MODEL ANSWER
A2 PHYSICS
ELECTRIC FIELD \& CAPACITORS
11 JUNE 2008 PHY5
2.(a) (i) Electrical work done, $\mathrm{W}=\mathrm{QV}$

$$
\begin{aligned}
& =0.80 \times 10^{-9} \times 4.0 \\
& =\underline{3.2} \times 10^{-9} \mathrm{~J}
\end{aligned}
$$

(ii) $[+0.8 \mathrm{nC}$ on the top plate and -0.8 nC on the bottom plate $]$
(b) Energy $=1 / 2$ QV

$$
\begin{aligned}
& =\text { Area under the charge- potential difference graph } \\
& =1 / 2 \times 0.8 \times 10^{-9} \times 4.0 \\
& =1.6 \times 10^{-9} \mathrm{~J} \\
& =\underline{1.6 ~ \mathrm{~nJ}}
\end{aligned}
$$

The graph supports the fact that the charged capacitors is storing 1.6 nJ of energy.
(c) (i) When potential difference across C_{1} falls to 3.0 V ,
the charged transferred to C_{2}
$=0.8-0.6$
$=0.2 \mathrm{nC}$
(ii)

Charge stored on $\mathrm{C}_{2} / \mathrm{nC}$

(iii) The gradient of the charge-potential difference graph represents capacitance, since $\mathrm{Q}=\mathrm{CV}$ Capacitance of $\mathrm{C}_{2}=0.2 \times 10^{-9} / 3.0$

$$
\begin{aligned}
& =6.7 \times 10^{-11} \mathrm{~F} \\
& =\underline{67 \mathrm{pF}}
\end{aligned}
$$

