Mark Scheme Summer 2008

GCE

GCE Physics (8540/9540)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.
For further information, please call our GCE line on 08445760025 , our GCSE team on 0844576 0027, or visit our website at www.edexcel.org.uk.

Summer 2008
Publications Code UA020379
All the material in this publication is copyright
© Edexcel Ltd 2008

Contents

Notes on the Mark Schemes 1
Unit PHY1 Mark Scheme 3
Unit PHY2 Mark Scheme 11
Unit PHY3 (Topics) Mark Scheme 19
Unit PHY3 (Practicals) Mark Scheme 29
Unit PHY4 Mark Scheme 47
Unit PHY5 Mark Scheme 55
Unit PHY5 (Practicals) Mark Scheme 61
Unit PHY6 Mark Scheme 85

Mark scheme notes

Underlying principle

The mark scheme will clearly indicate the concept that is being rewarded, backed up by examples. It is not a set of model answers.

For example:

(iii) Horizontal force of hinge on table top

66.3 (N) or 66 (N) and correct indication of direction [no ue]
[Some examples of direction: acting from right (to left) / to the left /
West / opposite direction to horizontal. May show direction by arrow. Do not accept a minus sign in front of number as direction.]

This has a clear statement of the principle for awarding the mark, supported by some examples illustrating acceptable boundaries.

1. Mark scheme format
1.1 You will not see 'wtte' (words to that effect). Alternative correct wording should be credited in every answer unless the ms has specified specific words that must be present. Such words will be indicated by underlining e.g. 'resonance'
1.2 Bold lower case will be used for emphasis.
1.3 Round brackets () indicate words that are not essential e.g. "(hence) distance is increased".
1.4 Square brackets [] indicate advice to examiners or examples e.g. [Do not accept gravity] [ecf].

2. Unit error penalties

2.1 A separate mark is not usually given for a unit but a missing or incorrect unit will normally cause the final calculation mark to be lost.
2.2 Incorrect use of case e.g. 'Watt' or ' w ' will not be penalised.
2.3 There will be no unit penalty applied in 'show that' questions or in any other question where the units to be used have been given.
2.4 The same missing or incorrect unit will not be penalised more than once within one question but may be penalised again in another question.
2.5 Occasionally, it may be decided not to penalise a missing or incorrect unit e.g. the candidate may be calculating the gradient of a graph, resulting in a unit that is not one that should be known and is complex.
2.6 The mark scheme will indicate if no unit error penalty is to be applied by means of [no ue].
3. Significant figures
3.1 Use of an inappropriate number of significant figures in the theory papers will normally only be penalised in 'show that' questions where use of too few significant figures has resulted in the candidate not demonstrating the validity of the given answer.
3.2 Use of an inappropriate number of significant figures will normally be penalised in the practical examinations or coursework.
3.3 Using $\mathrm{g}=10 \mathrm{~m} \mathrm{~s}^{-2}$ will not be penalised.
4. Calculations
4.1 Bald (i.e. no working shown) correct answers score full marks unless in a 'show that' question.
4.2 If a 'show that' question is worth 2 marks then both marks will be available for a reverse working; if it is worth 3 marks then only 2 will be available.
4.3 use of the formula means that the candidate demonstrates substitution of physically correct values, although there may be conversion errors e.g. power of 10 error.
4.4 recall of the correct formula will be awarded when the formula is seen or implied by substitution.
4.5 The mark scheme will show a correctly worked answer for illustration only.
4.6 Example of mark scheme for a calculation:
'Show that' calculation of weight
Use of $\mathrm{L} \times \mathrm{W} \times \mathrm{H}$
Substitution into density equation with a volume and density
Correct answer [49.4 (N)] to at least 3 sig fig. [No ue]
[Allow $50.4(\mathrm{~N})$ for answer if $10 \mathrm{~N} / \mathrm{kg}$ used for g .]
[If 5040 g rounded to 5000 g or 5 kg , do not give $3^{\text {rd }}$ mark; if conversion to kg is omitted and then answer fudged, do not give $3^{\text {rd }}$ mark]
[Bald answer scores 0 , reverse calculation 2/3]
Example of answer:
$80 \mathrm{~cm} \times 50 \mathrm{~cm} \times 1.8 \mathrm{~cm}=7200 \mathrm{~cm}^{3}$
$7200 \mathrm{~cm}^{3} \times 0.70 \mathrm{~g} \mathrm{~cm}^{-3}=5040 \mathrm{~g}$
$5040 \times 10^{-3} \mathrm{~kg} \times 9.81 \mathrm{~N} / \mathrm{kg}$
$=49.4 \mathrm{~N}$
5. Quality of Written Communication
5.1 Indicated by QoWC in mark scheme, placed as first mark.
5.2 Usually it is part of a max mark.
5.3 In SHAP marks for this are allocated in coursework only but this does not negate the need for candidates to express themselves clearly, using appropriate physics terms. Likewise in the Edexcel A papers.
6. Graphs
6.1 A mark given for axes requires both axes to be labelled with quantities and units, and drawn the correct way round.
6.2 Sometimes a separate mark will be given for units or for each axis if the units are complex. This will be indicated on the mark scheme.
6.3 A mark given for choosing a scale requires that the chosen scale allows all points to be plotted, spreads plotted points over more than half of each axis and is not an awkward scale e.g. multiples of 3,7 etc.
6.4 Points should be plotted to within 1 mm .

- Check the two points furthest from the best line. If both OK award mark.
- If either is 2 mm out do not award mark.
- If both are 1 mm out do not award mark.
- If either is 1 mm out then check another two and award mark if both of these OK, otherwise no mark.
6.5 For a line mark there must be a thin continuous line which is the best-fit line for the candidate's results.

Question Number	Answer	Mark
2(a)(i)	```Describe motion Constant / uniform acceleration or (acceleration of) 15 m s-2 (Followed by) constant / uniform speed / velocity (of 90 m s```	(2)
(a)(ii)	Show that distance is approximately 800 m Any attempt to measure area under graph or select appropriate equations of motion required to determine total distance Correct expression or value for the area under the graph between either $0-4 \mathrm{~s}$ [240 m] or $4-10 \mathrm{~s}$ [540 m] Answer : 780 (m) $\begin{aligned} \text { Eg distance } & =60 \mathrm{~m} \mathrm{~s}^{-1} \times 4 \mathrm{~s}+90 \mathrm{~m} \mathrm{~s}^{-1} \times 6 \mathrm{~s} \\ & =240 \mathrm{~m}+540 \mathrm{~m} \\ & =780(\mathrm{~m}) \end{aligned}$ Eg distance in first 4 s $\mathrm{s}=\frac{\mathrm{v}+\mathrm{u}}{2} \mathrm{t}=\frac{90 \mathrm{~m} \mathrm{~s}^{-1}+30 \mathrm{~m} \mathrm{~s}^{-1}}{2} 4 \mathrm{~s}=240 \mathrm{~m}$ Distance in final 6 s $\begin{aligned} & s=u t=90 \mathrm{~m} \mathrm{~s}^{-1} \times 6 \mathrm{~s}=540 \mathrm{~m} \\ & \text { Total distance }=240 \mathrm{~m}+540 \mathrm{~m}=780(\mathrm{~m}) \end{aligned}$	(3)
(b)	Sketch graph Graph starts at $760 \mathrm{~m}-800 \mathrm{~m} /$ their value and initially shows distance from finishing line decreasing with time The next two marks are consequent on this first mark being awarded Curve with increasing negative gradient followed by straight line Graph shows a straight line beginning at coordinate ($4 \mathrm{~s}, 540 \mathrm{~m}$) and finishes at coordinate ($10 \mathrm{~s}, 0 \mathrm{~m}$)	(3)
	Total for question	(8)

Question Number	Answer	Mark
4(a)(i)	Give expression $W=R+F$	(1)
(a)(ii)	```Complete statements surface / ground Earth ('s mass) [Only accept this answer] gardener('s hands) / hand(s)```	(3)
(b)(i)	Add to diagram Line inclined to the vertical pointing to the left and upwards	(1)
(b)(ii)	Explain change in direction and magnitude The force (at X) will have a magnitude greater than F or the force (at X) must increase. This is because the wheelbarrow / it has to be lifted / tilted/ supported/ held up (by the vertical component) And also because the wheelbarrow / it has to be moved (forward by the horizontal component)	(3)
	Total for question	(8)

Question Number	Answer	Mark
5(a)(i)	Magnitude of normal contact force 11 N	(1)
(a)(ii)	Show that this is consistent with the principle of moments Use of the principle of moments (because shelf is balanced) Calculation showing moments equal $\begin{gathered} \text { eg } 22 \mathrm{~N} \times 35\left(\times 10^{-2}\right) \mathrm{m}=11 \mathrm{~N} \times 70\left(\times 10^{-2}\right) \mathrm{m} \\ 7.7(\mathrm{~N} \mathrm{~m})=7.7(\mathrm{~N} \mathrm{~m}) \end{gathered}$ [accept $770(\mathrm{~N} \mathrm{~cm})=770(\mathrm{~N} \mathrm{~cm})$]	(2)
(b)(i)	Normal contact force at B Use of the principle of moments [Ecf their moment expression for the shelf from aii] Answer [48.5 N - 49.0 N] $\begin{array}{r} \text { eg } 22 \mathrm{~N} \times 35\left(\times 10^{-2}\right) \mathrm{m}+44 \mathrm{~N} \times 60\left(\times 10^{-2}\right) \mathrm{m}=\mathrm{F} \times 70\left(\times 10^{-2}\right) \mathrm{m} \tag{1}\\ \mathrm{~F}=48.71 \mathrm{~N} \end{array}$	(2)
(b)(ii)	Why a limit to the distance from B QOWC States point about which moments are to be considered eg about B Equates the moments for the limiting position for the point considered eg for the point B the (clockwise) moment of the ornament $=$ the (anticlockwise) moment (of the weight) of the shelf States that for any further increase in distance (eg from B) of the ornament the moments will no longer be equal or the shelf will be unbalanced [accept descriptions that mean or describe unbalanced eg the shelf will tip] Calculation or description to explain why the limiting position is less than 20 cm from B or 17.5 cm seen $\begin{equation*} \text { Eg } 22 \mathrm{~N} \times 35 \mathrm{~cm}=44 \mathrm{~N} \times \mathrm{d} \tag{1} \end{equation*}$ $\mathrm{d}=17.5 \mathrm{~cm}$	(4)
(b)(iii)	Normal contact force at A for limiting position Zero / 0 / 0 N / $0 \mathrm{n} /$ Zero N / Zero n / Zero newtons / 0 newtons	(1)
	Total for question	(10)

Question Number	Answer	Mark
6(a)	Show speed is about $2 \mathrm{~m} \mathrm{~s}^{-1}$ Either Substitution into force x distance Equates work done and kinetic energy Or Substitution into equation for force Correct use of $v^{2}=u^{2}+2$ as or two appropriate equations Answer [(1.94-1.97) $\left(\mathrm{m} \mathrm{s}^{-1}\right)$] Eg $\begin{aligned} & \text { Work done }=2.75 \mathrm{~N} \times 1.25 \mathrm{~m} \\ & \frac{1}{2} 1.80 \mathrm{~kg} \mathrm{x} \mathrm{v}^{2}=2.75 \mathrm{~N} \times 1.25 \mathrm{~m} \\ & \mathrm{v}=1.95\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$ Or $\begin{aligned} & \mathrm{a}=\frac{\mathrm{F}}{\mathrm{~m}}=\frac{-2.75 \mathrm{~N}}{1.80 \mathrm{~kg}}=-1.53 \mathrm{~m} \mathrm{~s}^{-2} \\ & \mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{as} \\ & 0=\mathrm{u}^{2}+2 \times-1.53 \mathrm{~m} \mathrm{~s}^{-2} \times 1.25 \mathrm{~m} \\ & \mathrm{u}=1.95\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	(3)
(b)	Momentum Momentum equation [In symbols or numbers] Answer [(3.5-3.6) $\mathrm{kg} \mathrm{m} \mathrm{s}^{-1}$ or Ns . Ecf candidates value for speed] Eg $1.8 \mathrm{~kg} \times 1.95 \mathrm{~m} \mathrm{~s}^{-1}=3.51 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$	(2)
(c)	Momentary force Selects $F=\frac{\Delta \mathrm{p}}{\mathrm{t}}$ or $\mathrm{v}=\mathrm{u}+$ at and $\mathrm{F}=\mathrm{ma}$ Average value of unbalanced force Average value of momentary force $\begin{align*} & \text { Eg } F=\frac{\Delta p}{t} \quad \text { Or } \quad v=u+a t ; 2 \mathrm{~ms}^{-1}=(0+) a \times 0.7 \mathrm{~s} \tag{1}\\ &=\frac{3.51 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}}{0.7 \mathrm{~s}} \quad \mathrm{~F}=\mathrm{ma} ; \mathrm{F}=1.8 \mathrm{~kg} \mathrm{x} \frac{2 \mathrm{~m} \mathrm{~s}^{-1}}{0.7 \mathrm{~s}}=5.0(\mathrm{~N}) \\ &=5.0(\mathrm{~N}) \\ & \text { Average value of force applied }=5.0 \mathrm{~N}+2.75 \mathrm{~N}=7.75 \mathrm{~N} \end{align*}$	(3)
	Total for question	(8)

Question Number	Answer	Mark
7(a)	Show that rate of decay of radium is about $7 \times 10^{13} \mathrm{~Bq}$ Power divided by alpha particle energy Answer [(7.1-7.2) x $10^{13}(\mathrm{~Bq})$] [Give 2 marks for reverse argument ie $\begin{aligned} & 7 \times 10^{13} \mathrm{~Bq} \times 7.65 \times 10^{13} \mathrm{~J}(1) \\ & (53.5-53.6)(\mathrm{W})(1)] \end{aligned}$ $\text { Eg } \quad \begin{aligned} \text { Rate of decay }= & \frac{55 \mathrm{~W}}{7.65 \times 10^{-13} \mathrm{~J}} \\ & =7.19 \times 10^{13}(\mathrm{~Bq}) \end{aligned}$	(2)
(b)	Show that decay constant is about $1.4 \times 10^{-11} \mathrm{~s}^{-1}$ Use of $\lambda=\frac{0.69}{T_{1 / 2}}$ Answer [(1.35-1.36) $\times 10^{-11}\left(\mathrm{~s}^{-1}\right)$] $\text { Eg } \quad \begin{align*} \lambda & =\frac{0.69}{1620 \text { years } \times 3.15 \times 10^{7} \mathrm{~s}} \tag{1}\\ & =1.35 \times 10^{-11}\left(\mathrm{~s}^{-1}\right) \end{align*}$	(2)
(c)	The number of radium 226 nuclei Use of $A=\lambda N$ Answer $\left[(5.0-5.4) \times 10^{24}\right]$ $\text { Eg } \quad \begin{align*} 7.19 \times 10^{13} \mathrm{~Bq} & =1.35 \times 10^{-11} \mathrm{~s}^{-1} \times \mathrm{N} \tag{1}\\ \mathrm{~N} & =5.33 \times 10^{24} \end{align*}$	(2)
(d)	The mass of radium Divides number of radium 226 nuclei by 6.02×10^{23} and multiplies by 226 Answer [1870-2040 g] $\begin{aligned} \text { Eg Mass of radium } & =226 \mathrm{~g} \mathrm{x} \frac{5.33 \times 10^{24}}{6 \times 10^{23}} \\ & =2008 \mathrm{~g} \end{aligned}$	(2)
(e)	Why mass would produce more than 50 W The (daughter) nuclei (radon) formed as a result of the decay of radium are themselves a source of (alpha) radiation / energy Also accept (having emitted alpha) the nucleus[allow sample/radium/atom] (maybe left excited and therefore also) emits gamma Also accept (daughter) nucle(us)(i) recoil releasing (thermal) energy Do not accept Nucleus may emit more than one alpha particle Nucleus may also emit beta particle	(1)
	Total for question	(9)

Question Number	Answer	Mark	
8(a)	Paths of alpha particles Path A drawn less deflected than B Path A drawn as a straight line	(1)	(1)

6732 Unit Test PHY2

Question Number	Answer	Mark
$\mathbf{1}$ (a)	Diode or LED (1)	$\mathbf{1}$
(b) (i)	Use of R $=\mathrm{V} / \mathrm{I}$ current between 75 and 90 ignoring powers of 10 (1) answer $6.7-8.0 \Omega$ Example of answer R $=0.60 \mathrm{~V} \div\left(85 \times 10^{-3}\right) \mathrm{A}$ $\mathrm{R}=7.06 \Omega$	$\mathbf{2}$
(b) (ii)	Infinite OR very high OR ∞	$\mathbf{1}$
(c)	ANY ONE Rectification / AC to DC / DC supply [not DC appliances] Preventing earth leakage Stabilising power output To protect components A named use of LED if linked to LED as component in (a) (eg calculator display / torch) A voltage controlled switch (Allow current in only one direction)	$\mathbf{1}$
	Total for question	

Question Number	Answer	Mark
2 (a)	Resistivity definition $\begin{align*} \text { Resistivity } & =\text { resistance } \times \tag{1}\\ & \times \underline{\text { cross sectional area } / \text { length }} \tag{1} \end{align*}$ $\rho=R A / l$ with symbols defined scores $2 / 2$ equation as above without symbols defined scores $1 / 2$ equation given as $R=\rho / / A$ with symbols defined scores $1 / 2$ (1st mark is for linking resistivity to resistance with some other terms)	2
(b) (i)	Resistance calculation Converts kW to W Use of $P=V^{2} / R \quad O R \quad P=V I$ and $V=I R$ Resistance $=53 \Omega$ Example of answer $\begin{aligned} & \mathrm{R}=(230 \mathrm{~V})^{2} \div 1000 \mathrm{~W} \\ & \mathrm{R}=53 \Omega \end{aligned}$	3
(b) (ii)	Length calculation Recall R = ρ l/A Correct substitution of values Length $=6.3 \mathrm{~m}$ (accept 6.2 m) ecf value of R Example of answer $\begin{aligned} & \mathrm{l}=\left(52.9 \Omega \times 1.3 \times 10^{-7} \mathrm{~m}^{2}\right) \div\left(1.1 \times 10^{-6} \Omega \mathrm{~m}\right) \\ & \mathrm{l}=6.3 \mathrm{~m} \end{aligned}$	3
(b) (iii)	Proportion method Identifies a smaller diameter is needed Diameter $=0.29 \mathrm{~mm}$ OR Calculation method Use of formula with $\mathrm{l}=$ half their value in (b)(ii) Diameter $=0.29 \mathrm{~mm}$ (Ecf a wrong formula from part ii for full credit) Example of answer $\mathrm{d}_{\text {new }}=0.41 \mathrm{~mm} \div \sqrt{ } 2$ $\mathrm{d}_{\text {new }}=0.29 \mathrm{~mm}$	2
	Total for question	10

Question Number	Answer	Mark
3 (a)	Definition of E.M.F. Energy (conversion) or work done Per unit charge [work done/coulomb 1/2, energy given to a charge $1 / 2$, energy given to a charge of a coulomb 2/2] OR OR $\mathrm{E}=\mathrm{W} / \mathrm{Q}$ $E=P / I$ Symbols defined Symbols defined ($\mathrm{E}=1 \mathrm{~W} / \mathrm{A}$ scores 1) ((Terminal) potential difference when no current is drawn 1/2)	2
(b) (i)	Internal resistance calculation Attempt to find current Pd across $r=0.2 \mathrm{~V}$ $r=0.36(\Omega)$ [You must follow through the working, I have seen incorrect methods getting 0.36Ω] Example of answer $\begin{aligned} & I=2.8 \mathrm{~V} \div 5.0 \Omega \\ & \mathrm{r}=(3.0-2.8) \mathrm{V} \div 0.56 \mathrm{~A}=0.36 \Omega \end{aligned}$	3
(b) (ii)	Combined resistance Use of parallel resistor formula Resistance $=3.3 \Omega$ [accept $31 / 3$ but not 10/3]	2
(b) (iii)	Voltmeter reading (ecf bii) Current calculation using 3 V with either 3.3Ω or 3.7Ω Total resistance $=3.7 \Omega$ [accept 3.66 to 3.73Ω] OR use of $V=E$ - Ir Voltmeter reading $=2.7 \mathrm{~V}$ OR Potential divider method, ratio of resistors with 3.7Ω on bottom Multiplied by 3.0 V 2.7 V Example of answer $\begin{aligned} & \mathrm{R}_{\text {total }}=3.7 \Omega \\ & I=3 \mathrm{~V} \div 3.7 \Omega=0.81 \mathrm{~A} \\ & \mathrm{~V}_{\text {voltmeter }}=3.3 \Omega \times 0.81 \mathrm{~A}=2.7 \mathrm{~V} \end{aligned}$	3
(c)	Ideal voltmeter Ideal voltmeter has infinite resistance OR extremely high resistance OR highest possible R OR much larger resistance than that of component it is connected across $O R$ quotes value $>1 \mathrm{M} \Omega$ Current through voltmeter is zero (negligible) OR doesn't reduce the resistance of the circuit OR doesn't reduce the p.d. it is meant to be measuring.	2
	Total for question	12

Question Number	Answer	Mark
4 (a)	Circuit diagram Potentiometer correctly connected i.e potential divider circuit Ammeter in series and voltmeter in parallel with bulb (light bulb in series with resistance can score second mark only)	2
(b) (i)	$\frac{\text { Graph }}{+I,+V}$ quadrant; curve through origin with decreasing gradient [do not give this mark if curve becomes flat and then starts going down i.e. it has a hook] $-I,-\mathrm{V}$ quadrant reasonably accurate rotation of $+\mathrm{I},+\mathrm{V}$ quadrant	2
(b) (ii)	Shape of graph As current/voltage increases, temperature of the lamp increases / lamp heats up Leading to increase in resistance of lamp Rate of increase in current decreases OR equal increases in V lead to smaller increases in I Qowc Ecf if a straight line graph is drawn max 3 R constant V al Qowc	4
	Total for question	8

Question Number	Answer	Mark
5(a)	Thermal contact Allows energy to flow from one body/object to another	(1)
(b)	Thermometer Difficulty (1) Explanation (1) (Difficulty and explanation might occur in one section or wrong way round) Examples of answers that score 1 or 2 marks. Size of the sample (1) poor thermal contact OR not all of the thermometer in contact with sample (1) Glass/gas is poor conductor (1) slow to respond to temperature changes (1) Slow to respond (1) apparatus is large/bulky or has a large mass (1) Can't measure temperature of a solid (1) poor thermal contact (1) Limited range of temperatures (1) can explode if it gets too hot, or pressures too high. Might make reference to gas liquifying or glass melting (1) Not everything is at the same temperature (1)length of tubing or size of apparatus or size of sample (1) Glass bulb might expand on heating (1) so volume might not be constant (1) Thermometer takes heat from sample (1) so result not accurate (1) Coarse scale on pressure gauge (1) inaccurate results (1) Examples of answers that score 1 mark maximum Not very portable (1) Calculations have to be done (1) Takes a long time to set up (1) Fragility of glass (1)	

Question Number	Answer	Mark
6(a)	Absolute zero of temperature (Temperature at which) pressure / volume (of a gas) is zero. (1) OR (Temperature at which) the kinetic energy of the molecules is zero)	1
(b) (i)	Number of moles show that calculation Recall $p V=n R T$ Addition of air pressure Conversion to kelvin Number of moles $=0.52(\mathrm{~mol})$ Reverse calculations using $n=0.5$ to arrive at one of the other values can score maximum 3 Example of answer $\begin{aligned} & n=\frac{\left((1.0+1.1) \times 10^{5} \mathrm{~Pa} \times 5.8 \times 10^{-3} \mathrm{~m}^{3}\right)}{8.31 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \times(273+10) \mathrm{K}} \\ & n=0.52 \mathrm{~mol} \end{aligned}$	4
(b) (ii)	Mass of air $\begin{equation*} \text { Mass }=1.5 \times 10^{-2} \mathrm{~kg} \tag{1} \end{equation*}$ Example of answer $\text { mass }=0.52 \mathrm{~mol} \times 0.029 \mathrm{~kg} \mathrm{~mol}^{-1}=0.015 \mathrm{~kg}$	1
(b) (iii)	Temperature calculation Use of $P_{1} / T_{1}=P_{2} / T_{2}$ Correct $\mathrm{P}_{2} 1.6 \times 10^{5} \mathrm{~Pa}$ Lowest temperature $=216 \mathrm{~K}\left(-57{ }^{\circ} \mathrm{C}\right)$ OR Use of $p V=n R T$ (must see correct value of R) Correct $\mathrm{P}_{2} 1.6 \times 10^{5} \mathrm{~Pa}$ Lowest temp $215 \mathrm{~K}-223 \mathrm{~K}$ (-58 to $-50^{\circ} \mathrm{C}$) Example of answer $\begin{aligned} & T_{2}=\frac{\left((1.0+0.6) \times 10^{5} \mathrm{~Pa} \times 283 \mathrm{~K}\right)}{2.1 \times 10^{5} \mathrm{~Pa}} \\ & T_{2}=216 \mathrm{~K} \end{aligned}$	3
	Total for question	9

Question Number	Answer	Mark
7(a)	Smoke particle motion (Smoke particles) move due to collisions with air molecules Resultant force is produced by the collision imbalance/multiple collisions OR Idea of varying or different resultant force OR change of momentum	2
(b)	Air molecules motion Motion of (air molecules) is random OR collisions are random EITHER: They are moving fast/faster than smoke particles OR The smoke particles are hit by different numbers of (air molecules) OR Large number of (air molecules)	2
(c)	Motion of one particle A single path that has Different length straight sections (arrows not necessary) (min 5) In different directions(1)	2
	Total for question	6

Question Number	Answer	Mark
8(a)	Mean square speed Attempt to find either squares or a mean of all 5 values $\left\langle c^{2}\right\rangle=3.1 \times 10^{5}$ (311640) as answer $\mathrm{m}^{2} \mathrm{~s}^{-2}$ (The unit mark is independent)	3
(b)	Real gas molecules No forces (negligible force) act or no bonds (1) Between molecules / particles / atoms (1) (consequent mark) (No external force is acceptable for the first mark) (Ignore reference to gravity / gravitational forces) (collisions are elastic so there is no PE scores zero)	2
	Total for question	5
	Total for paper	60

6733 Unit Test PHY3 (Topics)

Topic A - Astrophysics

Question Number	Answer	Mark
1 (a)	Core remnant stars All core remnants ticked AND no main sequence < $1.4 M_{\odot}$ column: White dwarf only > $2.5 M_{\odot}$ column: Black hole only	3x1
(b)	CCD advantages - Higher (quantum) efficiency / more sensitive / detect fainter or more distant stars - More linear response [or equivalent] - Digital / link to computer / remote imaging - No processing time / use repeatedly - Quicker image collection [i.e. quicker \& reason] - Wider range of frequency / wavelength / e.m. radiation (1) + (1) CCD disadvantage Resolution / pixel size larger / pixilates if magnified	3x1
(c) i	Hydrogen burning Quality of written communication Nuclear fusion reaction [accept nuclei, nucleus, fusing] Hydrogen / deuterium /protons turn into He [penalise contradictions, e.g. molecules atoms; accept symbols] Release of energy	4x1
(c) ii	Sun as red giant calculation Attempted use of $L=\sigma T^{4} A$ (accept r substituted as A) $A=4 \pi r^{2}$ [or $A a r^{2}$ if ratios calculated directly] $3.85 \times 10^{26}(\mathrm{~W})$ or $1.13 \times 10^{30}(\mathrm{~W})$ [or substitution as ratio] 2930 [accept 2900-2940] $\begin{align*} & \begin{array}{l} L=\sigma T^{4} A=4 \pi \sigma T^{4} r^{2} \\ L_{\text {before }} \end{array}=4 \pi \times 5.67 \times 10^{-8} \mathrm{~W} \mathrm{~m} \tag{1}\\ & \quad=3.85 \times 10^{26} \mathrm{~W} \times(5780 \mathrm{~K})^{4} \times\left(6.96 \times 10^{8} \mathrm{~m}\right)^{2} \\ & L_{\text {after }}=4 \pi \times 5.67 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{4} \times(3160 \mathrm{~K})^{4} \times(1.26 \times 1011 \mathrm{~m})^{2} \\ & \quad=1.13 \times 10^{30} \mathrm{~W} \\ & \text { Hence ratio }=1.13 \times 10^{30} \mathrm{~W} \div 3.85 \times 10^{26} \mathrm{~W}=2930 \end{align*}$	4x1

(c) iii	H-R diagram plots X at 10° on main sequence [$\pm 1 \mathrm{~mm}$ by eye] AND between 5000 K and centre of $5000-10000 \mathrm{~K}$ box Y above and to right of actual X_{\odot} Attempt to plot Y at 3160 K [between 5000 K and 2500 K] Attempt to plot Y between $10^{3} L_{\odot}$ and $10^{4} L_{\odot}$ [ecf]	4x1
(d) i	Sun as white dwarf Any 2 [comparative statements] of Higher temperature / hotter Lower luminosity [accept Power, not E or I] No fusion in core [or equivalent; not just "not on main sequence] More dense (1) $+(1)$	2x1
(d) ii	Future of white dwarf Cools / T decreases Dims / fades / correct colour change [not brown dwarf] / Luminosity decreases [accept intensity here]	2x1
(e) i	Distance to Sirius Substitution in $v \times t / s$ [ignore 8.6, accept 365 or $365 \frac{1}{4}$ days] $\begin{equation*} 8.1 \times 10^{16}(\mathrm{~m})[8.13,8.14] \tag{1} \end{equation*}$ $\begin{aligned} d & =v t \\ & =8.6 \times 3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \times\left(60 \times 60 \times 24 \times 365^{1 / 4}\right) \mathrm{s} \\ & =8.1 \times 10^{16} \mathrm{~m} \end{aligned}$	2x1
(e) ii	Sirius A intensity calculation Use of $I=L / 4 \pi D^{2}$ Correct substitution $\begin{align*} & 1.2 \times 10^{-7} \mathrm{~W} \mathrm{~m}^{-2}[1.20-1.24] \tag{1}\\ & I=L / 4 \pi D^{2} \\ &=1.0 \times 10^{28} \mathrm{~W} / 4 \pi\left(8.1 \times 10^{16} \mathrm{~m}\right)^{2} \\ &=1.2 \times 10^{-7} \mathrm{~W} \mathrm{~m}^{-2} \end{align*}$	3×1

(e) iii	Mass rate conversion $E=m c^{2}$ seen [or implied] Correct substitution $\begin{aligned} & 1.1 \times 10^{11} \mathrm{~kg}\left(\mathrm{~s}^{-1}\right) \\ & \begin{aligned} 1.0 & \times 10^{28} \mathrm{~W}=1.0 \times 10^{28} \mathrm{~J} \mathrm{~s}^{-1} \\ \Delta m & =\Delta E / \mathrm{c}^{2} \\ = & 1.0 \times 10^{28} \mathrm{~J} /\left(3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}\right)^{2} \\ & =1.1 \times 10^{11} \mathrm{~kg} \end{aligned} \end{aligned}$	(1) (1) (1)	3×1
(e) iv	Peak wavelength calculation Use of Wien's law $\begin{aligned} 2.93 & \times 10^{-7} \mathrm{~m} \\ \lambda_{\max } & =2.90 \times 10^{-3} \mathrm{~m} \mathrm{~K} / 9900 \mathrm{~K} \\ & =2.93 \times 10^{-7} \mathrm{~m} \end{aligned}$	(1) (1)	2x1
			32

Topic B - Solid Materials

Question Number	Answer	Mark
2 (a)	Metal treatment classification Annealing: heating and slow cooling Work hardening: beating only Quench hardening: heating and rapid cooling	3x1
(b) i	Fence wire cross-section Use of πr^{2} and $10^{-3} \mathrm{~m}$ $\begin{equation*} 4.9 \times 10^{-6}\left(\mathrm{~m}^{2}\right) \text { [do not accept } \mathrm{m} \text {] } \tag{1} \end{equation*}$ $\begin{align*} A & =\pi r^{2} \tag{1}\\ & =\pi \times\left(0.5 \times 2.50 \times 10^{-3}\right)^{2} \end{align*}$	2x1
(b) ii	Stress calculation Substitution: $1500 \mathrm{~N} / 4.9$ [or 5$] \times 10^{-6} \mathrm{~m}^{2}$ 310 MPa [accept 300, ecf] (1) $\begin{aligned} \sigma & =F / A \\ & =1500 \mathrm{~N} / 4.9 \times 10^{-6} \mathrm{~m}^{2} \\ & =3.1 \times 10^{8} \mathrm{~Pa} \end{aligned}$	2x1
(b) iii	Extension calculation $\begin{equation*} E=\sigma / \varepsilon \text { and } \varepsilon=\Delta l / l \text { (or } E=F l / A \Delta l) \tag{1} \end{equation*}$ Substitution in $E=\sigma / \varepsilon$ and $\varepsilon=\Delta l / l$ [or in $E=F l / A \Delta l$, ecf, ignore 10 ${ }^{\text {n }}$ 0.048 (m) [ecf] 48 mm [accept 47-49 mm, bald answer scores 4/4] $\begin{aligned} E & =F l / A \Delta l \\ \Delta l & =(1500 \mathrm{~N} \times 33 \mathrm{~m}) /\left(210 \times 10^{9} \mathrm{~Pa} \times 4.9 \times 10^{-6} \mathrm{~m}^{2}\right) \\ & =0.048 \mathrm{~m}=48 \mathrm{~mm} \end{aligned}$	4x1
(c) i	Young modulus experiment (G-) clamp [vice], wire, pulley, mass / weight / load three correct all four correct	2x1

Topic C - Nuclear and Particle Physics

Question Number	Answer	Mark
3 (a)	Particle classification Neutron: baryon and hadron (1) Neutrino: lepton Muon: lepton	3x1
(b) i	Decay series 8 decays (238-206) $\div 4$ [Correct maths with 238, 206, 4]	2x1
(b) ii	Thorium decay series $\left[\begin{array}{l} { }_{90}^{234} \mathrm{Th} \longrightarrow{ }_{91}^{234} \mathrm{~Pa}+{ }_{-1}^{0} \mathrm{~B}+\overline{\mathrm{v}} \\ \mathrm{Th} \longrightarrow \mathrm{~Pa}+\mathrm{B} \\ 234,90,234,91,0,-1 \tag{1} \end{array}\right.$ antineutrino [accept symbol; ignore gamma / energy; do not accept any contradiction]	3x1
(b) iii	Neutron turns into a proton [accept down quark turns into up quark; words required; ignore beta]	1x1
(b) iv	234 AND 92 / U / uranium Uranium-234 / $\underset{(92)}{234} \mathbf{~ U}$	2x1
(c) i	Binding energy Energy required to separate a nucleus into nucleons	1x1
(c) ii	$8 n+6 p$ Substitution / $m=0.1098 \mathrm{u}$ Multiply by 930 [only, or $E=m c^{2}$ route] 102 MeV [or 103 MeV] $\begin{align*} & \Delta m=(6 \times 1.00728 \mathrm{u})+(8 \times 1.00867 \mathrm{u})-14.00324 \mathrm{u}=0.1098 \mathrm{u} \tag{1}\\ & \Delta E=0.1098 \mathrm{u} \times 930 \mathrm{MeV} / \mathrm{u}=102 \mathrm{MeV} \end{align*}$	4x1

(c) iii	More stable isotope Binding energy per nucleon attempted $7.4(\mathrm{MeV})$ and 7.3 (MeV) [accept 7.1, ecf] Hence carbon-12 [based on two values, ecf] $\mathrm{BE} / \mathrm{A}\left({ }^{14} \mathrm{C}\right)=102 \mathrm{MeV} / 14=7.3 \mathrm{MeV}$ $\mathrm{BE} / \mathrm{A}\left({ }^{12} \mathrm{C}\right)=89 \mathrm{MeV} / 12=7.4 \mathrm{MeV}$	3x1
(d) i	Deuterium Up and down quarks [accept u and d quarks] One proton = uud AND one neutron = udd (1) [contradiction, e.g. electron: max $1 / 2$ if otherwise all correct]	2x1
(d) ii	Fundamental forces Quality of written communication Weak force affect all particles / matter Strong force only affect quarks Electromagnetic force affects charged particles / charges Weak only [supported by reference to neutrino]	5x1
(d) iii	Z^{0} [accept just Z, e.c.f. for strong: gluon or em:photon] (1)	1x1
(e) i	Conservation laws First reaction, $\mathrm{Q}: 0+0 \neq 1+1$ Second reaction B: $1=1+0$ AND Q: $-1=-1+0$ Hence only Ω decay possible [based on B and Q conservation for this decay, accept simple ticks and crosses]	3x1
(e) ii	Quark charges Use of sss =-1 to show $s=-1 / 3$ Hence correct working (from baryons) to show $u=2 / 3$ and $d=-1 / 3$	2x1
		32

Topic D - Medical Physics

Question Number	Answer	Mark
4(a)	Imaging techniques X-ray: lonising only Nuclear medicine: lonising \& injected [ignore soft tissue] Ultrasound: transducer \& soft tissue	3x1
(b) i	X-rays for radiotherapy $\begin{equation*} (1-25) \mathrm{MeV} \tag{1} \end{equation*}$	1x1
(b) ii	Labelled [x3] diagram showing patient, tumour and at least three beam positions [or equivalent labels] Tumour always targeted [accept as label in diagram] Healthy cells receive lower dose	3x1
(b) iii	High energy X-rays Absorption not dependent on proton number (Have enough energy to) destroy / kill cells [not just damage](1)	2x1
(b) iv	Criticality of dose Too high: extra radiation could kill [harm] patient / healthy cells Too low: tumour cells may not be completely destroyed	2x1
(c) i	Liver ultrasound calculations Use of $x=v t$ with metres [0.12 or 0.24] $\begin{equation*} 1.6 \times 10^{-4} \mathrm{~s} / 0.16(\mathrm{~ms}) \tag{1} \end{equation*}$ $\begin{align*} t & =x / \mathrm{v} \\ & =2 \times 0.12 \mathrm{~m} / 1500 \mathrm{~m} \mathrm{~s}^{-1} \\ & =0.16 \mathrm{~ms} \tag{1} \end{align*}$	2x1
ii	Use of $f=1 \div T\left[=1 / 1.6 \times 10^{-4} \mathrm{~s}\right]$ 6250 Hz [accept 5000 Hz]	2x1
iii	$\begin{equation*} 1500 \div 3 \times 10^{6} \text { seen } \tag{1} \end{equation*}$ $\begin{align*} \lambda & =v / f \tag{1}\\ & =1500 \div 3 \times 10^{6} \\ & =5 \times 10^{-4} \mathrm{~m} \end{align*}$	1x1

(c) iv	Frequency and Imaging depth Quality of written communication Higher frequency implies lower wavelength (Smaller wavelength) gives better resolution / detail More attenuation / less penetration with higher frequency	4x1
(d)	Gamma camera diagram 1 = (Lead) collimator only transmits γ-rays at right angles to patient $2=$ Scintillation (crystal) / Nal scintillator [may be in function box] (1) Gives off light / photons / scintillates (when struck by γ-rays) $\begin{equation*} 3 \text { = photomultiplier (tubes) } \tag{1} \end{equation*}$ to amplify number of / multiply electrons / current	6x1
(e) i	Tellurium nuclear equations $\begin{equation*} { }_{52}^{131} \mathrm{Te} \longrightarrow{ }_{53}^{131} \mathrm{I}+{ }_{-1}^{0} \mathrm{~B} \tag{1} \end{equation*}$ Te \rightarrow I + B [accept e, ignore (anti)neutrino, gamma, Q] 131, 52, 131, 53, 0, -1 AND numbers balance	2x1
(e) ii	${ }_{52}^{130} \mathrm{Te}+{ }_{0}^{1} \mathrm{n} \longrightarrow{ }_{5}^{131} \mathrm{Te}$	1x1
(e) iii iv	Half-life definition and calculation Time taken for activity (or amount of nuclide) to half due to excretion / biological processes Correct substitution 8.0 days [accept 8 or 8.013] $\begin{aligned} 1 / t_{\mathrm{r}} & =1 / t_{\mathrm{e}}-1 / t_{\mathrm{b}} \\ & =(1 / 5.8 \text { days })-(1 / 21 \text { days }) \\ t_{\mathrm{r}} & =8.0 \text { days } \end{aligned}$	1×1 2×1
		32

6733/02 Practical Test PHY3
Group 1

Question 1A
(a) (i) Set up the circuit as shown in the diagram below. Note at this stage the voltmeter with which you have been provided is not used.

Before you connect your circuit to the power supply, have your circuit checked by the Supervisor. You will be allowed a short time to correct any faults. If you are unable to set up the circuit, the Supervisor will set it up for you. You will only lose two marks for this.

 answers. Must be consistent t up correctly
without help.
(ii) Connect the power supply and measure the current I in the circuit

$$
I=
$$

\qquad

(iii) Observe lamps \mathbf{A} and \mathbf{B}. State and explain your observations.

(iv) Use the voltmeter to measure the potential difference V_{A} across lamp A and then the potential difference V_{B} across lamp B. If you do not know how to connect the voltmeter into the circuit, ask the Supervisor for assistance. You will only lose

$$
\begin{aligned}
& \text { one mark for this. } \\
& V_{A}=0.22 \mathrm{~V} \quad \left\lvert\, \begin{array}{l}
\text { both measured to } 0.0 \mathrm{~V} \\
\text { orbiter with init }(1)
\end{array}\right. \\
& V_{B}=5.66 \mathrm{~V} \quad V_{B} \gg V_{A} \text { with } \\
& \text { Disconnect the power supply. } \\
& 5.0 \mathrm{~V} \leqslant V_{A}+V_{B} \leqslant 6.5 \mathrm{~V}
\end{aligned}
$$

$\left.\begin{array}{l}\text { No indication that (1) } \\ \text { Supervisor gavelhalp(1) }\end{array}\right\}$

The normal operating voltage of both lamps is 6 V . Explain the relevance of your values of V_{A} and V_{B} to your observations in (iii).

Comment on V_{B} related to
the brightness of 8
\qquad
Foment on V_{A} related to the
brightness of A. ${ }^{\prime}$.
\qquad
-rpomeat on
\qquad $V_{B}>V_{A}$ or $R_{B}>R^{\text {stare ot }}$ (1)
$P_{B} \gg P_{A}^{\text {statalatatter }} B>V_{A}$ Or $R_{B} \gg R_{A}$ att er calculation i

Current is the same-in --both lamps seven here on in (b) (iii) or. in calculations
\qquad
Max
(b) (i) You have been provided with an inclined runway. Determine the time taken for

(ii) The final speed v of the sphere at the end of the distance x is given by 1
(ii) The final speed v of the sphere at the end of the distance x is given by -1 $v=\frac{2 x}{t}$. Calculate v.

$$
\begin{array}{l|l}
v=\frac{2 x}{t} \text { calculate } v .8 \tag{1}\\
v & =2 \times 0.8 \\
& =1.13 .41
\end{array} \quad \begin{aligned}
& \text { Correct call. }
\end{aligned}
$$

(iii) Use the top pan balance to measure the mass m of the sphere. Hence find the linear kinetic energy of the sphere after travelling 0.800 m down the runway.

Question 1B
(a) Many modern road bridges have a single pillar from which the bridge is suspended. You are to investigate a model of this arrangement using the extension of a spring to measure the force.

An identical spring to the one used in the experimental arrangement must first be calibrated. Measure the unstretched length l of the coiled part of the vertically

Add the 100 g mass hanger to the spring and determine the extension x of the spring. Add further 100 g masses and determine the corresponding extensions.

The force F extending the spring is given by:

$$
F=m g
$$

where $m=$ total mass suspended from the spring and $g=$ gravitational field strength.
Use the table below for your results. The force F has been calculated for you. You may use the additional column to assist in the recording of your results.

m / kg	F / N	position of lowest point $/ \mathrm{cm}$	x / mm
0.00	0.00	45.0	0
0.10	0.98	42.4	26
0.20	1.96	$38-7$	63
0.30	2.94	35.1	99
0.40	3.92	31.6	134
0.50	4.91	28.0	170

(b) Using the grid on page 7 plot a graph of x against F.

$$
\begin{aligned}
& \text { Scale readings shown (1) or length. } \\
& \begin{array}{l}
5 \text { points } \pm 4 \text { ma stromht } \\
\text { examiners best fithline (2) [Ignore 0,0] }
\end{array} \\
& \text { [4 points... (1)] }
\end{aligned}
$$

6733/02 Practical Test PHY3
Group 2

(e) Suspend the mass $m=100 \mathrm{~g}$ from the 70.0 cm mark on the rule and adjust the height of the boss holding the wooden dowel until the rule is horizontal. Repeat parts (b),

$$
\begin{aligned}
& \text { (c) and (d) to obtain a second value of } W \text {. } \\
& h_{2}=\frac{1}{2}(720+707)=714 \mathrm{~mm} . \\
& h_{1}=345 \mathrm{~mm} \\
& \tan \theta=\frac{714-345}{400}=0.923 . \\
& \theta=42.7^{\circ} \\
& 5=153 \mathrm{~mm} \text {. } \\
& e=153-23=130 \mathrm{~mm} \\
& T=3.25 \mathrm{~N} . \\
& p=400 \mathrm{~mm}, \quad q=600 \mathrm{~mm} \\
& W=3.25 \sin (42.7)-0.1 \times 9.81 \times 0.6 \\
& =2.20-1.47 \\
& =0.73 \mathrm{~N} \\
& {[\pm 0.4 N(1)]_{(5)}}
\end{aligned}
$$

(f) Explain which of your values of W you consider to be the more accurate.

6734 Unit Test PHY4

Question Number	Answer		Mark
$\mathbf{1 (a) (i)}$	Why speed is unchanged Force/Weight [not acceleration] is perpendicular to velocity/motion/direction of travel/instantaneous displacement [not speed] OR no component of force/weight in direction of velocity etc No work is done OR No acceleration in the direction of motion	\checkmark	\checkmark
(a)(ii)	Why it accelerates Direction (of motion) is changing Acceleration linked to a change in velocity	$\mathbf{2}$	
(b)	Speed of satellite Use of $a=v^{2} / r$ Correct answer [3.8 to $4.0 \times 10^{3} \mathrm{~m} \mathrm{~s}^{-1}$] Example calculation: $v=\int\left(2.7 \times 10^{7} \mathrm{~m} \times 0.56 \mathrm{~m} \mathrm{~s}^{-2}\right)$ [Allow 1 mark for $\omega=1.4 \times 10^{-4} \mathrm{rad} \mathrm{s}^{-1}$]	\checkmark	$\mathbf{2}$

\begin{tabular}{|c|c|c|c|}
\hline Question Number \& Answer \& \& Mark \\
\hline 2 (a)(i) \& \begin{tabular}{l}
Demonstrating the stationary wave \\
Move microphone between speaker and wall OR perpendicular to wall OR left to right OR towards the wall [could be shown by labelled arrow added to diagram] \\
Oscilloscope/trace shows sequence of maxima and minima
\end{tabular} \& \(\checkmark\)
\(\checkmark\) \& 2 \\
\hline (a)(ii) \& \begin{tabular}{l}
How nodes and antinodes are produced \\
Superposition/combination/interference/overlapping/crossing of emitted/incident/initial and reflected waves \\
Antinodes: waves (always) in phase OR reference to coincidence of two compressions/rarefactions/peaks/troughs /maxima/minima, hence constructive interference/reinforcement \\
Nodes: waves (always) in antiphase/exactly out of phase OR compressions coincide with rarefactions etc, hence destructive interference / cancellation
\end{tabular} \& \(\checkmark\)
\(\checkmark\)

\checkmark \& 3

\hline (a)(iii) \& | Measuring the speed of sound |
| :--- |
| Measure separation between (adjacent) nodes / antinodes and double to get $\lambda /$ this is $1 / 2 \lambda$ [not between peaks and troughs] |
| Frequency known from/produced by signal generator OR measured on CRO / by digital frequency meter |
| Detail on measurement of wavelength OR frequency e.g. measure several [if a number is specified then ≥ 3] node spacings and divide by the number [not one several times] OR measure several (≥ 3) periods on CRO and divide by the number OR adjust cro so only one full wave on screen |
| Use $v($ allow $c)=f \lambda$ | \& \checkmark

\checkmark
\checkmark
\checkmark

\checkmark \& 4

\hline (b)(i) \& | Application to concert hall |
| :--- |
| Little or no sound /amplitude OR you may be sat at a node | \& \checkmark \&

\hline (b) ${ }^{\text {(ii) }}$ \& | Sensible reason |
| :--- |
| Examples: |
| Reflected wave not as strong as incident wave OR walls are covered to reduce reflections OR waves arrive from elsewhere [reflections/different speakers] OR such positions depend on wavelength / frequency | \& \checkmark \& 2

\hline \& \& \& 11

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Question Number \& Answer \& \& Mark \\
\hline 3 (a)(i) \& \begin{tabular}{l}
Amplitude and frequency
\[
0.17 \mathrm{~m}
\] \\
\(0.8(3) \mathrm{Hz} \mathrm{or} \mathrm{s}^{-1}\)
\end{tabular} \& \(\checkmark\) \& 2 \\
\hline (a)(ii) \& \begin{tabular}{l}
Maximum velocity \\
Use of \(v_{\text {max }}=2 \pi f x_{0}\) \\
Correct answer \\
Example calculation:
\[
v_{\max }=2 \pi \times 0.83 \mathrm{~Hz} \times 0.17 \mathrm{~m}
\] \\
OR \\
Use of maximum gradient of \(h\) versus \(t\) graph \\
Answer to 2 sig fig minimum
\end{tabular} \& \(\checkmark\)
\(\checkmark\)

\checkmark
\checkmark \& 2

\hline (a)(iii) \& | Velocity-time graph |
| :--- |
| Wave from origin, period 1.2 s |
| Inverted sine wave with scale on velocity axis \&initial peak value $0.9 \mathrm{~m} \mathrm{~s}^{-1}$ | \& \checkmark \& 2

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline (b)(i) \& \begin{tabular}{l}
Definition of SHM \\
Acceleration / resultant force proportional to displacement OR Acceleration / resultant force proportional to distance from a fixed point [not just distance from equilibrium but 'distance from equilibrium position' is acceptable] \\
OR \(a=(-)\) constant \(x x\) [with \(a\) and \(x\) defined] \\
OR \(F=(-)\) constant \(x x\) [with \(F\) and \(x\) defined] \\
Acceleration /resultant force directed towards the fixed point / in opposite direction (to displacement) \\
OR negative sign in equation explained [e.g \(a\) and \(x\) in opposite directions]
\end{tabular} \& \(\checkmark\)

\checkmark \& 2

\hline (b)(ii) \& | Verifying SHM |
| :--- |
| Read off h value and use it to get displacement |
| [only penalise the first mark if h used for displacement throughout] |
| Plot acceleration-displacement graph |
| OR calculate ratios eg $a \div x$ |
| Straight line through the origin |
| OR check ratios to see if constant |
| Negative gradient / observe acceleration OR constant is negative and displacement have opposite signs |
| OR |
| Use $x=x_{0} \cos (2 \pi f t)$ for a range of $t \quad$ OR Read off h and get x |
| Use values of x_{0} and f from part (a) OR Use $a=-(2 \pi f)^{2} x$ for range of x Add equilibrium value to x to get $h \quad$ OR Use value of f from part (a) |
| If results agree with values of h (or a) from graph it is SHM | \& \checkmark

\checkmark
\checkmark
\checkmark
\checkmark

\checkmark
\checkmark
\checkmark
\checkmark \& 4

\hline \& \& \& 12

\hline
\end{tabular}

Question	Answer		Mark
Number	Identification of graphs		
$\mathbf{4}$	C	\checkmark	
	B	\checkmark	
	E	\checkmark	$\mathbf{4}$
	D		
			$\mathbf{4}$

Question Number	Answer		Mark
5(a)(i)	Line B Knot T at $2.4 \mathrm{~m}[\pm 1 / 2$ small square, no label needed]	\checkmark	
(a)(ii)	Knots $\mathrm{Q}, \mathrm{R}, \mathrm{S}$ at $0.6,1.2,1.8 \mathrm{~m}[\pm 1 / 2$ small square, no labels needed] [ecf from wrong position of knot T i.e. Q at $1 / 4 T, R$ at $1 / 2 T \& R$ at $3 / 4 T$]	\checkmark	2
(b)	How model represents the Universe and its behaviour Knots/letters/points represent galaxies Reference to expansion of Universe / galaxies moving apart [NOT galaxies move away and stay same distance apart]		2
(c)	How model illustrates Hubble's law Stating or showing velocities are different for 2 of the knots [Shown by either calculating speeds or comparing distances moved between diagrams A and B] Calculation of velocity for at least 2 of the knots [other than T] Use of their data to show speed (of knot) \propto distance (from P) Examples: determine values of $v \div d$ [allow $v \div \Delta d$] sketch graph of v against d [allow v against Δd]		3
(d)	Defects of the model Any 2 sensible points Examples: Galaxies are not evenly spaced Initial spacing of knots is not zero No force pulling galaxies/Universe apart Rate of expansion of Universe OR speed of galaxies increasing/ not constant [not speed decreasing] Relative sizes of knot and spacing are unrealistic Universe is 3 dimensional/galaxies are not in a straight line	$\checkmark \checkmark$	2
			9

Question Number	Answer		Mark
6(a)	Meaning of statement ($5.89 \times 10^{-19} \mathrm{~J} /$ work function) is the energy needed to remove an electron [allow electrons] from the (magnesium) surface/plate Consequent mark Minimum energy stated or indicated in some way [e.g. at least /or more]	\checkmark \checkmark	2
(b)(i)	Calculation of time Use of $P=I A$ Use of $E=P t$ [use of $E=I A t$ scores both marks] Correct answer [210 (s), 2 sig fig minimum, no u.e.] [Reverse argument for calculation leading to either intensity, energy or area gets maximum 2 marks] Example calculation: $t=\left(5.89 \times 10^{-19} \mathrm{~J}\right) /\left(0.035 \mathrm{~W} \mathrm{~m}^{-2} \times 8 \times 10^{-20} \mathrm{~m}^{2}\right)$	\checkmark \checkmark	3
(b)(ii)	How wave-particle duality explains immediate photoemission QOWC Photon energy is $h f$ / depends on frequency / depends on wavelength One/Each photon ejects one/an electron The (photo)electron is ejected at once/immediately [not just 'photoemission is immediate']	\checkmark \checkmark \checkmark \checkmark \checkmark	4
			9

Question Number	Answer		Mark
7(a)(i)	Length of pendulum Substitution of T and g into a correct form of $T=2 \pi \int(l / g)$ Correct answer [$1 \mathrm{~m}(0.99 \mathrm{~m}$ to 1.01 m depending on value g used)] [note: need to check method as an incorrect rearrangement can also lead to a value of 1.01] Example calculation: $l=9.81 \mathrm{~m} \mathrm{~s}^{-2} \times(2.00 \mathrm{~s} / 2 \pi)^{2}$	$\begin{aligned} & \checkmark \\ & \checkmark \end{aligned}$	2
(a)(ii)	Reason for variation in period I varies with temperature OR g varies from place to place/with altitude [ignore references to angle of swing as 'small amplitude' in stem]	\checkmark	1
(a)(iii)	Mass-spring system Appropriate conclusion linked with relevant statement about what affects/doesn't affect either m or k Examples: No, mass/m doesn't change Yes, mass changes plus a valid reason No, spring constant/stiffness/k doesn't change Yes, spring constant/stiffness/k changes e.g. with temperature/age No, independent of g	\checkmark	1
(b)(i)	Calculation of wavelength Correct answer [32.6 (mm), 3 sig fig minimum, no u.e.] Example calculation: $\lambda=\left(3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}-1\right) /\left(9.19 \times 10^{9} \mathrm{~Hz}\right)$	\checkmark	1
(b)(ii)	Part of spectrum Microwaves	\checkmark	1
(b)(iii)	Energy level spacing Use of $\Delta E=h f$ or $h c / \lambda$ [If unexpected λ send response to review] Dividing their ΔE by 1.6×10^{-19} Correct answer [$3.8 \times 10^{-5}(\mathrm{eV})$, no u.e.] Example calculation: $\Delta E=\left(6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}\right) \times\left(9.19 \times 10^{9} \mathrm{~Hz}\right) /\left(1.60 \times 10^{-19} \mathrm{~J} \mathrm{eV}^{-1}\right)$		3
			9
	Total for paper		60

Question Number	Answer	Mark
$1 \text { (a) (i) }$	$\left.\begin{array}{l}G M_{S} / R^{2} \\ G M_{\mathrm{E}} / r^{2}\end{array}\right\} \quad$(symbols must be as given in the Q though allow lower case m)	1
(b) (i)	Evidence of equating of $G M_{\mathrm{S}} / R^{2}$ and $G M_{\mathrm{E}} / r^{2}$ (ecf from part a) Correct answer 570-580 Example of answer: $\begin{aligned} & \frac{G M_{S}}{R^{2}}=\frac{G M_{E}}{r^{2}} \rightarrow \frac{M_{S}}{R^{2}}=\frac{M_{E}}{r^{2}} \rightarrow \frac{R^{2}}{r^{2}}=\frac{M_{S}}{M_{E}} \\ & \therefore \frac{R}{r}=\sqrt{\frac{M_{S}}{M_{E}}}=\sqrt{\frac{2.0 \times 10^{30} \mathrm{~kg}}{6.0 \times 10^{24} \mathrm{~kg}}}=\sqrt{3.33 \times 10^{5}}=577 \end{aligned}$	2
(ii)	$1.5 \times 10^{8} \mathrm{~km} \times 1 / 601$ [ignore powers of 10 in distance value] Correct answer 2.5-2.6 $\times 10^{5} \mathrm{~km}$ (or $2.5-2.6 \times 10^{8} \mathrm{~m}$)	2
(c)	Letter L on or against line to left of point P (coming within one Earth radius of dotted line) Reason*: [*Consequent marks; allow only if L position correct or not shown] Reference to centripetal force/centripetal acceleration/ (net) force towards Sun Force due to Sun must be $>$ force due to Earth	3
		8

Question Number	Answer		Mark
2 (a) (i)	$W=Q V$ Correct answer $3.2 \mathrm{~nJ}\left[3.2 \times 10^{-9} \mathrm{~J}\right.$, etc.] Example of answer: $W=Q V=0.8 \times 10^{-9} \mathrm{C} \times 4.0 \mathrm{~V}=3.2 \times 10^{-9} \mathrm{~J}$	(1) (1)	2
(ii)	$+0.8(\mathrm{nC})$ on top plate and $-0.8(\mathrm{nC})$ on bottom plate (both needed)	(1)	1
(b)	Statement ($\mathrm{E}=$) 'Area' or ($\mathrm{E}=)^{1 / 2} \mathrm{QV}$ See calculation $1 / 2 \times 4.0 \times 0.8$ or $1 / 2 \times$ base \times height $\left\{\begin{array}{c} \text { OR } \\ C \text { found from graph } \\ \text { Use of } W=1 / 2 C V^{2} \end{array}\right.$ Example of answer: $\begin{gathered} C=\frac{Q}{V}=\frac{0.8 \times 10^{-9} \mathrm{C}}{4.0 \mathrm{~V}}=2.0 \times 10^{-10} \mathrm{~F} \\ \therefore W=1 / 2 C V^{2}=\frac{2.0 \times 10^{-10} \mathrm{~F} \times(4.0 \mathrm{~V}) 2}{2}=1.6 \times 10^{-9} \mathrm{~J} \end{gathered}$	(1) (1) $\left.\begin{array}{l}\text { (1) } \\ \text { (1) }\end{array}\right\}$	2
(c) (i)	Correct answer 0.2 nC	(1)	1
(ii)	Graph is straight and through origin ends at 3.0 V and their Q	(1) (1)	2
(iii)	Attempt to use $C=Q / V$ or $C=\Delta Q / \Delta V$ Correct answer $0.067 \mathrm{nF} / 67 \mathrm{pF}$ Example of answer: $C=\frac{Q}{V}=\frac{0.2 \times 10^{-9} \mathrm{C}}{3.0 \mathrm{~V}}=6.7 \times 10^{-11} \mathrm{~F}$	(1) (1)	2
			10

Question Number	Answer	Mark
3 (a)	Either: (manipulating units of both sides) Any valid unit given for B Valid unit given for n Demonstration of equivalence of LHS and RHS Or: (taking units of RHS and showing equivalence to units of B) Valid unit given for n Unit of RHS simplified to $\mathrm{NA}^{-1} \mathrm{~m}^{-1}$ or base unit equivalent Justification that $\mathrm{NA}^{-1} \mathrm{~m}^{-1}$ is unit of B, via e.g. $B=F / I l$ or some other valid relationship Example of answer: $\begin{aligned} & {[B]=[F / I I]=N^{-1} \mathrm{~m}^{-1}} \\ & {\left[\mu_{0} n l\right]=\left(\mathrm{NA}^{-2}\right)\left(\mathrm{m}^{-1}\right) \mathrm{A}=\mathrm{N} \mathrm{~A}^{-1} \mathrm{~m}^{-1}=[B]} \end{aligned}$ [Brackets not required. Allow e.g. ' $F=N$ ', ' $n=m^{-1}$, ' $I=A$ ', etc.]	3
(b)	$\begin{equation*} n=1 / 50\left(\times 10^{-6}\right) \text { or } n=2\left(\times 10^{4}\right) \tag{1} \end{equation*}$ [NB If $B=\mu_{0} \mathrm{I} / 2 \pi r$ used, score 0/2] Correct answer 0.010 T Example of answer: $B=\mu_{o} n I=4 \pi \times 10^{-7} \mathrm{~N} \mathrm{~A}^{-2} \times\left(\frac{1}{50 \times 10^{-6} \mathrm{~m}}\right) \times 0.40 \mathrm{~A}=0.010 \mathrm{~T}$	2
(c) (i)	Currents have same direction for A and B , but opposite directions for C and D.	1
(ii)	Graph curve for CD: Is mirror image of original in time axis Uses only negative force values with amplitude 1.0 unit.	2
		8

Question Number	Answer		Mark
4 (a) (i)	$\left.\begin{array}{l}1.2 \mathrm{keV}=1.2 \times 10^{3} \times 1.6 \times 10^{-19} \mathrm{~J} \\ \text { OR } \\ \text { Use of } e \Delta V \text { with } e \text { as } 1.6 \times 10^{-19} \mathrm{C} \text { and } V \text { as } 1200 \mathrm{~V}\end{array}\right\}$ Use of $\Delta\left(1 / 2 m_{e} v^{2}\right)$ with m_{e} as $9.1(1) \times 10^{-31} \mathrm{~kg}$. Correct answer 2.0-2.1 $\times 10^{7} \mathrm{~ms}^{-1}$	(1) (1) (1)	3
(ii)	$1200 \times 8 / 100=96(\mathrm{eV}$ delivered per electron) $96 / 2.4=40$ Or $2.4 \times 100 / 8=30$ (incident eV needed per photon) $1200 / 30=40$ Or $1200 / 2.4=500$ (photons per electron, ideally) $500 \times(8 / 100)=40$	(1) (1) (1) (1) (1) (1)	2
(b)	Electrons on screen repel electrons in beam / force opposes electron motion/decelerating force Electrons (in beam) decelerated /slowed / velocity reduced/ work done by electrons (against force) Electron (kinetic) energy reduced (not 'shared') Fewer photons (per electron, stated or implied) Trace less bright QoWC	(1) (1) (1) (1) (1) (1) Max 4	4
			9

Question Number	Answer	Mark
5(a)	Scale interval is 0.1 (V) (1)	1
(b) (i)	Use of $\mathcal{E}=(-) N \Delta \varphi / \Delta t$ Correct answer $9.6 \times 10^{-7}(\mathrm{~Wb}) / 0.96(\mu \mathrm{~Wb}) \quad$ [ignore $\left.+/-\right]$ Example of answer: $\Delta \phi=\varepsilon \times \frac{\Delta t}{N}=0.12 \mathrm{~V} \times \frac{40 \times 10^{-3} \mathrm{~s}}{5000}=9.6 \times 10^{-7} \mathrm{~Wb}$	2
(ii)	Use of ' φ ' or ' $\Delta \varphi$ ' or 'flux' $=B A$, or $B=\boldsymbol{\mathcal { E }} \Delta \mathrm{t} / \mathrm{NA}$ Correct answer 0.012 T / 0.013 T (1) Example of answer: $\begin{aligned} & \varphi=B A \\ & \therefore B=\frac{\varphi}{A}=\frac{9.6 \times 10^{-7} \mathrm{~Wb}}{\pi \times\left(\frac{1.0 \times 10^{-2} \mathrm{~m}}{2}\right)^{2}}=0.012 \mathrm{~T} \end{aligned}$ [N.B. $\varphi=0.96 \mu \mathrm{~Wb} \rightarrow 0.012 \mathrm{~T}, \varphi=1 \mu \mathrm{~Wb} \rightarrow 0.013 \mathrm{~T}$]	2
		5
	Total for paper	40

6735/02 Practical Test PHY5
Group 1

Question 1A

(a) (i) Suspend a total mass of 400 g from one of the springs. Give the mass a small vertical displacement and determine the period T_{1} of the subsequent oscillations.

seconds in all answers
Put the mass of 400 g on the other spring and determine the period T_{2} of vertical or oscillations for this spring.

(ii) Hook the 400 g mass onto the loops of both springs as shown in the diagram below.

$$
\begin{aligned}
& \text { Connect call". of } \\
& \text { Tp/t to } 3 \text { sf } \\
& \text { \& no unit } \\
& \text { allow } 1: 1.414 \text { (1) }
\end{aligned}
$$

Determine the period T_{p} of vertical oscillations for this arrangement of springs.

(b) (i) The circuit shown in the diagram below has been set up ready for you to use.

QUESTION IA CONTINUES ON THE NEXT PAGE

Question 1B

(a) (i) The apparatus has been set up for you as shown in the diagram with $M=100 \mathrm{~g}$. For clarity the magnets have not been drawn.

When there is an alternating current in the wire the current passes through the magnetic field. This causes the section of the wire between the wooden blocks and the knife edge to oscillate up and down. Explain why this oscillation occurs.

- Bu Flemn'g's LHR, use expenses a $\quad \frac{\text { Force perpeindicutoc }}{\text { toseild or verbical }}$ force perpendicular to te fill.
 ...fore albermakes consing the tun to oscillate.
(2)
(ii) Switch on the power supply. Increase the length l until you can see that the amplitude of the vibration is at a maximum.
Determine, as accurately as possible, the length l_{1} at which this resonance occurs.

Explain carefully how you ensured that your value for l_{1} was as accurate as possible.

dreckions.

On your sketch mark with an \mathbf{X} where the magnet may be placed to produce the greatest effect.

$$
\text { both } \left.l_{1}+l_{2} \text { repeated (}\right)
$$

(ii) Increase l and adjust the position of the magnet until you can see that the amplitude of this mode of vibration is at a maximum. Determine an accurate value of this length, l_{2}.

Hence determine a second value for λ.

Switch off the power supply.
$\lambda=l_{2}$ and unit.
fool l_{2} \& λ sen n....
once each. Both given
(1)

QUESTION LB CONTINUES ON THE NEXT PAGE

Question 1C

You are to plan an investigation of how the magnetic field strength varies along the axis of a solenoid. You are then to analyse a set of data from such an experiment.
(a) (i) A solenoid is set up as shown in the diagram below. Add to the diagram the circuit you would connect to the solenoid to set and maintain a known value of current in the solenoid.

(i) Circuit

If not connected to solenoid No gap (-2) Cap for solenoid no penalty
(ii) Draw how you would place a Hall probe to measure the magnetic field strength at a point along the axis a distance x from the centre C of the solenoid. You should draw the Hall probe outside the solenoid and should take care to show the orientation of the chip (sensor) correctly.

$$
\begin{aligned}
& \text { Clearly shomm/perpendiculor } \\
& \text { to atis.or stated (1) }
\end{aligned}
$$

(iii) Describe how you would determine the distance x. You may add to the diagram if you wish.
\qquad
QUESTION IC CONTINUES ON THE NEXT PAGE
(b) The solenoid has a length of 276 mm and has 337 turns. When the current in the solenoid was adjusted to 500 mA , the calibrated Hall probe indicated that the magnetic field strength at the centre of the solenoid was 0.761 mT .

The magnetic field strength B at the centre of a solenoid having n turns per metre is given by:

$$
B=\mu_{0} n I
$$

when the current in the solenoid is I.
Discuss the extent to which you think that the Hall probe is correctly calibrated.

Leave blank
(c) The following data were obtained when the magnetic field strength B was measured along the axis at different distances x from the centre of the solenoid, keeping the current constant at 500 mA .

x / mm	B / mT
0	0.761
40	0.760
80	0.706
120	0.549
140	0.330
150	0.217
160	0.151
180	0.077
200	0.032

Plot a graph of B against x on the grid opposite.

(d) Theory suggests that the magnetic field strength at the end of a long solenoid is exactly half that at its centre. Discuss the extent to which this experiment supports this suggestion.

$$
\begin{aligned}
& \text { End of solenoid in } \left.\frac{276}{2}=138 \mathrm{~mm} \right\rvert\, \quad x=138 \mathrm{~mm} \text { at. } \\
& \text { From (te graph, then } x=138 \mathrm{~mm} \text {, }
\end{aligned}
$$

.... Sild pkrensth in $0.37 \sigma \mathrm{mT}$
$\cdots \frac{\text { Bend }}{\text { Beater }}=\frac{0.340 \mathrm{mT}}{0.761 \mathrm{mT}}=0.49$

Leave inorontable experminitial nor. The exponent ltonefore supports Sensible sensible (i) 3 to suggestion.
(Total 16 marks)

6735/02 Practical Test PHY5
Group 2

Question 2A

(a) (i) Suspend a total mass of 300 g from one of the springs. Give the mass a small vertical displacement and determine the period T_{1} of the subsequent oscillations.

Put the mass of 300 g on the other spring and determine the period T_{2} of vertical oscillations for this spring.
(ii) Remove one of the springs from the rod. Connect it to the other spring using the paper clip to give a series arrangement of springs as shown in the diagram below.
$\binom{\sum_{n} \geqslant \geqslant 30(2)}{\operatorname{Sov}$ bot $(\geqslant 20(1)}$

Determine the period T_{s} of vertical oscillations for this series arrangement of springs.

(b) (i) The circuit shown in the diagram below has been set up ready for you to use.

Discharge the capacitor by connecting one of the spare leads across it. Now remove the lead.

Close the switch and determine the time that it takes for the current in the circuit to fall from $100.0 \mu \mathrm{~A}$ to $36.8 \mu \mathrm{~A}$. Open the switch when you have done this.
$t(5=25,24,25,21$
$t=25,25$

Describe the procedure you adopted to make this timing as accurate as possible.
Discharged capacitor before exch vending (i) Repeat shown (1)

\qquad
\qquad
\qquad
\qquad

BLANK PAGE

Question 2B

(a) The apparatus has been set up for you as shown in the diagram with $M=100 \mathrm{~g}$. For clarity the magnet has not been drawn.

The fundamental mode of a stationary (standing) wave can be formed on a length l of the wire. Draw on the diagram the shape you would see. State the relationship between the wavelength λ of the wave and the length l.

$$
\lambda=2 l
$$

$$
\begin{align*}
& \text { Correct share, } \\
& \text { with one antinode } \tag{1}\\
& \begin{array}{ll}
1 .(1) ~
\end{array} \\
& \lambda=2 l
\end{align*}
$$

\qquad
(b) (i) Switch on the power supply. Increase l until you can see that the amplitude of vibration of the wire is at a maximum.

Determine, as accurately as possible, the length l_{1} at which this resonance occurs. $\pm 2 \mathrm{~cm}$ of Supervisor (2)
$Q_{1} 1 \mathrm{~cm}: 44: 0,43.4,43.6 \cdot \bar{l}_{1}=43.7 \mathrm{~cm}$
Explain carefully how you ensured that your value for \bar{l}_{1}^{1} nos no nt possible.

The frequency f of the supply is as stated on the card. Use this value and your value for l_{1} to determine a value for the speed c of the wave along the wire.

(ii) Add 300 g to the mass hanger to make $M=400 \mathrm{~g}$. For standing waves on a wire the tension T in the wire and the resonant length l are related by the equation:

$$
T=k l^{2}
$$

You are to determine the new resonant length, l_{2}.
Explain whether you would expect.the new length to be longer or shorter than l_{1}.

Suggest where the magnet should be placed to obtain the largest possible vibration.
 Adjust the position of the knife edge and magnet until you can see that the amplitude of vibration of the wire is at its maximum value for the fundamental mode. Determine an accurate value of this length, l_{2}. $l_{2} / \mathrm{cm}: 89 \cdot 4,89.7 .88 .9: \quad \bar{l}_{2}=89.3 \mathrm{~cm}$
Estimate the percentage uncertainty in your value for l_{2}.

$$
\begin{aligned}
& \Delta l= \pm 4 \mathrm{~mm} \text { (hal spread) } \\
& \% \text { uncertainty }=\frac{4}{893} \times 100=0.4 \%
\end{aligned}
$$

Question 2C

You are to plan an investigation of how the magnetic field strength varies along the axis of a coil. You are then to analyse a set of data from such an experiment.
(a) (i) A flat circular coil is set up as shown in the diagram below. Add to the diagram the circuit you would connect to the coil to set and maintain a known value of current in the coil.

(ii) Draw how you would place a Hall probe to measure the magnetic field strength at a point along the axis a distance x from the centre C of the coil. You should be careful to show the orientation of the Hall chip (sensor) correctly.

(iii) Describe how you would determine the average diameter of the coil. You may add to the diagram if you wish.

-

(b) The coil has a diameter of 124 mm and has 70 turns. When the current in the coil was adjusted to 500 mA , the calibrated Hall probe indicated that the magnetic field strength at the centre of the coil was 0.350 mT .

The magnetic field strength B at the centre of a coil having a radius r and N turns is given by

$$
B=\frac{\mu_{0} N I}{2 r}
$$

when the current in the coil is I.
Discuss the extent to which you think that the Hall probe is correctly calibrated.

(c) The following data were obtained when the magnetic field strength B was measured along the axis at different distances x from the centre of the coil, keeping the current constant at 500 mA .

x / mm	B / mT
0	0.350
20	0.304
40	0.219
50	0.163
60	0.120
80	0.071
100	0.039
120	0.024

Plot a graph of B against x on the grid opposite.

(d) Theory suggests that when $x=r$, the radius of the coil, the magnetic field strength is $1 / \sqrt{8}$ of the field strength at the centre of the coil. Discuss the extent to which this experiment supports this suggestion.

Leave
blank

- TOTAL FOR PAPER: 48 MARKS

END

\begin{tabular}{|c|c|c|c|}
\hline Question Number \& Answer \& \& Mark \\
\hline \[
\begin{gathered}
1 \\
\text { (a) }
\end{gathered}
\] \& \begin{tabular}{l}
use of \(c=3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}\) \\
times a number between 0.002 and 0.006 \\
\(\Rightarrow U=6 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1}\) to \(18 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1}\) \\
use of \(s=u t\) \\
with \(t=2\) or 3 times \(24 \times 3600 \mathrm{~s}\) \\
\(\Rightarrow s\) between \(1.04 \times 10 \mathrm{~m}\) and \(4.67 \times 10^{11} \mathrm{~m}\) \\
expressed as \(10^{11}\) (i.e. order of magnitude) e.c.f.
\end{tabular} \& \& 5 \\
\hline (b) \& \begin{tabular}{l}
rectangle labelled N and S plus some field lines with correct arrows \\
\(\geq 4\) symmetric field lines (not joining)
\end{tabular} \& \(\checkmark\)
\(\checkmark\) \& 2 \\
\hline \begin{tabular}{l}
(c) \\
(i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
out of paper / eastwards \\
Fleming / LHR \\
any spiral path \\
looping round PQ
\end{tabular} \& \(\checkmark\)
\(\checkmark\)
\(\checkmark\)
\(\checkmark\)
\(\checkmark\) \& 4 \\
\hline \begin{tabular}{l}
(d) \\
(i) \\
(ii)
\end{tabular} \& \[
\begin{aligned}
\& 3 \text { days as } 3 \times 24 \times 3600 \mathrm{~s} \\
\& \div 1.2 \mathrm{~s} \\
\& \Rightarrow 216000 \text { transits } \\
\& \div 100 \\
\& \text { making } N=2160 / 2200 \text { ionising collisions } \\
\& N \times 14 \mathrm{eV} \\
\& \Rightarrow \text { initial energy }=30240 / 30800 / 28000 \mathrm{eV} \\
\& \text { times } 1.6 \times 10^{-19} \mathrm{~J} \mathrm{eV}^{-1} \text { e.c.f. } \\
\& \Rightarrow 4.5-4.9 \times 10^{-15} \mathrm{~J}
\end{aligned}
\] \& \(\checkmark\)
\(\checkmark\)
\(\checkmark\)

\checkmark

\checkmark
\checkmark \& 5

\hline
\end{tabular}

(e) (i) (ii)	$m v^{2} / r$ (i.e. mass \times acceleration) Beu (magnetic force) $\Rightarrow r=m u / B e$ use of $m=1.66 / 1.67 / 1.7 \times 10^{-27} \mathrm{~kg}$ and $e=1.6 \times 10^{-19} \mathrm{C}$ so radius r between 519 m and 531 m	4
(f) (i) (ii)	either concave falling curve with marked axes $\rho \& h$ starting on / cutting ρ axis and not touching h axis or axes $\ln \rho$ and h straight line with negative slope starting on y axis / 1:17150 $\rho / \rho_{0}=\mathrm{e}^{-\mathrm{kh}} \quad$ [no mark] $\begin{aligned} & \Rightarrow k h=\left(6.5 \times 10^{-5} \mathrm{~m}^{-1}\right)\left(150 \times 10^{3} \mathrm{~m}\right) \\ & \rho / \rho_{0}=5.8 \times 10^{-5} \end{aligned}$ i.e. atmosphere very, very thin	4
(g) (i) (ii)	charged particles / protons and electrons knock / remove electrons from / off atoms / molecules [not collide with atoms or molecules] mention energy levels unique to element/ N and O are different photon emitted (by transitions between levels)	5
(h) (i) (ii)	$\mathrm{g} / 9.8 \mathrm{~m} \mathrm{~s}^{-2} /$ gravitational field assumed constant $m / 400 \mathrm{~kg} /$ (total) mass of rocket assumed constant Earth's (gravitational) field is radial / obeys inverse square law fuel is used up (as rocket ascends)	4
		33

Question Number	Answer		Mark
2 (a)	high frequency / $\geq 50 \mathrm{kHz} /$ radio frequency a.c. p.d. / voltage / supply or ~ (correctly) connected to every other ≥ 4 tubes of increasing length vacuum	\checkmark \checkmark \checkmark \checkmark \checkmark \checkmark	max 5
(b)	pair of values of k.e. and v^{2} read from graph / gradient $\begin{aligned} & u^{2}>5 \times 10^{16} \mathrm{~m} \mathrm{~s}^{-2} \\ & \Rightarrow m_{\mathrm{p}}=1.62-1.69 \times 10^{-27}(\mathrm{~kg}) \text { to } 3 \text { s.f. } \end{aligned}$	\checkmark \checkmark \checkmark	3
(c) (i) (ii)	(values 1.3-1.7, 3.1 - 3.5, 6.0-6.5) any two correct $\Delta E=c^{2} \Delta m / E=m c^{2}$ \Rightarrow one value for $\Delta m\left(\times 10^{-28} \mathrm{~kg}\right)$ use of m_{p} from (i) [no mark] \Rightarrow one value of $\Delta m / m_{p}$: about $10 \%, 20 \%, 40 \%$	$\checkmark \checkmark$ \checkmark \checkmark \checkmark	5
(iii)	curve approaches / is asymptotical to horizontal / becomes horizontal / flattens out / levels off / gradient decreases at $9 \times 10^{16} /\left(3 \times 10^{8}\right)^{2} / c^{2} / 9$ (so) tubes then have a constant length / become constant in length / do not increase in length	\checkmark \checkmark \checkmark	3
			16

Question Number	Answer	Mark
3 (a) (i) (ii)	$\begin{aligned} & N+Y=W \\ & W / 55 \mathrm{~N} \times \text { a distance }=Y \times \text { a distance } \\ & \text { distances must be } 5-7 \mathrm{~mm}: 42-45 \mathrm{~mm} / \\ & 9-10 \mathrm{~mm} \cos \theta: 70-72 \mathrm{~mm} \cos \theta \\ & \Rightarrow Y=6.8 \mathrm{~N}-7.9 \mathrm{~N} \end{aligned}$	
(iii)	1. reload the contents (of the case) / repack the case to reduce the moment (of W) / to move G towards the bottom of the case or toward C / the wheel 2. increase the angle between the handle and the ground to get G above $\mathrm{C} /$ to reduce horizontal distance from C to line of action of W by a greater factor than that from C to line of action of Y	4
(b) (i) (ii)	appreciation that area of (first) rectangle / at gives speed u $\Delta U_{\text {accel }}=\left(3 \mathrm{~m} \mathrm{~s}^{-2}\right)(8 \mathrm{~s}) / 30$ small squares each worth $0.8 \mathrm{~m} \mathrm{~s}^{-1}$ $\Rightarrow 24 \mathrm{~m} \mathrm{~s}^{-1}$ appreciation that area of second is of same area as first / $\Delta U_{\text {decel }}=\left(4 \mathrm{~m} \mathrm{~s}^{-2}\right)(6 \mathrm{~s}) \quad$ [negative idea not needed]	4
(iii)	$\begin{aligned} & \text { use of } P=I V / E=I V t \\ & \text { use of } P=F U / E=F u t \\ & (3000 \mathrm{~N}) U=(96 \mathrm{~A})(750 \mathrm{~V}) / \text { equating the } P \mathrm{~s} \text { or } E \mathrm{~s} \\ & \Rightarrow U=24 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	3
		15

Question Number	Answer		Answer
4 (a)	$\begin{aligned} & \rho=m / V \\ & \text { correct substitutions } \\ & \text { use of } \Delta H=m c \Delta T \text { with } c=610 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1} \\ & \Rightarrow \Delta H=6300(\mathrm{~J}) / 6340(\mathrm{~J}) / 6.3(\mathrm{~kJ}) \end{aligned}$		4
(b) (i)	the purpose / principle is to transfer energy / heat from inside the freezer / cold to the kitchen / hot T_{c} temperature inside / of freezer and T_{h} temperature of room / kitchen W is electrical work / energy or W powers the pump / freezer / motor Q_{h} and Q_{c} heat / energy transferred to hot and from cold (respectively)	\checkmark \checkmark \checkmark \checkmark	4
(ii) (iii)	use of kelvin temperatures $\Rightarrow \quad \eta_{p}=255 \mathrm{~K} \div 40 \mathrm{~K}=6.4$ $W=Q_{c} / \eta_{p}=6300 \mathrm{~J} \div 6.4$ e.c.f. $\Rightarrow 990 \mathrm{~J}$	\checkmark \checkmark \checkmark	3
(c) (i) (ii)	$\begin{aligned} & m u^{\prime}=m u-E / c \text { or } m \Delta u=E / c \\ & \left(u-u^{\prime}\right) / \Delta u=E / m c \text { or } h f / m c \\ & \text { use of Doppler formula } \Delta f / f=u / c \\ & \text { state } E=h f \\ & E-E=\Delta E / f^{\prime}-f=\Delta f \\ & \Rightarrow E=E(1+u / c) / h f(1+u / c) \end{aligned}$	\checkmark \checkmark \checkmark \checkmark \checkmark \checkmark	5
			16

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publications@linneydirect.com
Order Code UA020379 Summer 2008

For more information on Edexcel qualifications, please visit www.edexcel.org.uk/qualifications

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

