6735 Unit Test PHY5

Question	Answer	Mark
1 (a)	Either:	
	$F = GMm/r^2$ (or equivalent form of equation) (1)	
	With all symbols (except G) defined (1)	
	Or:	
	Force is directly proportional to the product of the masses.	
	And inversely proportional to the square of their distance apart.	(2)
(b) (i)	Correct attempted use of above equation with given masses and distances (ignore powers of 10) (1)	
	Correct answer 0.59 (N) (1)	
	Example of answer:	
	$F = \frac{GMm}{r^2}$	(2)
	$=\frac{6.67\times10^{-11} \text{ N m}^2 \text{ kg}^{-2}\times1.0\times10^{10} \text{ kg}\times2.0\times10^4 \text{ kg}}{(150 \text{ m})^2}$	
	= 0.59(3) N	
(ii)	$F = ma \rightarrow a = F/m$ [Correct <u>use</u> of equation, with 'm' being the mass of the <u>asteroid</u> , and F the force value from part (i).] (1)	
	<u>[OR</u> use of 'g' = GM/r^2 , with 'M' being the mass of the <u>tractor</u> .]	
	Correct answer 5.9 x 10^{-11} m s ⁻² [or 6.0 x 10^{-11} m s ⁻²] (1)	
	Example of answer:	
	$a = \frac{F}{m} = \frac{0593 \text{ N}}{1.0 \times 10^{10} \text{ kg}} = 5.9 \times 10^{-11} \text{ m s}^{-2}$	(2)
<u> </u>	(iii) 2.0×10^4 kg / the same / unchanged.(1)	
	[Allow bald statement or calculation that demonstrates this, ecf their first acceleration value.]	
	Total	(1) 7

Question Number	Answer	Mark
2 (a)(i)	$V m^{-1}$ and $N C^{-1}$.	
	Substitution of J C^{-1} for V or Nm C^{-1} for V or kg m s ⁻² for N (1)	
	[Answers must be in terms of unit equivalences, not quantities]	
	Completion of valid substitution and manipulation to demonstrate equivalence. (1)	
	Example of answer:	(2)
	$V m^{-1} = J C^{-1} m^{-1} = N m C^{-1} m^{-1} = N C^{-1}$	
(ii)	Vertical line drawn mid-way between plates, <u>labelled</u> 3V (1)	
	Vertical line drawn just left of three-quarter distance, <u>labelled</u> 4V (1)	
	[Gauge by eye, ignore 'edge effects' at plate edges]	
		(2)
(b) (i)	E = V/d and $F = Eq$. (1) [Correct statement of <u>both</u> equations, or re-arrangements, or combination]	
	$E = 1.5 (V \text{ cm}^{-1}) \text{ or } 150 (V \text{ m}^{-1}) (\text{no u.e.})$ (1) [Correct use of first equation to get numerical field value]	
	Correct answer 2.4×10^{-17} N (1) [Correct use of second equation to get force value (ecf their E)] [Correct final answer gets 3/3]	(3)
	Example of answer:	
	$F = \frac{V \times q}{d} = \frac{6.0 \text{ V} \times 1.6 \times 10^{-19} \text{ C}}{4.0 \times 10^{-2} \text{ m}} = 2.4 \times 10^{-17} \text{ N}$	
(ii)	Correct answer $5.0 \ge 10^{10} (s^{-1})$ (1)	
	[Correct numerical value]	(1)
	Example of answer:	
	$n = \frac{8.0 \times 10^{-9} \text{ C s}^{-1}}{1.6 \times 10^{-19} \text{ C}} = 5.0 \times 10^{10} \text{ s}^{-1}$	
	Total	8

Question Number	Answer	Mark
3(a) (i)	Correct answer $\underline{31}$ (J) (or $31.25 / 31.3 / 31.2$) (J). (1)	
	[Correct use of $E = \frac{1}{2}CV^2$ equation to find E to 2s.f. or better]	(1)
	Example of answer:	
	$E = \frac{CV^2}{2} = \frac{10 \text{ F} \times (2.5 \text{ V})^2}{2} = 31.3 \text{ J}$	
(ii)	(ii) Use of volume = $\pi r^2 h$, with r = 0.5 and h = 2 (1) [i.e. ignore powers of 10]	
	Correct answer $2.0 / 1.9 \times 10^7 (\text{J m}^{-3})$ (1)	
	$[31.3J \rightarrow 2.0 \times 10^7, 30J \rightarrow 1.9 \times 10^7]$	
	Example of answer:	(2)
	$\frac{E}{V} = \frac{31.3 \text{ J}}{\pi \times (0.5 \times 10^{-2} \text{ m})^2 \times 2.0 \times 10^{-2} \text{ m}} = 2.0 \times 10^7 (\text{J m}^{-3})$	
(b) (i)	Use of $Q = CV$ and $Q = It$ or \mathbf{or} of $\mathbf{R} = \mathbf{V}/\mathbf{I}$ and $\mathbf{t} = \mathbf{R}\mathbf{C}$	
	$Q = 25$ (C) (no u.e.) or R = 12.5 (Ω) (no u.e.) (1) [Correct use of first equation to get charge or resistance value]	
	Correct answer 125 s (1) [Correct use of second equation to get time value (ecf errors in their Q or R)] [Correct final answer gets both marks]	(2)
	Example of answer:	
	$Q = CV = 10 \text{ F} \times 2.5 \text{ V} = 25 \text{ C}$	
	$t = \frac{Q}{I} = \frac{25 \text{ C}}{0.2 \text{ A}} = 125 \text{ s}$	
	(ii) Why current not constant?	
	The potential difference/voltage will fall. (1)	(1)
	lotal	0

Question	Answer	Mark
Number		
4(a)	(i) Parallel, equally-spaced lines (minimum 3)	
	between P and Q and perpendicular to them. (1)	
	[ignore edge effects]	
	with arrows on at least 2 of the lines to show direction towards Q. (1)	(2)
	(ii) Field <u>is</u> uniform (along the line / between the centres of the magnets) (1)	
	but <u>may</u> not be nearer the edges / away from the central line.	
	$OR \qquad (1)$	
	but the experiment does not give information about the field	
	nearer the edges / away from the central line.	
		(2)
(b) (i)	Pield nottem about fallowing factures	(2)
(b) (l)	Field pattern snows following features:	
	Vertical 'cross' shape (no field lines drawn meeting or crossing	
	minimum 2 lines from each magnet) (1)	
	(1)	
	Arrows on field lines so directions are downwards on lines	
	from P and upwards on lines from O [ecf direction in a(i)] (1)	
	'Neutral point' clearly labelled approximately	(3)
	centrally between P and Q (1)	(-)
(ii)	Line (straight or curved) begins at positive value in range	
	2 to 4 units for distance = 0 cm and ends at equal negative (1)	
	reading -2 to -4 units at distance = 3 cm.	
	[Line is straight or shows reasonable rotational symmetry]	
	Reading is 0 at distance = 1.5 cm but not elsewhere. (1)	
		(2)
	Total	9

Question Number	Answer		Mark
5(a)	 (a) <u>Fleming's Left hand rule / (Fleming's / The) moto</u> (b) Arrow, labelled <i>F</i>, acting on wire S, to right. [accept on figure 1] (c) Arrow upwards on wire R 	o <u>r</u> rule (1) (1) (1)	
	(d) Arrow, labelled <i>B</i> , acting up the page. Arrow length is (approximately) $\underline{4 x} B_{R/S} $, (acting up	(1) the page). (1)	(5)
		Total	5

Question Number	Answer	Mark
6(a)	QoWC (1)	
	And/or one mark each for any of:	
	The input voltage (or current) is <u>alternating</u> $/ a.c.$ (1)	
	$\rightarrow \text{alternating/changing (magnetic) field/flux} \\ [\underline{\text{not}} `flux linkage' here] in primary/core. $ (1)	
	\rightarrow alternating/changing (magnetic) field/flux/flux linkage in secondary. (1)	
	$\rightarrow \underline{\text{Induced e.m.f.}}_{\text{or}} \text{ (in secondary) ['in secondary' stated or implicit]}_{\text{or}} $ $= \inf (\text{in secondary}) \operatorname{according to Faraday's}_{\text{law of electromagnetic induction}} $ (1)	
	$V_2 \le V_1$ because $N_2 \le N_1$; [link to turns values must be explicit]. (1)	(Max 5)
	Total	5
	Total for paper	40