MODEL ANSWER A2 PHYSICS ELECTRIC FIELD & CAPACITORS

JAN 2006 PHY5

1. (a) Given the two identical capacitors, $C_1 = C_2$

Capacitance of each capacitors = $C = C_1 = C_2$ Total electrical energy stored = 1.08 X 10⁻⁴ J

$$W = \frac{1}{2} C_T V^2$$

$$C_T = 2W / V^2$$

$$= 2 X 1.08 X 10^{-4} / 6^2$$

$$= 6 \mu F$$

$$1/C_{T} = 1/C_{1} + 1/C_{2}$$

 $1/6 = 2/C$
 $C = 12 \mu F$

(b) (i) Total Charge,
$$Q_T = C_T V$$

= [3.0 + 3.0] X 6.0
= 36.0 μ C

Total electrical energy stored =
$$\frac{1}{2}$$
 QV
= $\frac{1}{2}$ X 36.0 X 10⁻⁶ X 6.0
= 1.08 X 10⁻⁴ J

3. (i) Upward arrow labeled electrostatic force due to field OR upward arrow labeled electric force.

Downward arrow labeled weight OR downward arrow labeled gravitational force.

(ii)
$$E = F / Q$$
 ---(1)
 $E = V / d$
 $= 500 / 2.5 \times 10^{-3}$ ---(2)
At equilibrium, $F = mg = EQ$
 $1.96 \times 10^{-14} = 500 / 2.5 \times 10^{-3} Q$
 $Q = [1.96 \times 10^{-14}] / [500 / 2.5 \times 10^{-3}]$
 $= 9.61 \times 10^{-19} C$

(iii) When the two plates are moved closer together, with the assumption that potential difference remains unchanged, based on

$$F_{upward} = QE = QV / d$$

The electrostatic force will increase and therefore the oil drop accelerates upwards. The upward force is greater

Upward electrostatic force > weight

$$F_{upward} > mg$$

 $OR \ mg < QV / d$

PREPARED BY MR.DERYK NG **UCSI UNIVERSITY** A LEVEL ACADEMY deryk123@gmail.com Facebook: deryk123