilon_0 = 8.85 \times 10^{-12} \mathrm{Fm}^{-1}$           |                      |
| Coulomb law constant           | $k = 1/4\pi\varepsilon_0$                                         |                      |
|                                | $= 8.99 \times 10^{9}$ N m <sup>2</sup> C <sup>-2</sup>           |                      |
| Permeability of free space     | $\mu_0 = 4\pi \times 10^{-7} \text{ N A}^{-2}$                    |                      |
| Rectilinear motion             |                                                                   |                      |
| For uniformly accelerated moti | on:                                                               |                      |
|                                | v = u + at                                                        |                      |
|                                | $x = ut + \frac{1}{2}at^2$                                        |                      |
|                                | $v^2 = u^2 + 2ax$                                                 |                      |
| Forces and moments             |                                                                   |                      |

Moment of F about  $O = F \times (Perpendicular distance from F to O)$ 

| Sum of clockwise moments   | _ | Sum of anticlockwise moments |
|----------------------------|---|------------------------------|
| about any point in a plane | _ | about that point             |

## **Dynamics**

| Dynamics                 |                                                               |  |
|--------------------------|---------------------------------------------------------------|--|
| Force                    | $F = m \frac{\Delta v}{\Delta t} = \frac{\Delta p}{\Delta t}$ |  |
| Impulse                  | $F\Delta t = \Delta p$                                        |  |
| Mechanical energy        |                                                               |  |
| Power                    | P = Fv                                                        |  |
| Radioactive decay and th | ne nuclear atom                                               |  |
| Activity                 | $A = \lambda N$                                               |  |
| Half-life                | $\lambda t_{rac{1}{2}} = 0.69$                               |  |
|                          |                                                               |  |



(Decay constant  $\lambda$ )

| Electrical current and potential diff | Serence                                                       |                                                                              |
|---------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------|
| Electric current                      | I = nAQv                                                      |                                                                              |
| Electric power                        | $P = I^2 R$                                                   |                                                                              |
| Electrical circuits                   |                                                               |                                                                              |
| Terminal potential difference         | $V = \mathcal{E} - Ir$                                        | (E.m.f. $\mathcal{E}$ ; Internal resistance $r$ )                            |
| Circuit e.m.f.                        | $\Sigma \mathcal{E} = \Sigma I R$                             |                                                                              |
| Resistors in series                   | $R = R_1 + R_2 + R_3$                                         |                                                                              |
| Resistors in parallel                 | $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$ |                                                                              |
| Heating matter                        |                                                               |                                                                              |
| Change of state: energy tr            | ansfer = $l\Delta m$ (Specific la                             | atent heat or specific enthalpy change l)                                    |
| Heating and cooling: energy tr        | ansfer = $mc\Delta T$ (Specific h                             | heat capacity c; Temperature change $\Delta T$ )                             |
| Celsius temperature                   | $\theta/^{\circ}\mathrm{C} = T/\mathrm{K} - 273$              |                                                                              |
| Kinetic theory of matter              |                                                               |                                                                              |
| Temperature and energy                | $T \propto$ Average kinetic er                                | nergy of molecules                                                           |
| Kinetic theory                        | $p = \frac{1}{3} \rho \langle c^2 \rangle$                    |                                                                              |
| Conservation of energy                |                                                               |                                                                              |
| Change of internal energy             | $\Delta U = \Delta Q + \Delta W$                              | (Energy transferred thermally $\Delta Q$ ;<br>Work done on body $\Delta W$ ) |
| Efficiency of energy transfer         | $=\frac{\text{Useful output}}{\text{Input}}$                  |                                                                              |
| Heat engine maximum effic             | iency $= \frac{T_1 - T_2}{T_1}$                               |                                                                              |
| Circular motion and oscillations      |                                                               |                                                                              |
| Angular speed                         | $\omega = \frac{\Delta\theta}{\Delta t} = \frac{v}{r}$        | (Radius of circular path $r$ )                                               |
| Centripetal acceleration              | $a = \frac{v^2}{r}$                                           |                                                                              |
| Period                                | $T = \frac{1}{f} = \frac{2\pi}{\omega}$                       | (Frequency f)                                                                |
| Simple harmonic motion:               |                                                               |                                                                              |
| displace                              | ment $x = x_0 \cos 2\pi f t$                                  |                                                                              |
| maximum                               | speed = $2\pi f x_0$                                          |                                                                              |
| accelera                              | tion $a = -(2\pi f)^2 x$                                      |                                                                              |
| For a simple pendulum                 | $T = 2\pi \sqrt{\frac{l}{g}}$                                 |                                                                              |



| Waves                                     |                                                                           |                                                                                                                   |
|-------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Intensity                                 | $I = \frac{P}{4\pi r^2}$                                                  | (Distance from point source <i>r</i> ;<br>Power of source <i>P</i> )                                              |
| Superposition of waves                    |                                                                           |                                                                                                                   |
| Two slit interference                     | $\lambda = \frac{xs}{D}$                                                  | (Wavelength $\lambda$ ; Slit separation <i>s</i> ;<br>Fringe width <i>x</i> ; Slits to screen distance <i>D</i> ) |
| Quantum phenomena                         |                                                                           |                                                                                                                   |
| Photon model                              | E = hf                                                                    | (Planck constant <i>h</i> )                                                                                       |
| Maximum energy of photoelectrons          | $= hf - \varphi$                                                          | (Work function $\varphi$ )                                                                                        |
| Energy levels                             | $hf = E_1 - E_2$                                                          |                                                                                                                   |
| de Broglie wavelength                     | $\lambda = \frac{h}{p}$                                                   |                                                                                                                   |
| <b>Observing the Universe</b>             |                                                                           |                                                                                                                   |
| Doppler shift                             | $\frac{\Delta f}{f} = \frac{\Delta \lambda}{\lambda} \approx \frac{v}{c}$ |                                                                                                                   |
| Hubble law                                | v = Hd                                                                    | (Hubble constant H)                                                                                               |
| Gravitational fields                      |                                                                           |                                                                                                                   |
| Gravitational field strength              | g = F / m                                                                 |                                                                                                                   |
| for radial field                          | $g = Gm/r^2$ ,                                                            | numerically (Gravitational constant G)                                                                            |
| Electric fields                           |                                                                           |                                                                                                                   |
| Electrical field strength                 | E = F / Q                                                                 |                                                                                                                   |
| for radial field                          | $E = kQ/r^2$                                                              | (Coulomb law constant <i>k</i> )                                                                                  |
| for uniform field                         | E = V/d                                                                   |                                                                                                                   |
| For an electron in a vacuum tube <i>e</i> | $e\Delta V = \Delta(\frac{1}{2}m_{\rm e}v)$                               | <sup>2</sup> )                                                                                                    |
| Capacitance                               |                                                                           |                                                                                                                   |
| Energy stored                             | $W = \frac{1}{2}CV^2$                                                     |                                                                                                                   |
| Capacitors in parallel                    | $C = C_1 + C_2$                                                           | $+C_3$                                                                                                            |
| Capacitors in series                      | $\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2}$                             | $+\frac{1}{C_3}$                                                                                                  |
| Time constant for capacitor               |                                                                           |                                                                                                                   |

| Energy stored               | $W = \frac{1}{2}CV^2$                                         |
|-----------------------------|---------------------------------------------------------------|
| Capacitors in parallel      | $C = C_1 + C_2 + C_3$                                         |
| Capacitors in series        | $\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$ |
| Time constant for capacitor |                                                               |
| discharge                   | = RC                                                          |



# Magnetic fields

|\_\_\_\_

| Force on a wire              | F = BIl                                                        |                                   |
|------------------------------|----------------------------------------------------------------|-----------------------------------|
| Magnetic flux density (Magne | etic field strength)                                           |                                   |
| in a long solenoid           | $B = \mu_0 nI$ (Perr                                           | neability of free space $\mu_0$ ) |
| near a long wire             | $B = \mu_0 I/2\pi r$                                           |                                   |
| Magnetic flux                | $\Phi = BA$                                                    |                                   |
| E.m.f. induced in a coil     | $\mathcal{E} = -\frac{N\Delta\Phi}{\Delta t}$                  | (Number of turns <i>N</i> )       |
| Accelerators                 |                                                                |                                   |
| Mass-energy                  | $\Delta E = c^2 \Delta m$                                      |                                   |
| Force on a moving charge     | F = BQv                                                        |                                   |
| Analogies in physics         |                                                                |                                   |
| Capacitor discharge          | $Q = Q_0 \mathrm{e}^{-t/RC}$                                   |                                   |
|                              | $\frac{t_{\frac{1}{2}}}{RC} = \ln 2$                           |                                   |
| Radioactive decay            | $N = N_0 \mathrm{e}^{-\lambda t}$                              |                                   |
|                              | $\lambda t_{\frac{1}{2}} = \ln 2$                              |                                   |
| Experimental physics         |                                                                |                                   |
| Percentage                   | e uncertainty = $\frac{\text{Estimated unce}}{\text{Average}}$ | rtainty × 100%<br>ge value        |
| Mathematics                  |                                                                |                                   |
|                              | $\sin(90^\circ - \theta) = \cos\theta$                         |                                   |
|                              | $\ln(x^n) = n \ln x$                                           |                                   |
|                              | $\ln(e^{kx}) = kx$                                             |                                   |
| Equation of a straight line  | y = mx + c                                                     |                                   |
| Surface area                 | $cylinder = 2\pi rh + 2\pi r^2$                                |                                   |
|                              | sphere = $4\pi r^2$                                            |                                   |
| Volume                       | cylinder = $\pi r^2 h$                                         |                                   |
|                              | sphere $=\frac{4}{3}\pi r^3$                                   |                                   |
| For small angles:            | $\sin\theta \approx \tan\theta \approx \theta$                 | (in radians)                      |
|                              | $\cos\theta \approx 1$                                         |                                   |
|                              |                                                                |                                   |



**BLANK PAGE** 

