

Mark Scheme Summer 2007

GCE

GCE Physics (6736/01)

6736 Unit Test PHY6

	✓	(a piezo-electric material) bends / deforms	(i)	(a)	1.
2	✓	when a p.d. / voltage is applied			
	✓	top: heater drawn and labelled anywhere left of ink chamber	(ii)		
	✓	middle: bubble in ink to left of nozzle and on same level			
3	✓	bottom: no bubble / shrunk bubble with some escaped ink	•		
	✓	(on graph) solid at left	(i)	(b)	
2	✓	liquid above and gas / vapour below right part of curve			
1	✓	critical point: where there is no distinction between L and G / above which a gas or vapour cannot be liquefied by pressure only (not simply when L to G transition temp)	(ii)		
	✓	(surface tension) pulls ink into a drop / droplet(s) / sphere	(i)	(c)	
	√	(ink droplets) are deflected by an electric field / charged plates	(ii)		
3	✓	ink / droplets / they are (electrically) charged $100\ 000\ /\ 10^5$ drops per second	(i)	(d)	
	✓	means 10 ⁻⁵ s per drop / between drops			
	✓	i.e. $10 \times 10^{-6} \text{s}$ / 10 µs / 10 microseconds between drops			
max 2	✓	so heating for <u>less</u> than 10 microseconds is consistent			
	✓	use of $^4/_3\pi r^3$ with $r = 5.5 \ (\times \ 10^{-6} \ \text{m} \ / \ \mu\text{m}) \ (\Rightarrow 6.96 \times 10^{-16} \ \text{m}^3)$	(ii)		
	✓	use of number of drops = frequency (in Hz) \times 180 s			
		should be $(620 \times 10^3 \text{ Hz})(180 \text{ s})$ but accept other frequencies			
3	√	⇒ volume = 7.8×10^{-8} m ³ (accept r and d confusion → 6.2×10^{-7} m ³ for 2 out of 3 marks)			
_					

(e) (i) (each step must be shown)

electric field /
$$E = V \div x$$

force on droplet =
$$qE / -qE / qV \div x$$

use of Newton's second law/ ma = force on droplet [e.c.f.]

3

$$\Rightarrow$$
 a = as given qV/mx (no mark)

(proofs involving energy conservation are only valid when charged droplet explicitly moves from lower to upper plate, but might get the Newton's Law mark.)

(ii) (direction is) upwards / towards positive

(assume that) either weight / air resistance has no effect or E-field is uniform (not E-field is constant)

2

3

(iii) 1. parabolic / parabola (curve - 1 mark only)

2. a straight line / linear / continues in the same direction

(f) (i) correct substitution in t = s/v ($t = 0.015 \text{ m} \div 220 \text{ m s}^{-1}$)

=
$$6.8 \times 10^{-5}$$
 s / $68 \, \mu s$ (no mark)

(ii) substitute in $s = \frac{1}{2}at^2$ i.e. $\frac{1}{2}(2.0 \times 10^5 \text{ m s}^{-2})(\text{above } t)^2$

=
$$4.65 \times 10^{-4}$$
 m / 0.465 mm (no e.c.f.)

3

(i) correct substitution in $\Delta p = 2y/r$ (no mark) (g)

giving magnitude of $\Delta p = 2.65 \times 10^4 / 26500$

unit: Pa / N m⁻² (do not accept J m⁻³)

(ii) use of normal atmospheric pressure p_A from 95 to 110 (kPa)

giving $\Delta p/p_A$ from 28 % to 24% (e.c.f. Δp and p_A by eye)

(Total 31 marks)

2. (a) (i) method 1

A values to be
$$\geq$$
 2 Gs apart

 \geq 2 values of ratio $A_1 \div A_2$ at fixed t

(e.g.
$$3.00/2.70 = 2.70/2.45 = 2.45/2.23$$

either

values shown to be approximately equal

or for 2 fixed ratios of
$$A_1 \div A_2$$
 find t intervals

$$t$$
 to be ≥ 2 Gs

(i.e. inverse of above method)

method 2

use
$$A = A_0 e^{-\lambda t}$$
 to calculate two values of λ

A values to be
$$\geq$$
 2 Gs apart

showing that they are approximately equal

(ignore units throughout)

method 3

for any one of the above:

assume exponential decay and predict a second value of A or t

3

3

(ii) use of
$$A = A_0 e^{-\lambda t}$$
 ($\lambda \approx 5 \times 10^{-11} \text{ s}^{-1}$)

use of
$$\lambda t_{1/2} = \ln 2 (t_{1/2} = 1.3 / 1.4 \times 10^{10} \text{ s})$$

$$t_{1/2} = 440 \text{ years}$$

of sample of known
$${\it N}$$
 / known ${\it m}$ and nucleon number

use
$$A = \lambda N$$
 and $\lambda t_{1/2} = \ln 2$

3

(method involving measuring the ratio A_0/A_1 no

marks)

- (b) (i) y-axis: $I/10^n$ A and x-axis: $t/10^m$ s (any or no powers of 10)
 - with n + m = -3 to -6 (e.g. mA and ms = -6) (but not mA and Gs = +6)
 - (ii) radioactive decay is random or capacitor discharge is not random / capacitor discharge can be controlled or radioactive decay can not be controlled / capacitors can be recharged or radioactivity cannot be replaced

3

(c) (i)

$$\begin{array}{ccc} 241 & & 4 & & 237 \\ Am \rightarrow & He & + & Np \\ 95 & & 2 & & 93 \end{array}$$

4 and 2 with He / α

_

237 and 93 with Np

 \checkmark

(allow γ and/or energy on right of equation)

(ii) use of $1.6 \times 10^{-19} \text{ J eV}^{-1}$

✓

- use of $E = hc/\lambda$ (often in two steps)
- ✓
- $\lambda = 2.5 / 2.48 \times 10^{-11}$ m, an X-ray or gamma photon

5

(Total 17 marks)

3.	(a)	(i)	circuit either: p.d. across wire	✓	
			A in series <u>and</u> V across wire / wire +	✓	
			deduce $R = V \div I / \text{from graph}$	✓	
			or: mention of ohmmeter	✓	
			ohmmeter correct in diagram (no cell)	✓	
			repeat for various l	✓	
			(circuits may show sliding / crocodile connections to manganin wire)	,	
			use a micrometer / digital callipers (maybe on diagram)	✓ ✓	
			measure d in more than 2 places	✓	
			calculate $\rho = R\pi r^2/l$ (beware $2\pi r^2 / \pi d^2$)		max 5
		(ii)	(suitable as) the wire will warm up	✓	
			but R (not ρ) manganin wire constant $/$ does not vary	✓	_
	<u>(</u> b)	(i)	$R = \rho d/A$ (no mark)		2
		(ii)	1. either $t_{1/2}$ for discharge = $RC \ln 2$ or $t_{1/2}$ depends on RC	✓	
			substitute in $RC = \rho d/A \times \varepsilon A/d$ [e.c.f. R]	✓	
			continue e.c.f. to show result independent of \boldsymbol{A} and \boldsymbol{d}	✓	
			2. substitute values into $t_{1/2} = \rho \varepsilon \ln 2$	✓	
			$\Rightarrow \ \epsilon = 5.2 \times 10^{-11}$	✓	
			unit s Ω^{-1} m $^{-1}$ / F m $^{-1}$	✓	max 5
		(iii)	connected in parallel	✓	
			same p.d. / voltage (across adjacent pairs of foils)	✓	
			capacitance = 4C [e.c.f. 1 mark for C/4 series]	✓	,
			(Total	15 m	3 iarks)

- 4. (a) (i) oscillations / displacement / B / E / fields are perpendicular / at right angles to the direction of propagation / c / travel / motion / energy transfer
 - (ii) place coil so that B / magnetic field goes through coil / so that axis of coil is parallel to B field / coil is perpendicular to B field (not cutting B-field / lines of flux)

or
oscillations (of B / E) are in one plane / direction if
polarised and / but lots of / many / all if unpolarised ✓

both (mention of particles loses mark)

(b) (i) (do *not* look at the algebra; try to pick out the following three main features plus any one of the fourth)

$$N C^{-1} / V m^{-1}$$
 for the unit of E_0

3

$$W \equiv J s^{-1} / kg m^2 s^{-3} (W m^{-2} \equiv kg s^{-3})$$

$$F \equiv C V^{-1} / C^2 J^{-1} (F \equiv kg^{-1} m^{-2} s^4 A^2)$$
(beware N as unit for farad)

$$V \equiv J C^{-1} / J \equiv N m / W \equiv A V$$

 $/ A \equiv C s^{-1} / C \equiv A s$
(accept base units for these e.g. $J \equiv kg m^2 s^{-2}$)

(ii) use of $I = \frac{1}{2}acE_0^2$ with $c = 3.0 \times 10^8 \,\text{m s}^{-1}$

$$\Rightarrow E_0 = 1030 \text{ N C}^{-1} / 1000 \text{ V m}^{-1}$$
(beware 1.05 × 10⁶ i.e. not square rooted)

(iii) use of inverse square law / $I \propto 1/r^2$

$$\Rightarrow I = (1.40 \times 10^3 \text{ W m}^{-2}) \div 20^2 = 3.5 \text{ W m}^{-2}$$

- (c) (i) addition / combination of in phase <u>waves</u> (suitable ✓ diagrams acceptable)
 - (ii) measurement of S_1P as 35 or 36 mm and S_2P as 28 or 29 mm
 - path difference = $S_1P S_2P$ calculated
 - their p.d. $\approx \lambda$ / wavelength (not 7 mm)
 - (iii) mention of stationary / standing waves
 - nodes / antinodes separated by $\lambda/2$

(Total 17 marks)