Mark Scheme (Final)

Summer 2008

GCE

GCE Physics (6733/01)

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- \quad All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Mark scheme notes

Underlying principle

The mark scheme will clearly indicate the concept that is being rewarded, backed up by examples. It is not a set of model answers.

For example:

(iii) Horizontal force of hinge on table top

$66.3(\mathrm{~N})$ or $66(\mathrm{~N})$ and correct indication of direction [no ue] $\quad \checkmark \quad 1$
[Some examples of direction: acting from right (to left) / to the left /
West / opposite direction to horizontal. May show direction by arrow. Do not accept a minus sign in front of number as direction.]

This has a clear statement of the principle for awarding the mark, supported by some examples illustrating acceptable boundaries.

1. Mark scheme format
1.1 You will not see 'wtte' (words to that effect). Alternative correct wording should be credited in every answer unless the ms has specified specific words that must be present. Such words will be indicated by underlining e.g. 'resonance'
1.2 Bold lower case will be used for emphasis.
1.3 Round brackets () indicate words that are not essential e.g. "(hence) distance is increased".
1.4 Square brackets [] indicate advice to examiners or examples e.g. [Do not accept gravity] [ecf].

2. Unit error penalties

2.1 A separate mark is not usually given for a unit but a missing or incorrect unit will normally cause the final calculation mark to be lost.
2.2 Incorrect use of case e.g. 'Watt' or ' w ' will not be penalised.
2.3 There will be no unit penalty applied in 'show that' questions or in any other question where the units to be used have been given.
2.4 The same missing or incorrect unit will not be penalised more than once within one question but may be penalised again in another question.
2.5 Occasionally, it may be decided not to penalise a missing or incorrect unit e.g. the candidate may be calculating the gradient of a graph, resulting in a unit that is not one that should be known and is complex.
2.6 The mark scheme will indicate if no unit error penalty is to be applied by means of [no ue].
3. Significant figures
3.1 Use of an inappropriate number of significant figures in the theory papers will normally only be penalised in 'show that' questions where use of too few significant figures has resulted in the candidate not demonstrating the validity of the given answer.
3.2 Use of an inappropriate number of significant figures will normally be penalised in the practical examinations or coursework.
3.3 Using $\mathrm{g}=10 \mathrm{~m} \mathrm{~s}^{-2}$ will not be penalised.
4. Calculations
4.1 Bald (i.e. no working shown) correct answers score full marks unless in a 'show that' question.
4.2 If a 'show that' question is worth 2 marks then both marks will be available for a reverse working; if it is worth 3 marks then only 2 will be available.
4.3 use of the formula means that the candidate demonstrates substitution of physically correct values, although there may be conversion errors e.g. power of 10 error.
4.4 recall of the correct formula will be awarded when the formula is seen or implied by substitution.
4.5 The mark scheme will show a correctly worked answer for illustration only.
4.6 Example of mark scheme for a calculation:

'Show that' calculation of weight

Use of $L \times W \times H$
Substitution into density equation with a volume and density
Correct answer [49.4 (N)] to at least 3 sig fig. [No ue]
[Allow 50.4(N) for answer if $10 \mathrm{~N} / \mathrm{kg}$ used for g .]
[If 5040 g rounded to 5000 g or 5 kg , do not give $3^{\text {rd }}$ mark; if conversion to kg is omitted and then answer fudged, do not give $3^{\text {rd }}$ mark]
[Bald answer scores 0 , reverse calculation 2/3]
Example of answer:
$80 \mathrm{~cm} \times 50 \mathrm{~cm} \times 1.8 \mathrm{~cm}=7200 \mathrm{~cm}^{3}$
$7200 \mathrm{~cm}^{3} \times 0.70 \mathrm{~g} \mathrm{~cm}^{-3}=5040 \mathrm{~g}$
$5040 \times 10^{-3} \mathrm{~kg} \times 9.81 \mathrm{~N} / \mathrm{kg}$
$=49.4 \mathrm{~N}$
5. Quality of Written Communication
5.1 Indicated by QoWC in mark scheme, placed as first mark.
5.2 Usually it is part of a max mark.
5.3 In SHAP marks for this are allocated in coursework only but this does not negate the need for candidates to express themselves clearly, using appropriate physics terms. Likewise in the Edexcel A papers.
6. Graphs
6.1 A mark given for axes requires both axes to be labelled with quantities and units, and drawn the correct way round.
6.2 Sometimes a separate mark will be given for units or for each axis if the units are complex. This will be indicated on the mark scheme.
6.3 A mark given for choosing a scale requires that the chosen scale allows all points to be plotted, spreads plotted points over more than half of each axis and is not an awkward scale e.g. multiples of 3,7 etc.
6.4 Points should be plotted to within 1 mm .

- Check the two points furthest from the best line. If both OK award mark.
- If either is 2 mm out do not award mark.
- If both are 1 mm out do not award mark.
- If either is 1 mm out then check another two and award mark if both of these OK, otherwise no mark.
6.5 For a line mark there must be a thin continuous line which is the best-fit line for the candidate's results.

Topic A - Astrophysics

Question Number	Answer	Mark
1 (a)	Core remnant stars All core remnants ticked AND no main sequence < $1.4 M_{\odot}$ column: White dwarf only > $2.5 M_{\odot}$ column: Black hole only	3x1
(b)	CCD advantages - Higher (quantum) efficiency / more sensitive / detect fainter or more distant stars - More linear response [or equivalent] - Digital / link to computer / remote imaging - No processing time / use repeatedly - Quicker image collection [i.e. quicker \& reason] - Wider range of frequency / wavelength / e.m. radiation (1) + (1) CCD disadvantage Resolution / pixel size larger / pixilates if magnified (1)	3x1
(c) i	Hydrogen burning Quality of written communication Nuclear fusion reaction [accept nuclei, nucleus, fusing] Hydrogen / deuterium /protons turn into He [penalise contradictions, e.g. molecules atoms; accept symbols] Release of energy	4x1
(c) ii	Sun as red giant calculation Attempted use of $L=\sigma T^{4} A$ (accept r substituted as A) $A=4 \pi r^{2}$ [or $A a r^{2}$ if ratios calculated directly] $3.85 \times 10^{26}(\mathrm{~W})$ or $1.13 \times 10^{30}(\mathrm{~W})$ [or substitution as ratio] 2930 [accept 2900-2940] $\begin{align*} & \begin{array}{l} L=\sigma T^{4} A=4 \pi \sigma T^{4} r^{2} \\ L_{\text {before }} \end{array}=4 \pi \times 5.67 \times 10^{-8} \mathrm{~W} \mathrm{~m} \tag{1}\\ & \quad=3.85 \times 10^{26} \mathrm{~W} \times(5780 \mathrm{~K})^{4} \times\left(6.96 \times 10^{8} \mathrm{~m}\right)^{2} \\ & L_{\text {after }}=4 \pi \times 5.67 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{4} \times(3160 \mathrm{~K})^{4} \times(1.26 \times 1011 \mathrm{~m})^{2} \\ & \\ & \\ & \text { Hence ratio }=1.13 \times 10^{30} \mathrm{~W} \times 10^{30} \mathrm{~W} \div 3.85 \times 10^{26} \mathrm{~W}=2930 \end{align*}$	4x1

(c) iii	H-R diagram plots X at 10^{0} on main sequence [$\pm 1 \mathrm{~mm}$ by eye] AND between 5000 K and centre of 5000-10 000 K box Y above and to right of actual X_{\odot} Attempt to plot Y at 3160 K [between 5000 K and 2500 K] Attempt to plot Y between $10^{3} L_{\odot}$ and $10^{4} L_{\odot}$ [ecf]	4x1
(d) i	Sun as white dwarf Any 2 [comparative statements] of Higher temperature / hotter Lower luminosity [accept Power, not E or I] No fusion in core [or equivalent; not just "not on main sequence] More dense (1) $+(1)$	2x1
(d) ii	Future of white dwarf Cools / T decreases Dims / fades / correct colour change [not brown dwarf] / Luminosity decreases [accept intensity here]	2x1
(e) i	Distance to Sirius Substitution in $v \times t / \mathrm{s}$ [ignore 8.6, accept 365 or $3651 / 4$ days] $\begin{align*} 8.1 & \times 10^{16}(\mathrm{~m})[8.13,8.14] \tag{1}\\ d & =v t \\ & =8.6 \times 3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \times\left(60 \times 60 \times 24 \times 365^{1 / 4}\right) \mathrm{s} \\ & =8.1 \times 10^{16} \mathrm{~m} \end{align*}$	2x1
(e) ii	Sirius A intensity calculation Use of $I=L / 4 \pi D^{2}$ Correct substitution $\begin{align*} & 1.2 \times 10^{-7} \mathrm{~W} \mathrm{~m}^{-2}[1.20-1.24] \tag{1}\\ & I \end{align*}$	3x1

(e) iii	Mass rate conversion $E=m c^{2}$ seen [or implied] Correct substitution $\begin{aligned} & 1.1 \times 10^{11} \mathrm{~kg}\left(\mathrm{~s}^{-1}\right) \\ & 1.0 \end{aligned} \begin{aligned} \Delta m & =\Delta E / \mathrm{c}^{28} \mathrm{~W}=1.0 \times 10^{28} \mathrm{~J} \mathrm{~s}^{-1} \\ & =1.0 \times 10^{28} \mathrm{~J} /\left(3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}\right)^{2} \\ & =1.1 \times 10^{11} \mathrm{~kg} \end{aligned}$	(1) (1) (1)	3×1
(e) iv	Peak wavelength calculation Use of Wien's law $\begin{aligned} 2.93 & \times 10^{-7} \mathrm{~m} \\ \lambda_{\max } & =2.90 \times 10^{-3} \mathrm{~m} \mathrm{~K} / 9900 \mathrm{~K} \\ & =2.93 \times 10^{-7} \mathrm{~m} \end{aligned}$	(1) (1)	2x1
			32

Topic B - Solid Materials

Question Number	Answer	Mark
2 (a)	Metal treatment classification Annealing: heating and slow cooling Work hardening: beating only Quench hardening: heating and rapid cooling	3x1
(b) i	Fence wire cross-section Use of πr^{2} and $10^{-3} \mathrm{~m}$ $4.9 \times 10^{-6}\left(\mathrm{~m}^{2}\right)$ [do not accept m] $\begin{align*} A & =\pi r^{2} \tag{1}\\ & =\pi \times\left(0.5 \times 2.50 \times 10^{-3}\right)^{2} \end{align*}$	2x1
(b) ii	Stress calculation Substitution: $1500 \mathrm{~N} / 4.9$ [or 5$] \times 10^{-6} \mathrm{~m}^{2}$ 310 MPa [accept 300, ecf] $\begin{align*} \sigma & =F / A \tag{1}\\ & =1500 \mathrm{~N} / 4.9 \times 10^{-6} \mathrm{~m}^{2} \\ & =3.1 \times 10^{8} \mathrm{~Pa} \end{align*}$	2x1
(b) iii	Extension calculation $\begin{equation*} E=\sigma / \varepsilon \text { and } \varepsilon=\Delta l / l \text { (or } E=F l / A \Delta l) \tag{1} \end{equation*}$ Substitution in $E=\sigma / \varepsilon$ and $\varepsilon=\Delta l / l$ [or in $E=F l / A \Delta l$, ecf, ignore 10^{n}] 0.048 (m) [ecf] 48 mm [accept 47-49 mm, bald answer scores 4/4] $\begin{aligned} E & =F l / A \Delta l \\ \Delta l & =(1500 \mathrm{~N} \times 33 \mathrm{~m}) /\left(210 \times 10^{9} \mathrm{~Pa} \times 4.9 \times 10^{-6} \mathrm{~m}^{2}\right) \\ & =0.048 \mathrm{~m}=48 \mathrm{~mm} \end{aligned}$	4x1
(c) i	Young modulus experiment (G-) clamp [vice], wire, pulley, mass / weight / load three correct all four correct	2x1

(c) ii	Labelling of I		2x1
	Accurate indication of l [to 1 mm]	(1)	
	Length 2 m to 6 m	(1)	
(c) iii	Additional apparatus		
	Micrometer (screw gauge) / (digital) callipers	(1)	
	Ruler or similar [e.g. tape measure, metre stick]	(1)	2x1
(c) iv	Energy density		
	Energy density = area [may be implied by use]$4.5-5.5 \times 10^{n}$	(1)	
		(1)	
	$5 \times 10^{7} \mathrm{~J} \mathrm{~m}^{-3} / 50 \mathrm{MJ} \mathrm{m}^{-3}$ [when rounded to $1 \mathrm{~s} . \mathrm{f}$.]	(1)	3×1
(d)	Relieving stress concentrations explanation		
	Quality of written communication	(1)	
	Tip [end] of crack [not edge, centre; diagram ok]	(1)	
	Increases area (over which stress acts)	(1)	
	Lowers stress concentration	(1)	4x1
(e) i	Edge dislocation		
	Edge (dislocation)	(1)	1x1
(e) ii	Horizontal line [on or] between third and fourth rows	(1)	1x1
(e) iii	Bonds beak and reform / rows slide past each other Bonds break one at a time Less force required (compared to breaking plane of bonds)		3x1
(f) i	Elastomer		1x1
	Hysteresis	(1)	
(f) ii	Energy gained related to area under graph Difference in areas / loop area = energy gained on impact	(1) (1)	2x1
			32

Topic C - Nuclear and Particle Physics

Question Number	Answer	Mark
3 (a)	Particle classification Neutron: baryon and hadron Neutrino: lepton Muon: lepton	3x1
(b) i	Decay series 8 decays (238-206) $\div 4$ [Correct maths with $238,206,4]$	2x1
(b) ii	Thorium decay series $\begin{align*} & { }_{90}^{234} \mathrm{Th} \longrightarrow{ }_{91}^{234} \mathrm{~Pa}+{ }_{-1}^{0} \mathrm{~B}+\overline{\mathrm{v}} \\ & \mathrm{Th} \longrightarrow \mathrm{~Pa}+\mathrm{B} \tag{1}\\ & 234,90,234,91,0,-1 \tag{1} \end{align*}$ antineutrino [accept symbol; ignore gamma / energy; do not accept any contradiction]	3x1
(b) iii	Neutron turns into a proton [accept down quark turns into up quark; words required; ignore beta]	1×1
(b) iv	234 AND 92 / U / uranium Uranium-234 / $\underset{(92)}{234}) \mathrm{U}$	2x1
(c) i	Binding energy Energy required to separate a nucleus into nucleons	1x1
(c) ii	$8 \mathrm{n}+6 \mathrm{p}$Substitution $/ m=0.1098 \mathrm{u}$Multiply by 930 [only, or $E=m c^{2}$ route]102 MeV [or 103 MeV]$\Delta m=(6 \times 1.00728 \mathrm{u})+(8 \times 1.00867 \mathrm{u})-14.00324 \mathrm{u}=0.1098 \mathrm{u}$ $\Delta E=0.1098 \mathrm{u} \times 930 \mathrm{MeV} / \mathrm{u}=102 \mathrm{MeV}$	4x1

(c) iii	More stable isotope Binding energy per nucleon attempted $7.4(\mathrm{MeV})$ and 7.3 (MeV) [accept 7.1, ecf] Hence carbon-12 [based on two values, ecf] $\mathrm{BE} / \mathrm{A}\left({ }^{14} \mathrm{C}\right)=102 \mathrm{MeV} / 14=7.3 \mathrm{MeV}$ $\mathrm{BE} / \mathrm{A}\left({ }^{12} \mathrm{C}\right)=89 \mathrm{MeV} / 12=7.4 \mathrm{MeV}$	3x1
(d) i	Deuterium Up and down quarks [accept u and d quarks] One proton = uud AND one neutron = udd [contradiction, e.g. electron: max $1 / 2$ if otherwise all correct]	2x1
(d) ii	Fundamental forces Quality of written communication Weak force affect all particles / matter Strong force only affect quarks Electromagnetic force affects charged particles / charges Weak only [supported by reference to neutrino]	5×1
(d) iii	Z^{0} [accept just Z, e.c.f. for strong: gluon or em:photon] (1)	1x1
(e) i	Conservation laws First reaction, $\mathrm{Q}: 0+0 \neq 1+1$ Second reaction B: $1=1+0$ AND Q: $-1=-1+0$ Hence only Ω decay possible [based on B and Q conservation for this decay, accept simple ticks and crosses]	3×1
(e) ii	Quark charges Use of sss $=-1$ to show $s=-1 / 3$ Hence correct working (from baryons) to show $u=2 / 3$ and $d=-1 / 3$	2x1
		32

Topic D - Medical Physics

Question Number	Answer	Mark
4(a)	Imaging techniques X-ray: lonising only Nuclear medicine: lonising \& injected [ignore soft tissue] Ultrasound: transducer \& soft tissue	3x1
(b) i	X-rays for radiotherapy $\begin{equation*} (1-25) \mathrm{MeV} \tag{1} \end{equation*}$	1x1
(b) ii	Labelled [x3] diagram showing patient, tumour and at least three beam positions [or equivalent labels] Tumour always targeted [accept as label in diagram] Healthy cells receive lower dose	3x1
(b) iii	High energy X-rays Absorption not dependent on proton number (Have enough energy to) destroy / kill cells [not just damage](1)	2x1
(b) iv	Criticality of dose Too high: extra radiation could kill [harm] patient / healthy cells Too low: tumour cells may not be completely destroyed	2x1
(c)	Liver ultrasound calculations	
i	Use of $x=v t$ with metres [0.12 or 0.24] $\begin{equation*} 1.6 \times 10^{-4} \mathrm{~s} / 0.16(\mathrm{~ms}) \tag{1} \end{equation*}$ $\begin{align*} t & =x / \mathrm{v} \tag{1}\\ & =2 \times 0.12 \mathrm{~m} / 1500 \mathrm{~m} \mathrm{~s}^{-1} \\ & =0.16 \mathrm{~ms} \tag{1} \end{align*}$	2x1
ii	Use of $f=1 \div T\left[=1 / 1.6 \times 10^{-4} \mathrm{~s}\right]$ 6250 Hz [accept 5000 Hz]	2x1
iii	$\begin{equation*} 1500 \div 3 \times 10^{6} \text { seen } \tag{1} \end{equation*}$ $\begin{align*} \lambda & =v / f \tag{1}\\ & =1500 \div 3 \times 10^{6} \\ & =5 \times 10^{-4} \mathrm{~m} \end{align*}$	1x1

