Centre No.						Paper Reference							Surname	Other names
Candidate No.						6	7	3	3	1	2	Ω	Signature	

Edexcel

GCE

\(\left.$$
\begin{array}{c|}\hline \begin{array}{c}\text { Question } \\
\text { numbers }\end{array}
$$

\hline Leave

blank\end{array}\right]\)| |
| :---: |
| A |
| Total |

Physics

Advanced Subsidiary
Unit Test PHY3 Practical Test
(International)
May 2009
Time: 1 hour 30 minutes

Comments

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, other names and signature.
PHY3 consists of questions A and B. Each question is allowed 35 minutes plus 5 minutes writing-up time. There is a further 10 minutes for writing-up at the end. The Supervisor will tell you which experiment to attempt first.

Write all your results, calculations and answers in the spaces provided in this question booklet.
In calculations you should show all the steps in your working, giving your answer at each stage.

Information for Candidates

The marks for individual questions and the parts of questions are shown in round brackets.
The total mark for this paper is 48 .
The list of data, formulae and relationships is printed at the end of this booklet.

Question A

(a) (i) Set up the circuit as shown in the diagram below. Before connecting to the power supply, have your circuit checked by the Supervisor. You will be allowed a short time to correct any faults. If you are unable to set up the circuit the Supervisor will set it up for you. You will only lose two marks for this.

(ii) Using the space below, record the potential difference V across the thermistor and the current I in the circuit.
$V=$ \qquad
$I=$.
Hence calculate a value for the resistance R of the thermistor.
\qquad
\qquad
\qquad
(iii) You are to observe how the current changes with time as you warm the thermistor and then sketch a graph of this.

Hold the thermistor between your thumb and forefinger and observe what happens to the current in the circuit. Continue holding the thermistor until the current reaches a steady value. Record the final steady values for the current I_{f} in the circuit and the potential difference V_{f} across the thermistor.
V_{f}.
I_{f}.

Hence calculate a second value R_{f} for the resistance of the thermistor.
\qquad
\qquad
\qquad
In the space below sketch a graph of the current in the circuit against the time for which the thermistor is held. You should indicate relevant values on the current axis.

8

List of data, formulae and relationships

Data

Speed of light in vacuum	$c=3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$	
Acceleration of free fall	$g=9.81 \mathrm{~m} \mathrm{~s}^{-2}$	(close to the Earth)
Gravitational field strength	$g=9.81 \mathrm{~N} \mathrm{~kg}^{-1}$	(close to the Earth)
Elementary (proton) charge	$e=1.60 \times 10^{-19} \mathrm{C}$	
Electronic mass	$m_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg}$	
Electronvolt	$1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}$	
Molar gas constant	$R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$	

Rectilinear motion

For uniformly accelerated motion:

$$
\begin{aligned}
v & =u+a t \\
x & =u t+\frac{1}{2} a t^{2} \\
v^{2} & =u^{2}+2 a x
\end{aligned}
$$

Forces and moments

Moment of F about $\mathrm{O}=F \times($ Perpendicular distance from F to O$)$
Sum of clockwise moments $=$ Sum of anticlockwise moments about any point in a plane about that point

Dynamics

$$
\text { Force } \quad F=m \frac{\Delta v}{\Delta t}=\frac{\Delta p}{\Delta t}
$$

Impulse

$$
F \Delta t=\Delta p
$$

Mechanical energy

Power $\quad P=F v$

Radioactive decay and the nuclear atom

Activity
$A=\lambda N$
(Decay constant λ)
Half-life

$$
\lambda t_{\frac{1}{2}}=0.69
$$

Electrical current and potential difference

Electric current	$I=n A Q v$
Electric power	$P=I^{2} R$

Electrical circuits

Terminal potential difference	$V=\varepsilon-I r$	(E.m.f. \mathcal{E}; Internal resistance r)
Circuit e.m.f.	$\Sigma \varepsilon=\Sigma I R$	
Resistors in series	$R=R_{1}+R_{2}+R_{3}$	
Resistors in parallel	$\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}$	

Heating matter

Change of state: \quad energy transfer $=l \Delta m \quad$ (Specific latent heat or specific enthalpy change l)
Heating and cooling: energy transfer $=m c \Delta T$ (Specific heat capacity c; Temperature change ΔT)
Celsius temperature

$$
\theta /{ }^{\circ} \mathrm{C}=T / \mathrm{K}-273
$$

Kinetic theory of matter
Kinetic theory
$T \propto$ Average kinetic energy of molecules
$p=\frac{1}{3} \rho\left\langle c^{2}\right\rangle$

Conservation of energy

Change of internal energy	$\Delta U=\Delta Q+\Delta W$	(Energy transferred thermally $\Delta Q ;$
Work done on body ΔW)		

Experimental physics

$$
\text { Percentage uncertainty }=\frac{\text { Estimated uncertainty } \times 100 \%}{\text { Average value }}
$$

Mathematics

$$
\sin \left(90^{\circ}-\theta\right)=\cos \theta
$$

Equation of a straight line
Surface area
cylinder $=2 \pi r h+2 \pi r^{2}$
sphere $=4 \pi r^{2}$
Volume

$$
\text { cylinder }=\pi r^{2} h
$$

$$
\text { sphere }=\frac{4}{3} \pi r^{3}
$$

For small angles:

$$
\sin \theta \approx \tan \theta \approx \theta
$$

$$
\cos \theta \approx 1
$$

(in radians)

