

Mark Scheme Summer 2007

GCE

GCE Physics (6734/01)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

6734 Unit Test PHY4 June 2007 Mark scheme Standardisation

1. Word equations

[Spelling must be correct, but ignore missing apostrophes. Accept upper case or lower case throughout.]

Wavelength / wave length1Area / surface area1[Don't accept "unit area"]1Hubble constant / Hubble's constant1Charge of electron / charge on electron / electron1charge / electron's charge / electronic charge1[Accept "proton" for "electron" in any of the above]

2 a Experiment

[Marks may be earned on diagram or in text]

Named light source plus polaroid (OR polariser OR 1 polarising filter) / Laser / Named light source and suitable reflector (e.g. bench) 2nd Polaroid plus means to detect the transmitted light 1 (i.e. eye OR screen OR LDR OR light detector OR instruction to e.g. look through polaroids) Rotate one Polaroid [Only award if expt would work] 1 Detected intensity varies / No light when polaroids 1 are at 90° Maxima and minima 90° apart / changes from dark to 1 light every 90° [Use of microwaves, slits or "blockers": 0/5 Use of filters or diffraction gratings: lose first two marks Use of "sunglasses" to observe: lose mark 2]

Why sound can't be polarised

They are longitudinal / They are not transverse / Only 1 transverse waves can be polarised / Longitudinal waves cannot be polarised / Because the * is parallel to the **

* = vibration OR displacement OR oscillation OR motion of particles

** = direction of travel OR direction of propagation OR motion of the wave OR direction of energy transfer

Total

4

4

5

1

6

Total

b

3 a Table

	[Ignore crosses. If more than one tick in a line, no		
	mark.] Top line: To the left Bottom line: Downwards	1 1	2
b	Calculation of rotation period		
	Use of $T = 2\pi r/v$ or $T = 2\pi/\omega$ and $\omega = v/r$ Correct answer [0.084 s]	1 1	2
	e.g.		
	$2\pi (0.28 \text{ m})/(21 \text{ m s}^{-1})$ = 0.084 s		
сi	How the angular speed is affected		
	ω is increased, plus correct supporting argument in formula or words	1	1
	i.e. Since $v = r\omega$ / T decreases / f increases / wheel must turn faster		
c ii	Speedometer reading		
	Speedometer reading is too high because frequency (OR ω OR revs per second OR rate of rotation of wheel) is increased	1	1
	Allow ect from " ω decreased" in c (1)		
	[Allow ecf from " ω decreased" in c (i)]	Total	6
a i	[Allow ect from " ω decreased" in c (i)] Table	Total	6
a i		Total	6
a i	Table λ f 2.4 (110) 1.2 220 0.8 330 All wavelengths correct	Total 2	6
аi	Table λ f 2.4 (110) 1.2 220 0.8 330		6
a i a ii	Table λ f2.4(110)1.22200.8330All wavelengths correct[One or two wavelengths correct gets 1]Both frequencies correct[Accept extra zero following wavelength figure, e.g.2.40. Accept units written into table, e.g. "2.4 m",	2	
	Table λ f 2.4 (110) 1.2 220 0.8 330 All wavelengths correct [One or two wavelengths correct gets 1] Both frequencies correct [Accept extra zero following wavelength figure, e.g. 2.40. Accept units written into table, e.g. "2.4 m", "220 Hz"]	2	

4

	e.g.		
	(6.63 x 10 ⁻³⁴ J s)/(1.0 x 10 ⁻¹⁰ m) = 6.63 x 10 ⁻²⁴ kg m s ⁻¹ [Accept any correct unit e.g. N s , J s m ⁻¹]		
b ii	Why waves with more nodes represent higher energies		
	More nodes means shorter wavelength Momentum will be larger [OR Allow 1 mark for "More nodes means higher frequency and <i>E</i> = <i>hf</i> "]	1 1	2
		Total	8
a	Diagram		
	At least 3 crests drawn, with correct even spacing [Judge by eye. Allow +/- 20 %. Check in centre of	1	
	pattern.] Crests approximately straight opposite harbour	1	
	entrance and curved in the "shadow" region Wavefronts get longer, but diffraction at the edges through no more than 45°	1	3
bi	Values from graph		
	Period: 3.0 [Accept 3] Maximum acceleration: 1.2 [Accept 1.17, 1.18, 1.19, 1.20]	1	1
	[Both values are needed for the mark. Ignore written units, e.g. "3.0 s", "1.2 m s ⁻² ".]		
b ii	Calculation of amplitude		
	Use of acceleration = $(-)(2\pi f)^2 x$ Use of $f = 1/T$ Correct answer [0.27 m] [Negative amplitude loses third mark]	1 1 1	3
	e.g.		
	$\omega = 2\pi / (3.0 \text{ s})$ = 2.09 rad s ⁻¹ $A = (1.2 \text{ m s}^{-2}) / (2.09 \text{ rad s}^{-1})^2$ = 0.27 m		
b iii	Displacement graph		
	Cosine curve [Correct way up] Axis labelled (i.e. displacement $/ x / y / z$) plus all amplitudes consistent with previous answer (i.e.	1 1	
40 GCE Phy	ysics 56		

9540 GCE Physics Summer 2007

5

		within 1 square) plus unit 2 cycles shown with T = 3 s [All zero crossings correct within 1 square]	1	3
			Total	10
6	a i	Fringe width		
	·	1.24 mm [Accept 49.6 mm / 39 giving 1.27 mm]	1	1
	a ii	Wavelength calculation		
		Use of λ = xs/D Correct answer [520 nm] [Accept 530 nm if 39 fringes used]	1 1	2
		e.g.		
		$(1.24 \times 10^{-3} \text{ m})(0.50 \times 10^{-3} \text{ m})/(1.2 \text{ m})$ = 5.2 x 10 ⁻⁷ m		
	b	Effect on gradient		
		[Ignore crosses. If more than one tick in a line, no mark for that line.] Top line: Decreases Bottom line: Decreases	1 1	2
	сi	Meaning of coherence		
		Constant (OR fixed) phase relationship (OR phase difference) / Remain in phase [Don't accept just "phase locked"]	1	1
	c ii	Why no interference with incoherent sources		
		Phase difference is changing Type of interference at a point changes / Interference pattern moves (OR is unstable)	1 1	
		Change (OR motion) is too fast for us to observe	1	Max 2
			Total	8
7	a	Why statement correct		
		Blue photon has more energy than red photon	1	
		Why statement incorrect		
		Blue beam carries less energy per unit area per second / Blue beam carries less energy per second / Blue beam carries less energy per unit area / Blue beam has lower intensity and intensity = energy per unit area per second	1	
954	0 GCE P	hysics 57		

Additional explanation

	[Under "correct"] Blue has a higher frequency (OR shorter wavelength) / [Under "incorrect"] Blue beam has fewer photons	1	3
	[Allow reverse statements about Red throughout part a]		
b i	Meaning of work function		
	Energy to remove an electron from the surface (OR metal OR substance) [Don't accept "from the atom". Don't accept "electrons".]	1	
	Minimum energy / Least energy / Energy to just /without giving the electron any kinetic energy	1	2
b ii	Calculation of threshold frequency		
	Use of $\varphi = hf_0$ Correct answer [6.00 x 10 ¹⁴ Hz]	1 1	2
	e.g.		
	(3.98 x 10 ⁻¹⁹ J)/(6.63 x 10 ⁻³⁴ J s) ≈ 6.00 x 10 ¹⁴ Hz		
		Total	7

8

а

Which transition

Use of (Δ)E = hc/λ OR (Δ)E = hf and $f = c/\lambda$	1
Use of 1.6 x 10 ⁻¹⁹	1
Correct answer [1.9 eV]	1
C to B / -1.5 to - 3.4	1
[Accept reverse calculations to find wavelengths]	

4

1

1

1

e.g.

 $(6.63 \times 10^{-34} \text{ J s})(3.00 \times 10^8 \text{ m s}^{-1})/$ (656 x 10⁻⁹ m)(1.6 x 10⁻¹⁹ J eV⁻¹) = 1.9 eV

b Explanation of absorption line

QOWC Light of this wavelength is absorbed by hydrogen In the outer part of the Sun (OR Sun's atmosphere)

	Absorbed radiation is reemitted in all directions Transition from B to C (OR -3.4 to -1.5)	1 1	Max 4
c i	Why galaxy receding		
	Wavelength increased (OR stretched) / red shift / frequency decreased	1	
c ii	Calculation of speed		
	Use of $v/c = \Delta \lambda/\lambda$ Correct answer [1.78 x 10 ⁷ m s ⁻¹]	1 1	3
	e.g.		
	$(3.00 \times 10^8 \text{ m s}^{-1})(695 \times 10^{-9} \text{ m} - 656 \times 10^{-9} \text{ m})/(656 \times 10^{-9} \text{ m})$ = 1.78 x 10 ⁷ m s ⁻¹ [N.B. Use of wrong wavelength in denominator gives 1.68 x 10 ⁷] OR Use of $v = f\lambda$ and $v/c = \Delta f/f$	1	
	Correct answer $[1.67 \times 10^7 \text{ m s}^{-1}]$ [Look for (4.573 x 10 ¹⁴ Hz - 4.317 x 10 ¹⁴ Hz) / (4.537 x 10 ¹⁴ Hz) N.B. Use of wrong frequency in denominator gives 1.78 x 10 ⁷]	1	
		Total	11