

Edexcel

GCE

Physics

Advanced Subsidiary
Unit Test PHY3 Practical Test
Group 1
Wednesday 13 May 2009 - Afternoon
Time: 1 hour 30 minutes

Question numbers	Leave blank
1 A	
1 B	
Total	

Supervisor's Data and Comments			
1A	a(i)	Tick if the circuit was set up for the candidate (Give details below)	
1A	a(iv)	Tick if the resistor was connected into the circuit for the candidate	
1A	b(i)	Width w to 0.1 mm	
1A	b(i)	Thickness t to 0.1 mm	
Comments			

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, other names and signature.
PHY3 consists of questions 1 A and 1B. Each question is allowed 35 minutes plus 5 minutes writing-up time. There is a further 10 minutes for writing-up at the end. The Supervisor will tell you which experiment to attempt first.

Write all your results, calculations and answers in the spaces provided in this question booklet.
In calculations you should show all the steps in your working, giving your answer at each stage.

Information for Candidates

The marks for individual questions and the parts of questions are shown in round brackets.
The total mark for this paper is 48 .
The list of data, formulae and relationships is printed at the end of this booklet.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy.

(a) (i) Set up the circuit as shown in the diagram below. Make sure the light emitting diode (LED) is connected the right way round. Before you connect your circuit to the power supply, have your circuit checked by the Supervisor. You will be allowed a short time to correct any faults. If you are unable to set up the circuit, the Supervisor will set it up for you. You will only lose two marks for this.

(ii) Connect the power supply. Measure the current I in the circuit and the potential difference V across the LED.
$I=$ \qquad
$V=$ \qquad
Circle the words that most clearly describe the brightness of the LED.
Very bright
Bright
Dim
No light
(2)
(iii) Calculate the resistance R of the LED.
\qquad
\qquad
\qquad
(iv) Connect the $10 \mathrm{k} \Omega$ resistor in series with the 330Ω resistor and repeat your measurements of I and V. If you do not know how to connect the resistor into the circuit ask the Supervisor for assistance. You will only lose 1 mark for this. Record your measurements below and calculate a second value for the resistance of the LED.
$I=$ \qquad
$V=$ \qquad
\qquad
\qquad
\qquad
(v) From your observations of the LED, suggest how the intensity of the light emitted by the LED is related to the resistance of the LED.
\qquad
\qquad
\qquad
(b) (i) Determine the width w and the thickness t of the metre rule.
\qquad
\qquad
\qquad
\qquad
(ii) Set up the apparatus as shown in the diagram below with the knife edges at the 5.0 cm and 95.0 cm marks on the rule and the loop of thread at the 50.0 cm mark.

(iii) Use the half metre rule to determine an accurate value of the vertical displacement x at the centre of the metre rule when a mass $M=0.500 \mathrm{~kg}$ is suspended from the centre of the rule.
(iv) Explain how you did this. You may add to the diagram if you wish.
\qquad
\qquad
\qquad
\qquad

BLANK PAGE

Question 1B

(a) It is expected that the rate of fall of temperature of a thermometer removed from boiling water is directly proportional to the temperature difference between the thermometer and room temperature. You are to investigate this relationship.

Record room temperature, θ_{R}.
$\theta_{\mathrm{R}}=$ \qquad
You are to carry out a trial experiment so that you can gauge how quickly the temperature of the thermometer falls. Place the bulb of the thermometer into the supply of boiling water. When the temperature on the thermometer has remained close to $100^{\circ} \mathrm{C}$ for about one minute, quickly remove the thermometer from the boiling water and clamp it, using the cork near the top of the thermometer. This is shown in the diagram below.

Immediately after clamping the thermometer, start the stopwatch and at the same time record the initial temperature θ_{S} on the thermometer.
$\theta_{\mathrm{S}}=$ \qquad
Also record the total time T taken for the temperature of the thermometer to fall to $40^{\circ} \mathrm{C}$.
$T=$ \qquad
b) You should now be familiar with how quickly the temperature falls. Replace the bulb of the thermometer into the supply of boiling water. Repeat the instructions in part (a) and, as soon as you have clamped the thermometer, record the temperature θ as a function of the time t until the temperature reading is approximately $40^{\circ} \mathrm{C}$. Use the table below to record your readings. Times should be recorded to the nearest second.

Describe a difficulty of repeating this experiment to obtain an average set of data.
\qquad
\qquad
\qquad
(c) Using the grid on the opposite page, plot a graph of θ against t.
(
(d) If the rate of fall of temperature of the thermometer is directly proportional to the temperature difference between the thermometer and room temperature, then

$$
\frac{\Delta \theta}{\Delta t}=k\left(\theta-\theta_{\mathrm{R}}\right)
$$

$\theta=$ the temperature at which the rate of fall of temperature $\frac{\Delta \theta}{\Delta t}$ is measured, $\theta_{\mathrm{R}}=$ room temperature.
The gradient of your graph is the rate of fall of temperature $\Delta \theta / \Delta t$. You are to determine the gradient of your graph at each of two different temperatures.
State the two temperatures at which you are going to determine the gradient.
Higher temperature $\theta_{2}=$ \qquad
Lower temperature $\theta_{1}=$ \qquad
Explain your choice of temperatures.
\qquad
\qquad
\qquad
\qquad
Calculate the gradients of your graph at the two temperatures.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(e) Determine a value for k at each of the two temperatures at which you measured the gradient of the graph.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(f) Determine the percentage difference between your two values of k. Comment on the extent to which your results confirm the suggestion in (a) with reference to the nature of the experiment.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(g) A student wishes to use a datalogger to investigate further how the rate of fall of temperature is directly proportional to the temperature difference between a temperature sensor and the room, using the equation:

$$
\frac{\Delta \theta}{\Delta t}=k\left(\theta-\theta_{\mathrm{R}}\right)
$$

You are to plan this investigation. Your plan should include:
(i) a block diagram showing the equipment required,
(ii) an indication of the set time interval between temperature readings,
(iii) an indication of how the temperature-time data would be analysed,
(iv) a sketch of the final graph that would need to be plotted to verify the relationship,
(v) an indication of the expected results,
(vi) an indication of how k would be determined from the graph
\qquad

List of data, formulae and relationships

Data

Speed of light in vacuum	$c=3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$	
Acceleration of free fall	$g=9.81 \mathrm{~m} \mathrm{~s}^{-2}$	(close to the Earth)
Gravitational field strength	$g=9.81 \mathrm{~N} \mathrm{~kg}^{-1}$	(close to the Earth)
Elementary (proton) charge	$e=1.60 \times 10^{-19} \mathrm{C}$	
Electronic mass	$m_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg}$	
Electronvolt	$1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}$	
Molar gas constant	$R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$	

Rectilinear motion

For uniformly accelerated motion:

$$
\begin{aligned}
v & =u+a t \\
x & =u t+\frac{1}{2} a t^{2} \\
v^{2} & =u^{2}+2 a x
\end{aligned}
$$

Forces and moments

Moment of F about $\mathrm{O}=F \times($ Perpendicular distance from F to O$)$
Sum of clockwise moments $=$ Sum of anticlockwise moments about any point in a plane about that point

Dynamics

$$
\text { Force } \quad F=m \frac{\Delta v}{\Delta t}=\frac{\Delta p}{\Delta t}
$$

Impulse

$$
F \Delta t=\Delta p
$$

Mechanical energy

Power $\quad P=F v$

Radioactive decay and the nuclear atom

Activity
$A=\lambda N$
(Decay constant λ)
Half-life

$$
\lambda t_{\frac{1}{2}}=0.69
$$

Electrical current and potential difference

Electric current	$I=n A Q v$
Electric power	$P=I^{2} R$

Electrical circuits

Terminal potential difference	$V=\varepsilon-I r$	(E.m.f. \mathcal{E}; Internal resistance r)
Circuit e.m.f.	$\Sigma \varepsilon=\Sigma I R$	
Resistors in series	$R=R_{1}+R_{2}+R_{3}$	
Resistors in parallel	$\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}$	

Heating matter

Change of state: \quad energy transfer $=l \Delta m \quad$ (Specific latent heat or specific enthalpy change l)
Heating and cooling: energy transfer $=m c \Delta T$ (Specific heat capacity c; Temperature change ΔT)
Celsius temperature

$$
\theta /{ }^{\circ} \mathrm{C}=T / \mathrm{K}-273
$$

Kinetic theory of matter
Kinetic theory
$T \propto$ Average kinetic energy of molecules
$p=\frac{1}{3} \rho\left\langle c^{2}\right\rangle$

Conservation of energy

Change of internal energy	ΔU	$=\Delta Q+\Delta W$	(Energy transferred thermally $\Delta Q ;$
Work done on body ΔW)			

Experimental physics

$$
\text { Percentage uncertainty }=\frac{\text { Estimated uncertainty } \times 100 \%}{\text { Average value }}
$$

Mathematics

$$
\sin \left(90^{\circ}-\theta\right)=\cos \theta
$$

Equation of a straight line
Surface area
cylinder $=2 \pi r h+2 \pi r^{2}$
sphere $=4 \pi r^{2}$
Volume

$$
\text { cylinder }=\pi r^{2} h
$$

$$
\text { sphere }=\frac{4}{3} \pi r^{3}
$$

For small angles:

$$
\sin \theta \approx \tan \theta \approx \theta
$$

$$
\cos \theta \approx 1
$$

(in radians)

