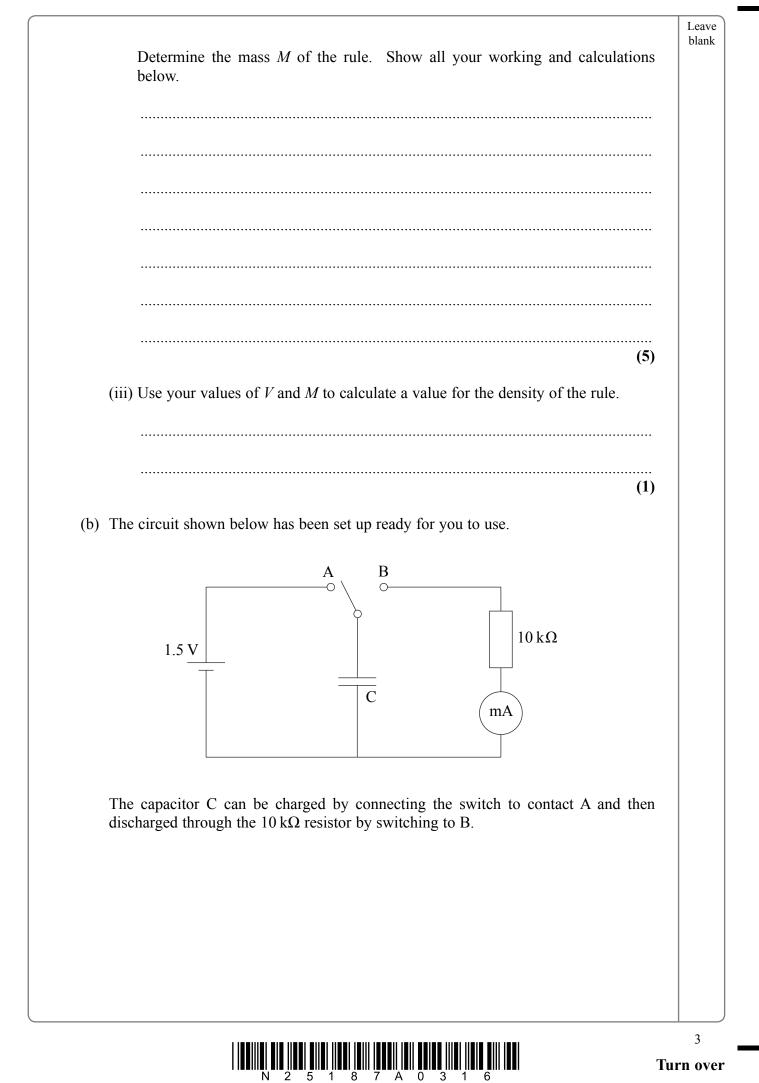
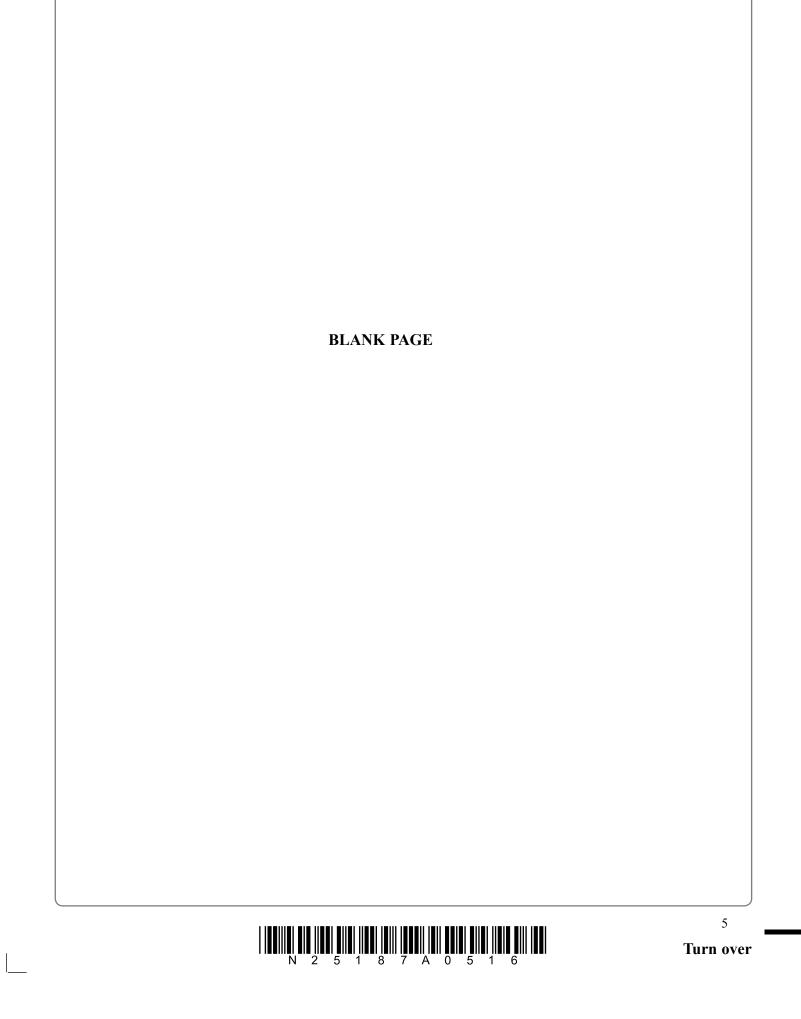
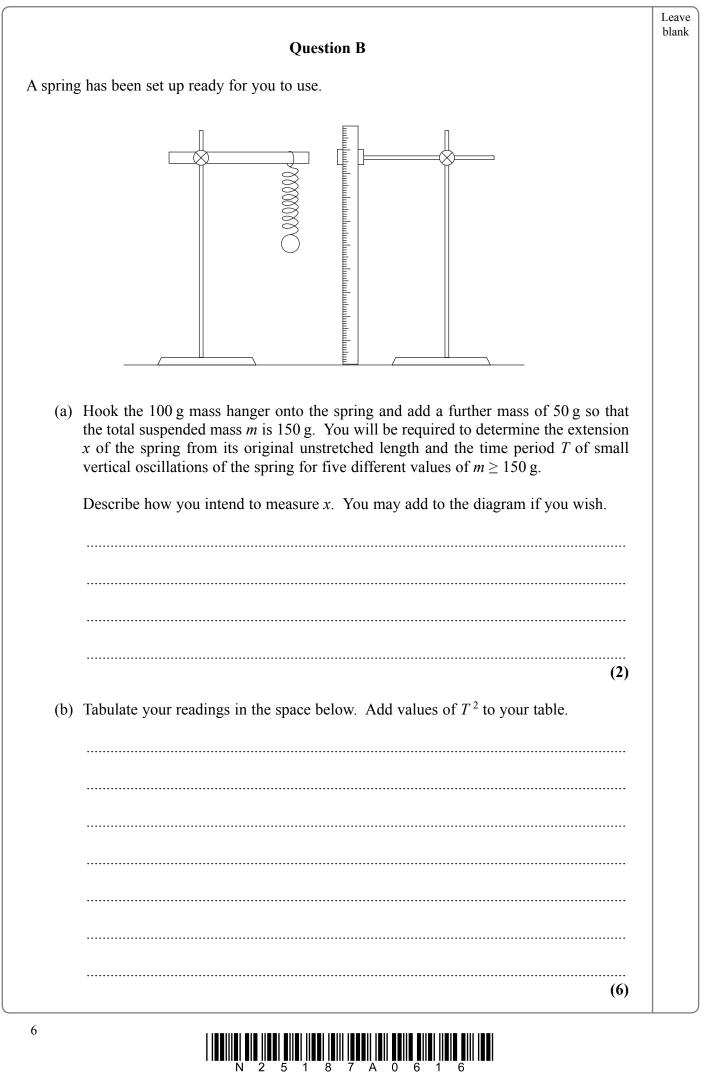
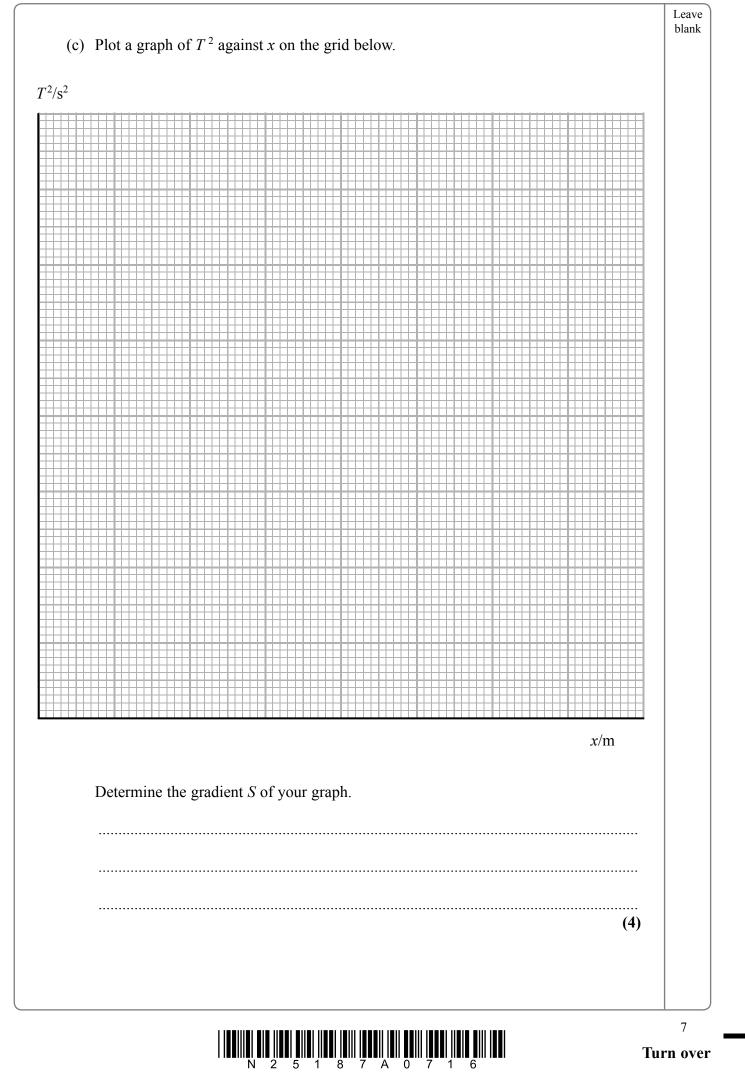
Cent No.	re	Paper Reference Surname	Other na	ames	
Candi No.	idate	6 7 3 5 / 2 A ^{Signature}			
		Edexcel GCE Physics		miner's use m Leader's t	
		Advanced Level			
Sund	prvisor's Data and Comments	Unit Test PHY5 Practical Test Friday 18 January 2008 – Afternoon		Question numbers	Leave blank
A Width a				А	
A	Thickness b	Time: 1 hour 30 minutes		В	
	Mass M			с	
Comr	nents	Instructions to Candidates		Total	
		In the boxes above, write your centre number, candidate number, your surname, other names and signature.			
		PHY5 consists of questions A, B and C. Each question is allowed 20 minutes plus 5 minutes writing-up time. There is a further 15 minutes for writing-up at the end. The Supervisor will tell you which experiment to attempt first.			
		Write all your results, calculations and answers in the spaces provided in this question booklet.			
		In calculations you should show all the steps in your working, giving your answer at each stage.			
		Information for Candidates			
		The marks for individual questions and the parts of questions are shown in round brackets.			
		The total mark for this paper is 48.			
		The list of data, formulae and relationships is printed at the end of this booklet.			

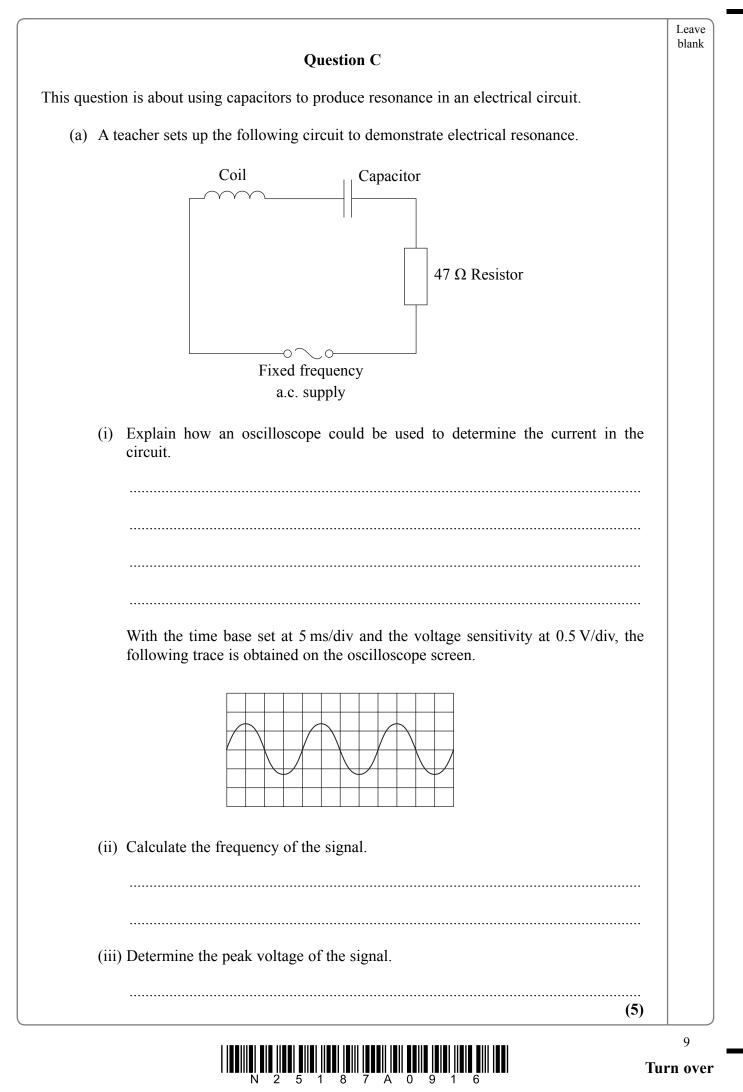

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2008 Edexcel Limited. Printer's Log. No. N25187A



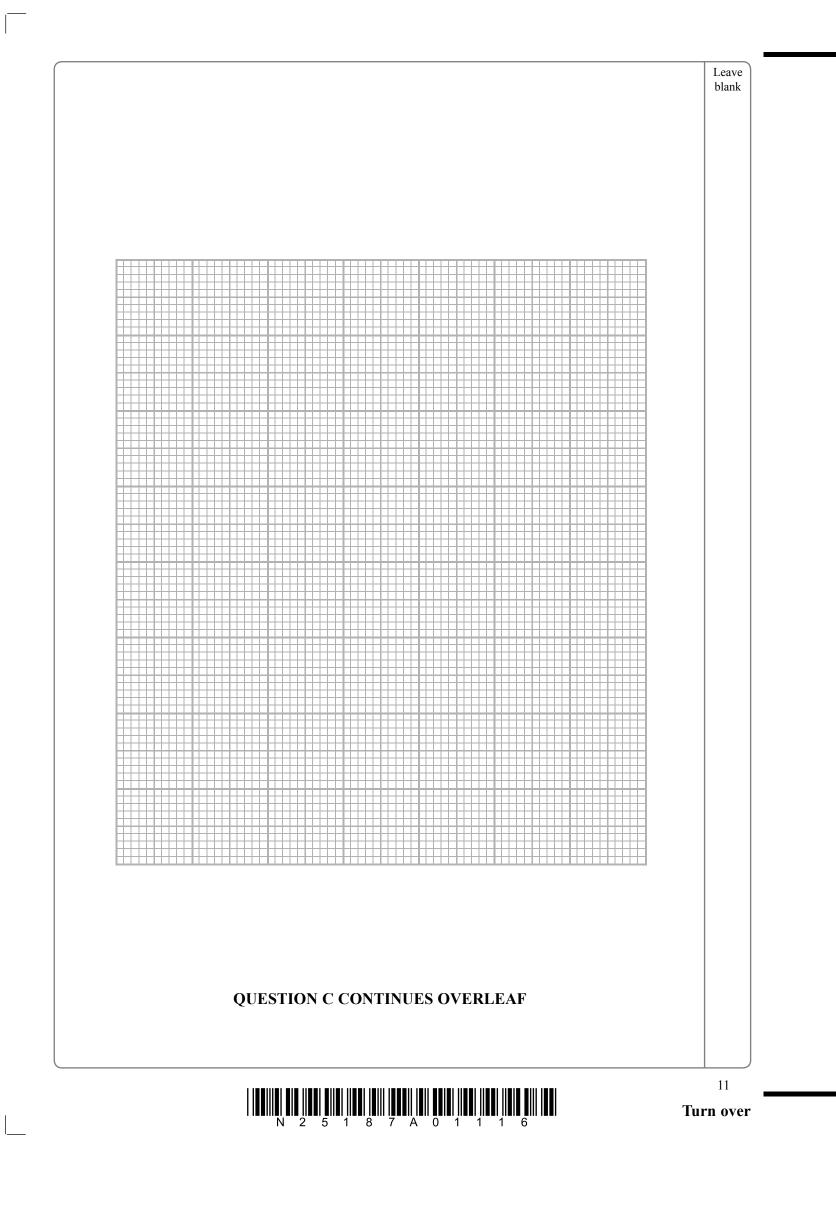
	Question A
(a) (i)	Take measurements to determine as accurately as possible values for the width a and thickness b of the half-metre rule.
	Calculate the volume V of the rule.
	(3)
(ii)	Balance the rule on the knife edge and record the position of its centre of mass.
	Scale reading at centre of mass
	Place the 50 g mass close to one end of the rule and move the knife-edge under the rule until the rule balances. Draw a diagram of the arrangement in the space below.
	On your diagram show the position of the centre of mass of the rule and the measurements necessary to determine the mass of the rule using the principle of moments.




	current I_0 in the circuit at the instant contact is made at B.
	<i>I</i> ₀
	Calculate the value of 0.368 I_0 (1)
(ii)	Determine an accurate value for the time <i>t</i> that it takes for the current to decrease from I_0 to 0.368 I_0 .
	Calculate a value for the capacitance C of the capacitor using the relationship
	$C = \frac{t}{R}$
	where $R = 10 \text{ k}\Omega$.
	(3)
(iii)	Sketch a graph of the discharge of the capacitor on the axes below. You should include relevant values on the axes.
	I/mA



|____



(u)	Calculate a value for the gravitational field strength g using the relationship
	$g = \frac{4\pi^2}{S}$
	5
	Calculate the percentage difference between your value and the accepted value for <i>g</i> . Comment on this percentage difference in terms of the experimental uncertainty of your measurements.
	(4)
	(4)
	(4)
	(4)
	(4)
	(4)
	(4)
	(4)
	(4)
	(4)

Leave blank (b) The teacher has three capacitors, having values of $100 \,\mu\text{F}$, $220 \,\mu\text{F}$ and $470 \,\mu\text{F}$. Using these capacitors singly and in different combinations the teacher determines the currents shown in the table. Explain how the capacitors could be used to get the capacitance values shown. Capacitance $C/\mu F$ Current I/mA 100 11.8 220 20.2 320 35.9 470 55.0 570 41.5 690 32.7 (2) (c) Plot a graph of the current I against the capacitance C on the grid opposite. (5) (d) (i) Use your graph to estimate the capacitance that would cause resonance in the circuit. (ii) Between which values of capacitance in the table would it be useful to take an extra measurement?

(iii) No capacitors in this range are available, but the teacher does have a 4700 μ F capacitor. Explain how this could be used in conjunction with the 470 μ F capacitor to get a suitable value and calculate the capacitance of the resulting	
	combination.	
	(4)	
	(Total 16 marks)	
	TOTAL FOR PAPER: 48 MARKS	Τ
	END	

List of data, formulae and relationships

	st of uata, for mulae and relationsi	ihe
Data		
Speed of light in vacuum	$c = 3.00 \times 10^8 \mathrm{m \ s^{-1}}$	
Gravitational constant	$G = 6.67 \times 10^{-11} \mathrm{N}\mathrm{m}^2\mathrm{kg}^{-2}$	
Acceleration of free fall	$g = 9.81 \text{ m s}^{-2}$	(close to the Earth)
Gravitational field strength	$g = 9.81 \text{ N kg}^{-1}$	(close to the Earth)
Elementary (proton) charge	$e = 1.60 \times 10^{-19} \text{ C}$	
Electronic mass	$m_{\rm e} = 9.11 \times 10^{-31} \rm kg$	
Electronvolt	$1 \mathrm{eV} = 1.60 \times 10^{-19} \mathrm{J}$	
Unified atomic mass unit	$u = 1.66 \times 10^{-27} \text{ kg}$	
Molar gas constant	$R = 8.31 \mathrm{J \ K^{-1} \ mol^{-1}}$	
Permittivity of free space	$\varepsilon_0 = 8.85 \times 10^{-12} \mathrm{Fm}^{-1}$	
Coulomb law constant	$k = 1/4\pi\varepsilon_0$	
	$= 8.99 \times 10^9$ N m ² C ⁻²	
Permeability of free space	$\mu_0 = 4\pi \times 10^{-7} \mathrm{NA}^{-2}$	
Rectilinear motion		
For uniformly accelerated r	notion:	
	v = u + at	
	$x = ut + \frac{1}{2}at^2$	
	$v^2 = u^2 + 2ax$	
Forces and moments		
Moment o	of F about $O = F \times (Perpendicular dis$	tance from F to O)
Sum of clockwise about any point i		moments
Dynamics		
Force	$F = m \frac{\Delta v}{\Delta t} = \frac{\Delta p}{\Delta t}$	
Impulse	$F\Delta t = \Delta p$	
Mechanical energy		
Power	P = F v	
	clear atom	
Radioactive decay and the nuc		
Radioactive decay and the nuc Activity	$A = \lambda N$	(Decay constant λ)

Electric current	I = nAQv	
Electric power	$P = I^2 R$	
-		
Electrical circuits		
Terminal potential difference	$V = \mathcal{E} - Ir$	(E.m.f. \mathcal{E} ; Internal resistance r)
Circuit e.m.f.	$\Sigma \mathcal{E} = \Sigma I R$	
Resistors in series	$R = R_1 + R_2 + R_3$	
Resistors in parallel	$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$	
Heating matter		
Change of state: energy t	transfer = $l\Delta m$ (Specific	e latent heat or specific enthalpy change l)
Heating and cooling: energy t	transfer = $mc\Delta T$ (Specific	c heat capacity c; Temperature change ΔT
Celsius temperature	$\theta/^{\circ}\mathrm{C} = T/\mathrm{K} - 273$	
Kinetic theory of matter		
Temperature and energy	$T \propto \text{Average kinetic}$	energy of molecules
Kinetic theory	$p = \frac{1}{3}\rho \langle c^2 \rangle$	
Conservation of energy		
Change of internal energy	$\Delta U = \Delta Q + \Delta W$	(Energy transferred thermally ΔQ
	Useful output	Work done on body ΔW)
Efficiency of energy transfer	$=\frac{\text{Useful output}}{\text{Input}}$	
	— —	
Heat engine maximum efficiency	$ciency = \frac{T_1 - T_2}{T_1}$	
Circular motion and oscillations		
Angular speed	$\omega = \frac{\Delta\theta}{\Delta t} = \frac{v}{r}$	(Radius of circular path r)
Centripetal acceleration	$a = \frac{v^2}{r}$	
1	r	
Period	$T = \frac{1}{f} = \frac{2\pi}{\omega}$	(Frequency f)
~	$f \omega$	
Simple harmonic motion:	2	
· ·	ement $x = x_0 \cos 2\pi f t$	
	n speed = $2\pi f x_0$	
accelera	ation $a = -(2\pi f)^2 x$	
For a simple pendulum	$T = 2\pi \sqrt{\frac{l}{g}}$	
* *	$\bigvee g$	
For a mass on a spring	$T = 2\pi \sqrt{\frac{m}{k}}$	(Spring constant k

Intensity	$I = \frac{P}{4\pi r^2}$	(Distance from point source <i>r</i> ; Power of source <i>P</i>)
Superposition of waves		
Two slit interference	$\lambda = \frac{xs}{D}$	(Wavelength λ ; Slit separation <i>s</i> ; Fringe width <i>x</i> ; Slits to screen distance <i>D</i>)
Quantum phenomena		
Photon model	E = hf	(Planck constant <i>h</i>)
Maximum energy of photoelectrons	$= hf - \varphi$	(Work function φ)
Energy levels	$hf = E_1 - E_2$	
de Broglie wavelength	$\lambda = \frac{h}{p}$	
Observing the Universe		
Doppler shift	$\frac{\Delta f}{f} = \frac{\Delta \lambda}{\lambda} \approx \frac{v}{c}$	
Hubble law	v = Hd	(Hubble constant <i>H</i>)
Gravitational fields Gravitational field strength for radial field	$g = F / m$ $g = Gm/r^2,$	numerically (Gravitational constant G)
Electric fields		
Electrical field strength	E = F / Q	
for radial field	$E = kQ/r^2$	(Coulomb law constant <i>k</i>)
for uniform field	E = V/d	
For an electron in a vacuum tube <i>e</i> .	$\Delta V = \Delta (\frac{1}{2}m_{\rm e}v^2)$?)
Capacitance		
Energy stored	$W = \frac{1}{2}CV^2$	
Capacitors in parallel	$C = C_1 + C_2 + C_2$	$-C_3$
· ·		1
Capacitors in series	$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2}$	$+\frac{1}{C_3}$

|____

Force on a wire	F = BIl	
Magnetic flux density (Magn	netic field strength)	
in a long solenoid	$B = \mu_0 n I$	(Permeability of free space μ_0)
near a long wire	$B = \mu_0 I / 2\pi r$	
Magnetic flux	$\Phi = BA$	
E.m.f. induced in a coil	$\mathcal{E} = -\frac{N\Delta\Phi}{\Delta t}$	(Number of turns <i>N</i>)
Accelerators		
Mass-energy	$\Delta E = c^2 \Delta m$	
Force on a moving charge	F = BQv	
Analogies in physics		
Capacitor discharge	$Q = Q_0 \mathrm{e}^{-t/RC}$	
	$\frac{t_{\frac{1}{2}}}{RC} = \ln 2$	
	110	
Radioactive decay	$N = N_0 \mathrm{e}^{-\lambda t}$	
	$\lambda t_{\frac{1}{2}} = \ln 2$	
Experimental physics		
Percentag	ge uncertainty = $\frac{\text{Estimated}}{\text{Estimated}}$	d uncertainty $\times 100\%$
	I	Average value
Mathematics		
	$\sin(90^\circ - \theta) = \cos\theta$	
	$\ln(x^n) = n \ln x$	
	$\ln(e^{kx}) = kx$	
Equation of a straight line	y = mx + c	
Surface area	cylinder = $2\pi rh + 2\pi$	r^2
	sphere = $4\pi r^2$	
Volume	cylinder = $\pi r^2 h$	
	sphere $=\frac{4}{3}\pi r^3$	