MODEL ANSWER
A2 PHYSICS
ELECTRIC FIELD \& CAPACITORS
JAN 2006 PHY5

1. (a) Given the two identical capacitors, $\mathbf{C}_{1}=\mathbf{C}_{2}$

Capacitance of each capacitors $=\mathbf{C}=\mathrm{C}_{1}=\mathrm{C}_{2}$
Total electrical energy stored $=1.08 \times 10^{-4} \mathrm{~J}$

$$
\begin{aligned}
\mathbf{W} & =1 / 2 \mathbf{C}_{\mathrm{T}} \mathbf{V}^{2} \\
\mathbf{C}_{\mathrm{T}} & =\mathbf{2 W} / \mathbf{V}^{2} \\
& =\mathbf{2} \mathbf{X 1 . 0 8} \times 10^{-4} / 6^{2} \\
& =\underline{6} \boldsymbol{\mu F}
\end{aligned}
$$

$1 / C_{T}=1 / C_{1}+1 / C_{2}$
$1 / 6=2 / C$
$\mathrm{C}=\underline{\mathbf{1 2} \mu \mathrm{F}}$
(b) (i) Total Charge, $\mathrm{Q}_{\mathrm{T}}=\mathrm{C}_{\mathrm{T}} \mathrm{V}$

$$
\begin{aligned}
& =[3.0+3.0] \times 6.0 \\
& =\underline{\mathbf{3 6} .0} \mu \mathrm{C}
\end{aligned}
$$

$$
\begin{aligned}
\text { Total electrical energy stored } & =1 / 2 \mathrm{QV} \\
& =1 / 2 \times 36.0 \times 10^{-6} \times 6.0 \\
& =\underline{1.08 \times 10^{-4} \mathrm{~J}}
\end{aligned}
$$

3. (i) Upward arrow labeled electrostatic force due to field OR upward arrow labeled electric force.
Downward arrow labeled weight OR downward arrow labeled gravitational force.
(ii) $E=F / \mathbf{Q}$
$E=V / d$
$=500 / 2.5 \times 10^{-3}--(2)$
At equilibrium, $F=\mathbf{m g}=\mathbf{E Q}$

$$
\begin{aligned}
1.96 \times 10^{-14} & =500 / 2.5 \times 10^{-3} \mathrm{Q} \\
\mathrm{Q} & =\left[1.96 \times 10^{-14}\right] /\left[500 / 2.5 \times 10^{-3}\right] \\
& =9.61 \times 10^{-19} \mathrm{C}
\end{aligned}
$$

(iii) When the two plates are moved closer together, with the assumption that potential difference remains unchanged, based on
$\mathrm{F}_{\text {upward }}=\mathrm{QE}=\mathrm{QV} / \mathrm{d}$
The electrostatic force will increase and therefore the oil drop accelerates upwards. The upward force is greater
Upward electrostatic force $>$ weight
$\mathrm{F}_{\text {upward }}>\mathrm{mg}$
OR mg < QV / d

PREPARED BY MR.DERYK NG
UCSI UNIVERSITY
A LEVEL ACADEMY
deryk123@gmail.com
Facebook: deryk123

