

Edexcel GCE

Physics

Unit no. 6736

J une 2006
advancing leaming, changing lives
Mark Scheme (Results)

6736 Unit Test PHY6

1. (a) Graph

Line from origin curving towards (horizontal)
becoming horizontal and terminal velocity marked
(i) Fluid/liquid/gas [do not accept air]

Resistive/drag forces for (movement) through it
(ii) Charge comes in multiples of a basic charge/e
(b) (i) Use of $4 / 3 \pi r^{3} \rho g$

Correct answer $\left[W=1.86 / 1.9 \times 10^{-14}(\mathrm{~N})\right]$ to at least 2sf
[Watch out for 10^{-5} followed by 'right' answer - loses second mark][Do not credit bald answer] [no ue]
(ii) Use of $4 / 3 \pi r^{3} \rho^{\prime} g$ as buoyant force [could be implied]

Recognition of $\rho^{\prime} \div \rho O R U=2.4 \times 10^{-17} \mathrm{~N}$
Hence $U / W=0.13(\%)$ [no ue]
[allow use of 2×10^{-14} giving 0.12%]
(iii) $4 / 3 \pi r^{3}\left(\rho-\rho^{\prime}\right) g=6 \pi r \eta v$

Hence $r=\sqrt{\frac{9 \eta v}{2 g\left(\rho-\rho^{\prime}\right)}}$
[accept any equivalent of $9 / 2$ e.g. 18/4; accept substitution into $\left(\rho-\rho^{\prime}\right)$]
(c) (i) Sketch: ≥ 3 vertical lines
[ignore curved lines at edges and central gap]
Arrows down/consistent with \pm
(ii) Rearrangement of $E=V / d \Rightarrow V=E d$
$\Rightarrow V=780 \mathrm{~V}$
(iii) E.m.f. $=2 \times 780 \mathrm{~V} / 1560 \mathrm{~V}$ [ecf their V]

Assume: (power) supply has zero resistance or no 6 internal resistance or voltmeter has infinite resistance
(d) ≥ 2 sets of values correctly read from graph [eg $(7.4,5)(8.5$ or $8.6,4)(10.2,3)(13.8-14.0,2)$ eg $(8,4.4)(10,3.1)(12,2.3-2.4)(14,2.0)(7,5.4)]$

Range of at least 2 N
Correct method [e.g. multiplied together / calculate k and use to compare predicted to actual value] [ignore 10^{n} error]

Hence conclusion: not proportional
[consequent mark, no ecf from using close values or wrong method]
(e)
[Accept symbols/words/formulae throughout part (e)]
(i)

(ii)

Identify weight down AND buoyancy (force) up on both diagrams [do not accept gravity]
Identify electric (force) up on (i) [Allow electric field]
Identify viscous (force) up on (ii)
[Accept 2 labels on 1 up arrow]
(i) $W=B+F_{\text {e }}$
[Accept any correct rearrangement]
(ii) $\begin{aligned} & W=B+V \\ & \text { [Accept any correct rearrangement] }\end{aligned}$
(f) Mention of ionising/ionisation

Comment on a relevant property of α and γ
(g) Diagram: Downward drift [curves/wiggles OK]
[not straight down]
Non-equal straight lines
At random angles
Explanation: Droplet is bombarded
by air molecules
[$1 / 2$ for stating Brownian motion without further detail]
2. (a) Quality of written communication

Protons drift/move uniformly inside tubes
Accelerate between the tubes/in the gaps
Alternating p.d. reverses while p is in tube
The tubes must get longer as p speeds up
For time inside tube to be constant or to synchronise
Max 5 movement with the pd
(b) (i) Multiply by 419 or 420

Multiply by 1.6×10^{-19}
Correct answer to at least 2 sf
$\left[5.36 / 5.38 / 5.4 \times 10^{-11}(\mathrm{~J})\right]$ [no ue]
$\Delta m=$ energy $\div\left(9.0 \times 10^{16} \mathrm{~m}^{2} \mathrm{~s}^{-2}\right)$
[ecf their energy or 5×10^{-11}]
$\Delta m \div 1.01 \times 1.66 \times 10^{-27} \mathrm{~kg}$ [ecf their Δm]
Correct answer
[0.36 or 36%] [Use of 5×10^{-11} gives 33%]
(c) (i) Fixed target:

Large(r) number of /more collisions or more likely to get collisions [not easier to get collisions]

Other particle beams produced
(ii) Colliding beams:

More energy available for new particles
$p=0$ so all energy available
Max 2
3. (a) Mention of natural frequency (of water molecules)

At f_{0} there is a large/increased amplitude
and hence max energy transfer / max power transfer / max efficiency / max heating
(b) $(1.2 \mathrm{~kg})\left(3200 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}\right)(75 \mathrm{~K})$ seen
$\Rightarrow 288 \mathrm{~kJ}$
$\div 600 \mathrm{~s}$ to give a power in $\mathrm{W}[\Rightarrow 480 \mathrm{~W}]$
Efficiency 480 W e.c.f $\div 800 \mathrm{~W}[=60 \%$]
There will be heat/energy/power losses from the meat/to the surroundings or water evaporation needs LHV or water evaporation leaves fewer molecules to vibrate
(c) (i) See $c=3 \times 10^{8}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ used in $c=f \lambda$ $[\Rightarrow \lambda=0.12 \mathrm{~m} / 12 \mathrm{~cm} / 120 \mathrm{~mm}]$
(ii) Measure $\mathrm{SQ}[34 \mathrm{~mm}], \mathrm{QP}[34 \mathrm{~mm}]$ and $\mathrm{SP}[32 \mathrm{~mm}]$ and multiply readings by 5 [$170 \mathrm{~mm}, 170 \mathrm{~mm}, 160 \mathrm{~mm}$] [No tolerance on measurements, no ue]

Add SQ and QP [ecf their values]
Mention of path difference or attempt to find path difference e.g. (SQ+QP) - SP

Conversion of any length to wavelengths
Correct discussion of superposition/phase difference relevant to their path difference
[Allow maximum if mention π phase shift on reflection]
(iii) Mention of nodes/antinodes
[not constructive/destructive interference]
Energy at antinodes/no energy at nodes
[Accept heating at antinodes]
Rotate meat (plate)/reflect waves from (metal)
paddle/move meat several times
4. (a) Push end of slinky in suddenly/quickly

Time how long to reach end
Measure length of slinky and use
$v=$ defined length/defined time
Reliability: repeat and average/use very short pulse
(b) (i) LHS: $\mathrm{m} \mathrm{s}^{-1}$

RHS: l is m and m is $k g$
k is $\mathrm{N} \mathrm{m}^{-1}$
N is $\mathrm{kg} \mathrm{m} \mathrm{s}^{-2}$
[$\mathrm{ki} \mathrm{k}_{\mathrm{kg} \mathrm{s}}{ }^{-2}$ is last 2 marking points]
(ii) k is double (that of a spring)
(c) (i) Rearrangement of $B=\mu_{0} n I \Rightarrow n=B / \mu_{0} I$
$\therefore n=\left(0.34 \times 10^{-3} \mathrm{~N} \mathrm{~A}^{-1} \mathrm{~m}^{-1}\right) \div\left(4 \pi \times 10^{-7} \mathrm{~N} \mathrm{~A}^{-2}\right)(5 \mathrm{~A})$
$=54 \mathrm{~m}^{-1}$
(ii) Mention of magnetic flux/flux/ ϕ
[Do not accept magnetic flux density]
Increasing/changing ϕ (as pulse reaches coil)
[Accept decreasing]
Because ϕ or B depends on n
[can be symbols or words]
Reference to Faraday/rate of change of ϕ or B
Max 4
Producing induced e.m.f./voltage in coil [not current]

