6735 Unit Test PHY5

Question Number	Answer	Mark
1 (a)	Either: $F=G M m / r^{2} \quad$ (or equivalent form of equation) (1) With all symbols (except G) defined (1) Or: Force is directly proportional to the product of the masses. And inversely proportional to the square of their distance apart.	(2)
(b) (i)	Correct attempted use of above equation with given masses and distances (ignore powers of 10) (1) Correct answer $0.59(\mathrm{~N})$ Example of answer: $\begin{aligned} F & =\frac{G M m}{r^{2}} \\ & =\frac{6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2} \times 1.0 \times 10^{10} \mathrm{~kg} \times 2.0 \times 10^{4} \mathrm{~kg}}{(150 \mathrm{~m})^{2}} \\ = & 0.59(3) \mathrm{N} \end{aligned}$	(2)
(ii)	$\begin{equation*} F=m a \rightarrow a=F / m \tag{1} \end{equation*}$ [Correct use of equation, with ' m ' being the mass of the asteroid, and F the force value from part (i).] [OR use of ' g ' $=G M / r^{2}$, with ' M ' being the mass of the tractor.] Correct answer $5.9 \times 10^{-11} \mathrm{~m} \mathrm{~s}^{-2}$ [or $6.0 \times 10^{-11} \mathrm{~m} \mathrm{~s}^{-2}$] Example of answer: $a=\frac{F}{m}=\frac{0593 \mathrm{~N}}{1.0 \times 10^{10} \mathrm{~kg}}=5.9 \times 10^{-11} \mathrm{~m} \mathrm{~s}^{-2}$	(2)
	(iii) $2.0 \times 10^{4} \mathrm{~kg} /$ the same / unchanged.(1) [Allow bald statement or calculation that demonstrates this, ecf their first acceleration value.]	(1)
	Total	7

Question Number	Answer	Mark
2 (a)(i)	$\begin{equation*} \mathrm{Vm}^{-1} \text { and } \mathrm{N} \mathrm{C}^{-1} \text {. } \tag{1} \end{equation*}$ Substitution of JC^{-1} for V or $\mathrm{Nm} \mathrm{C}^{-1}$ for V or $\mathrm{kg} \mathrm{m} \mathrm{s}^{-2}$ for N [Answers must be in terms of unit equivalences, not quantities] Completion of valid substitution and manipulation to demonstrate equivalence. (1) Example of answer: $\mathrm{Vm}^{-1}=\mathrm{JC}^{-1} \mathrm{~m}^{-1}=\mathrm{Nm} \mathrm{C}^{-1} \mathrm{~m}^{-1}=\mathrm{NC}^{-1}$	(2)
(ii)	Vertical line drawn mid-way between plates, labelled 3V Vertical line drawn just left of three-quarter distance, labelled 4V [Gauge by eye, ignore 'edge effects' at plate edges]	(2)
(b) (i)	$E=\mathrm{V} / \mathrm{d}$ and $F=E q$. [Correct statement of both equations, or re-arrangements, or combination] $E=1.5\left(\mathrm{~V} \mathrm{~cm}^{-1}\right)$ or $150\left(\mathrm{~V} \mathrm{~m}^{-1}\right)$ (no u.e.) [Correct use of first equation to get numerical field value] Correct answer $2.4 \times 10^{-17} \mathrm{~N}$ (1) [Correct use of second equation to get force value (ecf their E)] [Correct final answer gets 3/3] Example of answer: $F=\frac{V \times q}{d}=\frac{6.0 \mathrm{~V} \times 1.6 \times 10^{-19} \mathrm{C}}{4.0 \times 10^{-2} \mathrm{~m}}=2.4 \times 10^{-17} \mathrm{~N}$	(3)
(ii)	Correct answer $5.0 \times 10^{10}\left(\mathrm{~s}^{-1}\right) \quad$ (1) [Correct numerical value] Example of answer: $n=\frac{8.0 \times 10^{-9} \mathrm{C} \mathrm{~s}^{-1}}{1.6 \times 10^{-19} \mathrm{C}}=5.0 \times 10^{10} \mathrm{~s}^{-1}$	(1)
	Total	8

Question Number	Answer	Mark
3(a) (i)	Correct answer 31 (J) (or $31.25 / 31.3 / 31.2$) (J). [Correct use of $E=1 / 2 C V^{2}$ equation to find E to 2s.f. or better] Example of answer: $\begin{equation*} E=\frac{C V^{2}}{2}=\frac{10 \mathrm{~F} \times(2.5 \mathrm{~V})^{2}}{2}=31.3 \mathrm{~J} \tag{1} \end{equation*}$	(1)
(ii)	(ii) Use of volume $=\pi r^{2} h$, with $\mathrm{r}=0.5$ and $\mathrm{h}=2$ [i.e. ignore powers of 10] $\begin{align*} & \text { Correct answer } 2.0 / 1.9 \times 10^{7}\left(\mathrm{~J} \mathrm{~m}^{-3}\right) \tag{1}\\ & {\left[31.3 \mathrm{~J} \rightarrow 2.0 \times 10^{7}, 30 \mathrm{~J} \rightarrow 1.9 \times 10^{7}\right]} \end{align*}$ Example of answer: $\frac{E}{V}=\frac{31.3 \mathrm{~J}}{\pi \times\left(0.5 \times 10^{-2} \mathrm{~m}\right)^{2} \times 2.0 \times 10^{-2} \mathrm{~m}}=2.0 \times 10^{7}\left(\mathrm{~J} \mathrm{~m}^{-3}\right)$	(2)
(b) (i)	Use of $Q=C V$ and $Q=I t$ or of $\mathrm{R}=\mathrm{V} / \mathrm{I}$ and $\mathrm{t}=\mathrm{RC}$ $\begin{equation*} Q=25(\mathrm{C}) \text { (no u.e.) or } \mathrm{R}=12.5(\Omega) \quad \text { (no u.e.) } \tag{1} \end{equation*}$ [Correct use of first equation to get charge or resistance value] Correct answer 125 s (1) [Correct use of second equation to get time value (ecf errors in their Q or R)] [Correct final answer gets both marks] Example of answer: $\begin{aligned} & Q=C V=10 \mathrm{~F} \times 2.5 \mathrm{~V}=25 \mathrm{C} \\ & t=\frac{Q}{I}=\frac{25 \mathrm{C}}{0.2 \mathrm{~A}}=125 \mathrm{~s} \end{aligned}$	(2)
	(ii) Why current not constant? The potential difference/voltage will fall.	(1)
	Total	6

Question Number	Answer	Mark	
4(a)	(i) Parallel, equally-spaced lines (minimum 3) between P and Q and perpendicular to them. [ignore edge effects] with arrows on at least 2 of the lines to show direction towards Q.	(1)	(2)
	(ii) Field is uniform (along the line / between the centres of the magnets) (1) (but may not be nearer the edges / away from the central line. but the experiment does not give information about the field nearer the edges / away from the central line.	(1)	

Question Number	Answer	Mark
5(a)	(a) Fleming's Left hand rule / (Fleming's / The) motor rule (b) Arrow, labelled F, acting on wire S , to right. [accept on figure 1] (c) Arrow upwards on wire R (d) Arrow, labelled B, acting up the page. Arrow length is (approximately) $\underline{\mathbf{4 x}}\left\|B_{R / S}\right\|$, (acting up the page).	(5)
	Total	5

Question Number	Answer	Mark
6(a)	QoWC And/or one mark each for any of: The input voltage (or current) is alternating / a.c. \rightarrow alternating/changing (magnetic) field/flux [not 'flux linkage' here] in primary/core. \rightarrow alternating/changing (magnetic) field/flux/flux linkage in secondary. $\left.\rightarrow \text { Induced e.m.f. (in secondary) ['in secondary' stated or implicit] } \quad \begin{array}{l} \text { or } \tag{1}\\ \quad \text { emf (in secondary) according to Faraday's } \\ \text { law of electromagnetic induction } \end{array}\right\}$ $\mathrm{V}_{2}<\mathrm{V}_{1}$ because $\mathrm{N}_{2}<\mathrm{N}_{1}$; [link to turns values must be explicit].	(Max 5)
	Total	5
	Total for paper	40

