

Edexcel GCE

Physics Unit no. 6736

June 2006

advancing learning, changing lives

Mark Scheme (Results)

Edexcel GCE Physics 6736

6736 Unit Test PHY6

1. (a) <u>Graph</u>

Line f	rom origin curving towards (horizontal)	\checkmark	
becoming horizontal and terminal velocity marked			
(i)	Fluid/liquid/gas [do not accept air]	\checkmark	
	Resistive/drag forces for (movement) through it	\checkmark	
(ii)	Charge comes in multiples of a basic charge/ e	\checkmark	5

(b) (i) Use of $\frac{4}{3}\pi r^{3}\rho g$

Correct answer $[W = 1.86 / 1.9 \times 10^{-14} (N)]$ to at least \checkmark 2sf [Watch out for 10⁻⁵ followed by 'right' answer – loses second mark][Do not credit bald answer] [no ue]

 \checkmark

 \checkmark

7

(ii) Use of $4/3\pi r^3 \rho' g$ as buoyant force [could be implied] \checkmark

Recognition of $\rho' \div \rho OR U = 2.4 \times 10^{-17} \text{ N}$

Hence U/W = 0.13(%) [no ue] [allow use of 2×10^{-14} giving 0.12%]

(iii)
$$4/3\pi r^{3}(\rho - \rho') g = 6\pi r \eta v$$

Hence
$$r = \sqrt{\frac{9\eta \upsilon}{2g(\rho - \rho')}}$$

[accept any equivalent of 9/2 e.g. 18/4; accept substitution into $(\rho - \rho')$]

(c)	(i)	Sketch: \geq 3 vertical lines [ignore curved lines at edges and central gap] Arrows down/consistent with \pm	✓ ✓
	(ii)	Rearrangement of $E = V/d \Rightarrow V = Ed$	\checkmark
		$\Rightarrow V = 780 \text{ V}$	✓
	(iii)	E.m.f. = $2 \times 780 \text{ V} / 1560 \text{ V}$ [ecf their V]	\checkmark
		Assume: (power) <u>supply</u> has zero resistance or no internal resistance or voltmeter has infinite resistance	✓

(d)	\geq 2 sets of values correctly read from graph [eg (7.4, 5) (8.5 or 8.6, 4) (10.2, 3) (13.8-14.0, 2) eg (8, 4.4) (10, 3.1) (12, 2.3-2.4) (14, 2.0) (7, 5.4)]	✓	
	Range of at least 2 N	\checkmark	
	Correct method [e.g. multiplied together / calculate k and use to compare predicted to actual value] [ignore 10^n error]	√	
	Hence conclusion: not proportional [consequent mark, no ecf from using close values or wrong method]	\checkmark	4

Identify weight down AND buoyancy (force) up on \checkmark both diagrams [do not accept gravity]Identify electric (force) up on (i) [Allow electric field]Identify viscous (force) up on (ii)[Accept 2 labels on 1 up arrow](i) $W = B + F_e$ [Accept any correct rearrangement](ii) W = B + V[Accept any correct rearrangement]

Comment on a relevant property of α and γ

5

2

(f)

Mention of ionising/ionisation

(g)	Diagram:	Downward drift [curves/wiggles OK] [not straight down] Non-equal straight lines At random angles	✓ ✓ ✓	
			\checkmark	5
	Explanation:	Droplet is bombarded by air molecules	V	34
		[1/2 for stating Brownian motion without further detail]		

(a)	Quality of written communication	\checkmark	
	Protons drift/move uniformly inside tubes	\checkmark	
	Accelerate between the tubes/in the gaps	\checkmark	
	Alternating p.d. reverses while p is in tube	\checkmark	
	The tubes must get longer as p speeds up	✓	
	For time inside tube to be constant or to synchronise movement with the pd	√	Max 5
	(a)	 Protons drift/move uniformly inside tubes Accelerate between the tubes/in the gaps Alternating p.d. reverses while p is in tube The tubes must get longer as p speeds up For time inside tube to be constant or to synchronise 	Protons drift/move uniformly inside tubes ✓ Accelerate between the tubes/in the gaps ✓ Alternating p.d. reverses while p is in tube ✓ The tubes must get longer as p speeds up ✓ For time inside tube to be constant or to synchronise ✓

(b) (i) Multiply by 419 or 420

Multiply by 1.6×10^{-19}

 \checkmark

 \checkmark

 \checkmark

6

2

Correct answer to at least 2 sf $[5.36/5.38/5.4 \times 10^{-11} \text{ (J)}]$ [no ue]

$$\Delta m = \text{energy} \div (9.0 \times 10^{16} \,\text{m}^2 \,\text{s}^{-2})$$
[ecf their energy or 5×10^{-11}]

 $\Delta m \div 1.01 \times 1.66 \times 10^{-27} \text{ kg} \text{ [ecf their } \Delta m \text{]}$

Correct answer [0.36 or 36%] [Use of 5×10^{-11} gives 33%]

[Accept routes via Δm in u and m_p in J]

(ii) Use of 1/f

: time down linac = $420 \div 3.9 \times 10^8 \text{ s}^{-1}$ or $210 \div 3.9 \times 10^8 \text{ s}^{-1}$

$$[t = 1.07/1.08/1.1 \times 10^{-6} \text{ (s) or } 0.54 \times 10^{-6} \text{ (s)}]$$

(c) (i) Fixed target:

Large(r) number of /more collisions **or** more likely to \checkmark get collisions [**not** easier to get collisions]

Other particle beams produced

(ii) Colliding beams:

More energy available for new particles	\checkmark	
p = 0 so all energy available	\checkmark	Max 2
		15

3.	(a)	Mention of natural frequency (of water molecules)	\checkmark	
		At f_0 there is a large/increased amplitude	\checkmark	
		and hence max energy transfer / max power transfer / max efficiency / max heating	\checkmark	3
	(b)	$(1.2 \text{ kg})(3200 \text{ J kg}^{-1} \text{ K}^{-1})(75 \text{ K})$ seen	\checkmark	
		\Rightarrow 288 kJ		
		\div 600 s to give a power in W [\Rightarrow 480 W]	\checkmark	
		Efficiency 480 W e.c.f ÷ 800 W [= 60%]	\checkmark	
		There will be heat/energy/power losses from the meat/to the surroundings or water evaporation needs LHV or water evaporation leaves fewer molecules to vibrate	✓	4

(c) ((i)	See $c = 3 \times 10^8 \text{ (m s}^{-1}\text{)}$ used in $c = f\lambda$ [$\Rightarrow \lambda = 0.12 \text{ m/}12 \text{ cm/}120 \text{ mm}$]	✓
(i	ii)	Measure SQ[34 mm], QP[34 mm] and SP[32 mm] and multiply readings by 5 [170 mm, 170 mm, 160 mm] [No tolerance on measurements, no ue]	✓
		Add SQ and QP [ecf their values]	\checkmark
		Mention of path difference or attempt to find path difference e.g. (SQ+QP) – SP	\checkmark
		Conversion of any length to wavelengths	\checkmark
		Correct discussion of superposition/phase difference relevant to their path difference	✓
		[Allow maximum if mention π phase shift on reflection]	6
			0
(ii	ii)	Mention of nodes/antinodes [not constructive/destructive interference]	✓
		Energy at antinodes/no energy at nodes [Accept heating at antinodes]	\checkmark
		Rotate meat (plate)/reflect waves from (metal)	✓ <u>3</u>
		paddle/move meat several times	16

\checkmark	
\checkmark	
\checkmark	1
\checkmark	4
	\checkmark

(b)	(i)	LHS: $m s^{-1}$	1	
		RHS: <i>l</i> is m and <i>m</i> is kg \int	·	
		$k \text{ is N m}^{-1}$	\checkmark	
		N is kg m s ^{-2}	\checkmark	
		[k is kg s ⁻² is last 2 marking points]		
	(ii)	<i>k</i> is double (that of a spring)	\checkmark	4

(c)	(i)	Rearrangement of $B = \mu_0 n I \Longrightarrow n = B/\mu_0 I$	\checkmark	
		$\therefore n = (0.34 \times 10^{-3} \text{ N A}^{-1} \text{ m}^{-1}) \div (4\pi \times 10^{-7} \text{ N A}^{-2})(5 \text{ A})$	\checkmark	
		$= 54 \text{ m}^{-1}$	~	3
	(ii)	Mention of magnetic flux/flux/ ϕ [Do not accept magnetic flux density]	✓	
		Increasing/changing ϕ (as pulse reaches coil) [Accept decreasing]	√	
		Because ϕ or <i>B</i> depends on <i>n</i> [can be symbols or words]	✓	
		Reference to Faraday/rate of change of ϕ or B	\checkmark	Max 4
		Producing induced e.m.f./voltage in coil [not current]	✓	15