GCE
Edexcel GCE
Physics (6733/01)

January 2006

Mark Scheme (Results)
Notes on the Mark Schemes 1

Unit PHY3 Mark Scheme 2

Notes on the Mark Schemes

1. Alternative responses: There was often more than one correct response to a particular question and these published mark schemes do not give all possible alternatives. They generally show only the schemes for the most common responses given by candidates. They are not model answers but indicate what the Examiners accepted in this examination.
2. Error carried forward: In general, an error made in an early part of a question is penalised there but not subsequently, i.e. candidates are penalised once only, and can gain credit in later parts of a question by correct reasoning from an earlier incorrect answer.
3. Quantity algebra: The working for calculations is presented using quantity algebra in the mark schemes for Units PHY1, PHY2, PHY3 (Topics), PHY4, PHY5/01, and PHY6 but candidates are not required to do this in their answers.
4. Significant figures: Use of an inappropriate number of significant figures in the theory papers will normally be penalised only in "show that" questions where too few significant figures has resulted in the candidate not demonstrating the validity of the given answer. Use of an inappropriate number of significant figures will normally be penalised in the practical tests. In general candidates should nevertheless be guided by the numbers of significant figures in the data provided in the question.
5. Unit penalties: A wrong or missing unit in the answer to a calculation will generally lose one mark unless otherwise indicated.
6. Quality of written communication: Each theory paper will usually have 1 or 2 marks for the quality of written communication. The mark will sometimes be a separate mark and sometimes be an option in a list of marking points.

Within the schemes:

- / indicates alternative marking point
() brackets indicate words not essential to the answer
[] brackets indicate additional guidance for markers
- The following standard abbreviations are used:

a.e.	arithmetic error (-1 mark)
e.c.f.	error carried forward (allow mark(s))
s.f.	significant figures (-1 mark only where specified)
no u.e.	no unit error

6733 Unit Test PHY3 (Topics)

Topic A - Astrophysics

(a) Background wavelength

Use of $\lambda_{\text {max }} T=2.90 \times 10^{-3} \mathrm{~m} \mathrm{~K}$
Correct substitution
$1.06($ or 1.1$) \times 10^{-3} \mathrm{~m}$

Part of spectrum

Microwave or infra-red $\quad \checkmark \quad 1$
(b) Main sequence star definition
(Fusion of) hydrogen (nuclei) / protons to helium (nuclei)
stably / in equilibrium / in core
Hertzsprung-Russell diagram
Diagonal falling line
Correct curvature above 20000 K and below 5000 K
X on line and level with 10° (to $\pm 1 \mathrm{~mm}$) [must be clearly indicated]
Dwarfs and Giants
(i) bottom left quadrant
(ii) top right quadrant
[no region indicated max. $\checkmark \mathbf{x}$]
T consistent with diagram at centre of region and $2500 \leq T / \mathrm{K} \leq 10000$
T
(c) More MS stars
$\begin{array}{lcc}\text { (i) } \gamma \text { Cas } & \checkmark & \\ \text { (ii) } \alpha \text { Cen B } & \checkmark & \mathbf{2}\end{array}$
Diameter of Sirius A
$26 \times 3.9 \times 10^{26}$
$1.0 \times 10^{28} \mathrm{~W}$ (ue)
$L=\sigma T^{4} A$ (or implied by substitution)
$A=2.46($ or 2.43 or 2.45$) \times 10^{19}\left(\mathrm{~m}^{2}\right)$
Use of $\pi d^{2} / 4 \pi r^{2} / 1.4 \times 10^{9} \mathrm{~m}$
$2.8 \times 10^{9} \mathrm{~m}$ [no ecf]
(d) Supernova processes

Quality of written communication
Heavier elements fused / fusion occurs in outer shells (around core)
Runs out of fuel to fuse/fusion ceases thus implosion / core collapse
Protons + electrons form neutrons OR Shock wave (or explosion) blows away outer layers

Neutron star / pulsar / black hole
(e) Hydrogen fusion

Mass subtraction of $4 p-\mathrm{He}$
$4.7 \times 10^{-29}(\mathrm{~kg}) \quad \checkmark$ 2
$E=m c^{2}$ seen/implied
$4.2($ or 4.5$) \times 10^{-12} \mathrm{~J}$
2
Percentage mass loss
4.7×10^{-29} divided by $4 \times 1.673 \times 10^{-27}$ (allow 5×10^{-29} or 6.645×10^{-27}) 7×10^{-3}
\% conversion: $0.7 \% / 0.75 \%$ (ecf)
(a)(i) Young modulus

Any reference to gradient or $E=$ stress / strain [or implied]
Substitution of correct values for either straight line [$\mathrm{to} \pm 1 \mathrm{~mm}$]
$1.25-1.45 \times 10^{11}$ and ≥ 3.s.f
(ii) Energy density

Any area attempted
Triangle area: $1 / 2 \times 300 \times 1.5$ or $13.5 \mathrm{~cm}^{2}$ squares [or equivalent area chosen]
Rectangle area: $300 \times 1.5 \quad$ or \quad each of $100(\mathrm{MPa})$
$6.5-7.0$ and $10^{5}\left(\mathrm{~J} \mathrm{~m}^{-3}\right)$
Strongest material
A
Highest UTS / tensile stress
(b) Crosses and materials

Three crosses at end of straight line regions
A = high carbon steel
$B=$ mild steel
C = copper
All correct [1 or 2 correct score $\checkmark \mathbf{x}$]
High carbon steel / A [if A = h.c.s.]
$\checkmark \checkmark$

Molecular structure of metals
Quality of written communication
Elastic - atomic separation increases and reversible / atoms do not change (relative) position

Plastic - bonds between atoms broken / dislocations move / atoms change position permanently / relatively

Fracture - plane of bonds break

Rubber line to scale
(Horizontal) line starting from origin (max 40 MPa at 3.0×10^{-3})
(c) Pre-stressed reinforced concrete beam

Steel / iron and rod / cable / wire
Tension / loaded / stressed
Concrete cast / poured over (not cement) and allowed to set / solidify

Tension forces removed [NOT rods contract]
(Leaving) steel in tension and concrete in compression
(d) Elastomer

Materials which can be stretched considerably / to high strain (or $>100 \%$) AND still return to their original length when stress is removed

Molecular structure of rubber
Tangled chain molecules
(Easy to stretch at start) chains are straightened out
(Harder to stretch when) straight chains (or bonds) being stretched
(e) Castle drawbridge
$W=19620 \mathrm{~N} / 20000 \mathrm{~N}$
Weight acting at 1.5 m , vertically downwards
Principle of moments stated or implied ["in equilibrium" not required]

Substitution with $\cos 45^{\circ}$ or $\sin 45^{\circ}$ (allow $2 T$ here, ecf)
7 kN (no ecf)

Topic C - Nuclear and Particle Physics

(a) Neutron Capture Equation
${ }_{92}^{238} \mathrm{U}+{ }_{0}^{1} \mathrm{n} \rightarrow{ }_{92}^{239} \mathrm{U}$

Beta minus decay
${ }_{92}^{239} \mathrm{U} \rightarrow{ }_{93}^{239} \mathrm{~Np}+{ }_{-1}^{0} \beta+\overline{\mathrm{v}}$
$\mathrm{U} \rightarrow \mathrm{Np}+\beta^{-}$
Hence all six numbers correct
antineutrino
(b)(i) Binding energy per nucleon graph

Nucleon number / mass number
(ii) Nuclei on graph
H at start of curve ($<3 \mathrm{MeV}$), Fe at peak of curve (at 56), U at end of curve (at 235) [to $\pm 1 \mathrm{~mm}$]
any two
all three
(iii) Fe (ecf)
(iv) Binding energy of U
7.5 / 7.6 (ecf)
x 235
$1.8(\mathrm{GeV})$ [allow $1.76-1.80$, no e.c.f]
(c) Positronium charge and mass
neutral / zero
charges of +1 AND - 1 cancel
Electron and positron are antimatter versions of each other

Antimatter interaction

Annihilation
$\gamma /$ energy / photon

Possible interactions

Quality of written communication
Electromagnetic force affects charged particles - hence yes
Weak force affects all particles C hence yes
Gravitational force negligible / affects masses hence yes OR strong force affects quarks / hadrons only hence no

Similarities and differences
Any two from: Made of matter and antimatter / short lifetime / unstable / neutral charge [not made of fundamental particles]

Lepton vs. quarks / different mass / meson affected by strong force
(d) Conservation laws

Baryon
-1
Q: $(-1)+(+1)=(0)+(+1)+(\mathrm{X})$
B: $(0)+(+1)=(0)+(0)+(X)$
Quark content
uud
us

Particle X

Quark equation ($\overline{\mathrm{s}} \mathbf{\mathrm { u }}+\mathrm{uud} \rightarrow \mathrm{d} \overline{\mathrm{s}}+\overline{\mathrm{s}}+\mathrm{X}$) [allow ecf]
Correct cancelling of quark flavours
sss ['sss' alone scores 3/3]

Topic D-Medical Physics

(a) Radiation effects on cells

> Destruction / kills cells [not just damage]

Mutation \checkmark
(b) Nuclear equation

Correct symbols: $\mathrm{I} \rightarrow \mathrm{Xe}+\beta+\gamma$
0 and -1 for β
131, 53 and 131, 54 correct for I and Xe
(c) Technetium symbols
metastable / excited state
will emit $\gamma /$ energy / photon
Time scale
One day per cycle
Elution graph shape
Quality of written communication
(Rise:) Mo decays to generate Tc
(Fall:) "milking" of cell / elution process / Tc flushed out / Tc removed from cell

Peak height falls as Mo decays
(d) Nature of ultrasound

High frequency (wave / sound) / frequency above human hearing Above 20000 Hz [or correct example given]

Sonar principle

Pulse / short ultrasound wave sent
Detect echo / reflection
(Information gained from) time delay / signal amplitude
Specific acoustic impedance of soft tissue
Use of $c=f \lambda$ and $\times 10^{6}, 10^{-3}$ conversion
$1545 / 1550\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$
Correct substitution in $Z=c p$
$1.64 \times 10^{6} \mathrm{~kg} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ [allow $1.59 \times 10^{6} \mathrm{~kg} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$]

Percentage transmission

Use of α
Substitution (should be $(4.9 / 8.1)^{2}$, ecf their Z)
$0.36 / 0.37$ [no ecf, beware 60% from incorrect equation]
$64 \% / 63 \%$ [ecf on reflected value]
(e) X-ray energy

Diagnosis keV AND therapy MeV
Any point from: keV: Preferential absorption / Z dependence for absorption [or MeV absorption not Z dependent]

MeV : More penetrating / kill cells
X-ray image explanation
White $=$ bone and grey (allow black or darker areas) $=$ soft tissue
White $=$ no X-rays reach film (to darken it) / Grey $=$ some X-rays reach film (to darken some of it)

Attenuation / absorption (strongly) dependent on proton number $20>9$ (or implied) means greater attenuation for bone than tissue

