

Mark Scheme Summer 2007

GCE

GCE Physics (6732/01)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

6732 Unit Test PHY2

1
(i)J C ·1
Potential difference(ii)Product of two quantities
Potential difference(iii)Rate of change
current(iv)Base quantity
current
(for any part if two answers are given score is zero)

4

4

 \checkmark

2(a)	 (As temperature of thermistor increases) its resistance decreases [Do not credit the converse] any TWO (slight) decrease in v (symbol, velocity or drift velocity) Large increase in n increases [accept electrons/charge carriers for n] A,Q and (pd) remain constant [ignore any reference to v staying constant] (n constant, can't score mark for 3,4) 	✓ √ √	3
(b) (i) (ii) (iii)	ammeter reading decreases voltmeter reading unaltered ammeter is used to indicate temperature Assumption: <u>ammeter</u> ; ideal/ has zero/negligible resistance	\checkmark	

(Reference to meters is zero mark)

4

3(a)

Tungsten filament Qowc I is not (directly) proportional to V Temperature of filament increases/ filament heats up/ gets hotter as <u>current/pd</u> increases [accept bulb or lamp but not wire] Links temperature increase to resistance increases tungsten filament does not obey Ohm's law/not an Ohmic conductor or resistor. Any THREE

 $\checkmark\checkmark\checkmark$

4

2

2

8

(b)(i) Reading current from graph 1.5 A answer 5.3 Ω (misread current $\rightarrow 0/2$)

Example of answer V = IR $R = 8.0 \div 1.5 = 5.3 \Omega$

(ii) Addition of two currents
 OR use of R = V/I and resistors in parallel formula
 1.5 + 1.2 = 2.7 A
 ecf candidates' current from above
 [If you see 2.7 A give 2marks]

9540 GCE Physics Summer 2007 4(a)(i) Use of $P = V^2 / R$ OR P=IV and V=IRTotal $R = 4.5 \Omega$

> Example of answer $R = V^2 \div P = 12 \text{ V} \times 12 \text{ V} \div 32 \text{ W}$ $R = 4.5 \Omega$

(ii) Use of $1/R = 1/R_1 + 1/R_2$ OR $\Sigma R = 1/5R$ [OR find total current, divide that by 5 and use V=IR] Resistance of strip = 22.5 Ω ecf candidates' R.

[common error is to divide by $5 \rightarrow 0.9 \Omega$ scores 0/2 but ecf to next part gives l = 0.033 m which will then score 3/3]

 \checkmark

2

2

3

2

9

√

(b) R = pl / A or correct rearrangement
 Correct substitution
 Length = 0.82 m
 ecf candidates' R

Example of answer $l = RA/\rho = (22.5 \ \Omega \times 4.0 \times 10^{-8} \ m^2) \div 1.1 \times 10^{-6} \ \Omega \ m$ $l = 0.82 \ m$

(C)

See $P = V^2 / R$ OR P = IV leading to increase in current \checkmark or decrease in resistance more strips in <u>parallel</u> / material of lower resistivity \checkmark [not greater conductivity]

5(a)	E.M.F. = work done / charge OR energy transferred / charge OR power / current	1	
(b)(i)	[There is only one mark here and this is consistent with specification but it must not be Joules or coulombs] Use of $V = IR$ I = 2.0 A	√ √	1
	Example of answer $I = V / R = 8.0 V / 4.0 \Omega$ I = 2.0 A		2
(ii)	Uses p.d. = 4.0 V r = 2.0Ω ecf their l	√ √	
	Example of answer r = V / I = 4.0 V / 2.0 A $r = 2.0 \Omega$		2
(iii)	Use of $P = VI // I^2 R // V^2 / R$ P = 16 W ecf their I	√ √	-
	Example of answer $P = VI = 8 V \times 2 A$ P = 16 W		2
(iv)	Uses 4V or $2A \times 2\Omega$ or their $I \times r$ see 5 x 60 s in an energy equation energy = 2400 J	\checkmark	2
	Example of answer $E = VIt = 4 \text{ V} \times 2 \text{ A} \times 5 \times 60 \text{ s}$ E = 2400 J	·	3

6(a)(i)	Specific heat capacity is the energy required when a kg / unit mass undergoes a <u>temp change</u> of 1°C / 1K OR equation(1 mark) terms defined (1 mark) [there must be a reference to a temperature so " energy to raise a kg by 1°C " does not get the 2 nd mark. This is a definition which should be learnt. Also 2 nd mark lost if 1 C or 1°K]	*	2
(ii)	It is the <u>sum/total</u> of the <u>molecular/atomic</u> Potential and kinetic energies	√ √	

2

3

7

✓

5

Potential and kinetic energies [not particles, or gravitational potential energy] [it is not enough to say it is the KE and PE.......]

(b) Use of $\Delta E = mc\Delta T$ there must be a temperature difference for this mark $\Delta T = 50$ °C or K Energy = 4.4 x 10 ⁷ J [Ignore any negative signs]

> Example of answer $\Delta E = 800 \text{ kg} \times 1.1 \times 10^{-3} \text{ J kg}^{-1} \text{ K}^{-1} \times 50 \text{ °C}$ $\Delta E = 4.4 \times 10^{-7} \text{ J}$

9540 GCE Physics Summer 2007

7(a)	To (transfer) thermal energy/heat energy from a cold (reservoir) to a hot (reservoir) or against the temperature gradient. [Do not accept just heat or just energy]	√ √	2
(b)(i)	A single, approx horzt arrow labelled W near heat pump symbol Pointing towards heat pump symbol	√ √	2
(ii)	Hot reservoir is the room the refrigerator is in // refrigerator surroundings // pipes at back of refrigerator Cold reservoir is the inside of the refrigerator or anything in the refrigerator. (Do not accept refrigerant or coolant)	√ √	2

8(a)(i)	$\Delta U = 0$ no u.p Filament(lamp) temperature remains constant. [not thermal equilibrium]	√ √	2
(ii)	ΔW = 36 x 60 = 2160 J u.p Statement about work done <u>on</u> the filament (accept system)	√ √	
			2
(iii)	$\Delta Q = -2160 \text{ J}$ (This answer must be consistent with	\checkmark	
	answers to (i) and (ii) Thermal energy lost from the filament // because the equation applies// $\Delta Q = -\Delta W$	✓	
			2
(b)	Identifies the useful energy as <u>light</u> the rest/non useful energy becomes thermal energy/heat energy of the (surroundings) or emitted as IR [accept heat if in a sentence that has already said energy]	√ √	
	Must refer correctly to 4% and 96% [96 might be implied by the use of the word "rest or remaining"]	✓	3
	<u>Model answer</u> Only 4% of the energy is emitted as light. The rest of the energy is lost as thermal energy to the surroundings		
	[candidates can demonstrate understanding of conservation of energy without actually answering the question, be careful not to give them marks they haven't earned]		
	[don't give credit if they say rest of energy is lost as heat energy and light]		9
	Total for paper		60