			Surname	Other na	imes]
Cent No.	re		Paper Reference		unes	
Candi No.	idate		6 7 3 3 / 2 C ^{Signature}			
			Edexcel			only
			GCE		miner s use	Uniy
			Physics	For Tear	n Leader's i	use only
hbe	erviso	or's Data and Comments	Advanced Subsidiary			
	а	Tick if circuit set up for candidate (Give details below)	Unit Test PHY3 Practical Test (International)		Question numbers	Leave blank
	b	Thickness <i>t</i> to 0.001 mm	May 2009		А	
mi	ments	s	Time: 1 hour 30 minutes		В	
					Total	
			Instructions to Candidates			
			In the boxes above, write your centre number, candidate number, your surname, other names and signature.			
			PHY3 consists of questions A and B. Each question is allowed 35 minutes plus 5 minutes writing-up time. There is a further 10 minutes for writing-up at the end. The Supervisor will tell you which experiment to attempt first.			
			Write all your results, calculations and answers in the spaces provided in this question booklet.			
			In calculations you should show all the steps in your working, giving your answer at each stage.			
			Information for Candidates			
			The marks for individual questions and the parts of questions are shown in round brackets.			
			The total mark for this paper is 48.			
			→ The list of data, formulae and relationships is printed at the end of this booklet.			

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2009 Edexcel Limited. Printer's Log. No. N33057A

|___

(:::) Vou are to abcome how the aureant changes with time as you ware the the multi-term	blank
(111	and then sketch a graph of this.	
	Hold the thermistor between your thumb and forefinger and observe what happens to the current in the circuit. Continue holding the thermistor until the current reaches a steady value. Record the final steady values for the current $I_{\rm f}$ in the circuit and the potential difference $V_{\rm f}$ across the thermistor.	
	<i>V</i> _f	
	<i>I</i> _f	
	Hence calculate a second value $R_{\rm f}$ for the resistance of the thermistor.	
	In the space below sketch a graph of the current in the circuit against the time for which the thermistor is held. You should indicate relevant values on the current axis	
	(7)	

Turn over

(b) (i)	You have been provided with a sheet of foil. Measure its length l and width w . Explain with the aid of a diagram how you obtained accurate values for l and w .
	Explain with the aid of a diagram now you obtained accurate values for <i>i</i> and <i>w</i> .
	(3)
(ii)	Determine the thickness t of the sheet by folding it so that a total thickness of $16t$ is recorded. Estimate the percentage uncertainty in your value of t .

(iii) Calculate the volume <i>V</i> of the sheet.	
(iii) Calculate the volume V of the sheet.	
(iii) Calculate the volume V of the sheet.	
(iii) Calculate the volume V of the sheet.	
(iii) Calculate the volume V of the sheet.	
Measure the mass of the sheet using the balance provided and hence determine the density of the material from which the sheet is made.	
(3)	QA
(Total 24 marks)	

	Question B
(a) (i)	Pour hot water into the glass beaker up to the 200 ml (cm ³) mark.
	Starting at a temperature of above 80 °C record the temperature θ of this water at regular intervals until the temperature falls below 70 °C.
	(4)
(ii) Plot a graph of temperature θ against time <i>t</i> on the grid opposite. (4)
(ii	i) Use your graph to determine the rate at which the temperature is falling, $\Delta \theta / \Delta t$, when $\theta = 75 \text{ °C}$.
	Assuming that it takes 900 J of energy to raise the temperature of the beaker and water by 1 K (1 °C), estimate the power P of the heater that would be required to maintain the temperature of the water at a steady 75 °C.

 $| \underbrace{1}_{N} \underbrace{1}_{N} \underbrace{1}_{3} \underbrace{1}_{4} \underbrace{1}_{3} \underbrace{1}_{4} \underbrace{1}_{3} \underbrace{1}_{4} \underbrace{1}_{3} \underbrace{1}_{4} \underbrace{1}_{3} \underbrace{1}_{4} \underbrace{1}_{3} \underbrace{1}_{4} \underbrace{1}_{4}$

Turn over

	What potential difference would be required to provide a power of 30 W?	blank
	Draw a diagram of the circuit she could use to set the potential difference across the heater at the required value. You may assume that normal laboratory equipment is available.	
	(4)	
(iii)) After immersing the heater in 200 ml of water and setting the power to 30 W she wants to monitor the temperature of the water in this arrangement overnight and analyse the results next morning.	
	Explain how she could do this.	
	Suggest two reasons why she might find that the temperature had not remained at 75 °C.	
		OF
	(Total 24 marks)	
	TOTAL FOR PAPER: 48 MARKS	

List of data, formulae and relationships

Data

Speed of light in vacuum	$c = 3.00 \times 10^8 \mathrm{m \ s^{-1}}$	
Acceleration of free fall	$g = 9.81 \mathrm{m \ s^{-2}}$	(close to the Earth)
Gravitational field strength	$g = 9.81 \text{ N kg}^{-1}$	(close to the Earth)
Elementary (proton) charge	$e = 1.60 \times 10^{-19} \mathrm{C}$	
Electronic mass	$m_{\rm e} = 9.11 \times 10^{-31} \rm kg$	
Electronvolt	$1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$	
Molar gas constant	$R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$	

Rectilinear motion

For uniformly accelerated motion:

v = u + at $x = ut + \frac{1}{2}at^{2}$ $v^{2} = u^{2} + 2ax$

Forces and moments

Moment of F about $O = F \times (Perpendicular distance from F to O)$

Sum of clockwise moments about any point in a plane = Sum of anticlockwise moments about that point

P = Fv

Dynamics

Force

 $F = m \frac{\Delta v}{\Delta t} = \frac{\Delta p}{\Delta t}$

Impulse $F\Delta t = \Delta p$

Mechanical energy

Power

Radioactive decay and the nuclear atom

Activity	$A = \lambda N$
Half-life	$\lambda t_{\frac{1}{2}} = 0.69$

(Decay constant λ)

Electric current	$I = nA\Omega w$	
Electric current	I = hAQv	
Electric power	$P = I^{-}K$	
Electrical circuits		
Terminal potential difference	$V = \mathcal{E} - Ir$	(E.m.f. \mathcal{E} ; Internal resistance r)
Circuit e.m.f.	$\Sigma \mathcal{E} = \Sigma I R$	
Resistors in series	$R = R_1 + R_2 + R_3$	
Resistors in parallel	$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$	
Heating matter		
Change of state: energy	transfer = $l\Delta m$ (Specific	c latent heat or specific enthalpy change <i>l</i>)
Heating and cooling: energy	transfer = $mc\Delta T$ (Specific	c heat capacity c; Temperature change ΔT)
Celsius temperature	$\theta/^{\circ}\mathrm{C} = T/\mathrm{K} - 273$	
Kinetic theorv of matter		
	$T \propto$ Average kinetic	energy of molecules
Kinetic theory	$p = \frac{1}{3}\rho \langle c^2 \rangle$	<i></i>
·		
Conservation of energy		
Change of internal energy	$\Delta U = \Delta Q + \Delta W$	(Energy transferred thermally ΔQ ; Work done on body ΔW^{2}
	Useful output	work done on body ΔW)
Efficiency of energy transfer	= <u>Input</u>	
For a heat engine, maximum eff	ficiency = $\frac{T_1 - T_2}{T_1}$	
Experimental physics		
	Estimated	$artointy \times 100\%$
Percentage u	ncertainty = $\frac{\text{Esumated unc}}{\text{Avera}}$	ge value
	/ • • •	<u> </u>
Mathematics		
sin	$(90^\circ - \theta) = \cos \theta$	
Equation of a straight line	y = mx + c	
Surface area	$cylinder = 2\pi rh + 2\pi r^2$	
	sphere = $4\pi r^2$	
Volume	cylinder = $\pi r^2 h$	
	sphere $=\frac{4}{3}\pi r^3$	
For small angles:	$\sin\theta \approx \tan\theta \approx \theta$	(in radians

|____

12

BLANK PAGE