GCE
Edexcel GCE
Physics (6731/01)

January 2006

Mark Scheme (Results)
Notes on the Mark Schemes 1

Unit PHY1 Mark Scheme 2

Notes on the Mark Schemes

1. Alternative responses: There was often more than one correct response to a particular question and these published mark schemes do not give all possible alternatives. They generally show only the schemes for the most common responses given by candidates. They are not model answers but indicate what the Examiners accepted in this examination.
2. Error carried forward: In general, an error made in an early part of a question is penalised there but not subsequently, i.e. candidates are penalised once only, and can gain credit in later parts of a question by correct reasoning from an earlier incorrect answer.
3. Quantity algebra: The working for calculations is presented using quantity algebra in the mark schemes for Units PHY1, PHY2, PHY3 (Topics), PHY4, PHY5/01, and PHY6 but candidates are not required to do this in their answers.
4. Significant figures: Use of an inappropriate number of significant figures in the theory papers will normally be penalised only in "show that" questions where too few significant figures has resulted in the candidate not demonstrating the validity of the given answer. Use of an inappropriate number of significant figures will normally be penalised in the practical tests. In general candidates should nevertheless be guided by the numbers of significant figures in the data provided in the question.
5. Unit penalties: A wrong or missing unit in the answer to a calculation will generally lose one mark unless otherwise indicated.
6. Quality of written communication: Each theory paper will usually have 1 or 2 marks for the quality of written communication. The mark will sometimes be a separate mark and sometimes be an option in a list of marking points.

Within the schemes:

- / indicates alternative marking point
() brackets indicate words not essential to the answer
[] brackets indicate additional guidance for markers
- The following standard abbreviations are used:

a.e.	arithmetic error (-1 mark)
e.c.f.	error carried forward (allow mark(s))
s.f.	significant figures (-1 mark only where specified)
no u.e.	no unit error

6731 Unit Test PHY 1

1.

Graph	Physical quantity represented by area under graph
(i)	Work (done) / (change in)energy (stored)
(ii)	Distance / displacement (change)
(iii)	Speed / velocity (change)
(iv)	Impulse / (change in) momentum

For ii ignore total if written
For iii average velocity or average speed is wrong
2. (a) Principle of moments

For equilibrium / balance
sum of moments clockwise $=$ sum of moments anti-clockwise or sum of moments (about a point) is zero
[Sum or equivalent eg total/net/resultant [NOT all] must be seen at least once]
(b)(i) Weight of retort stand

Use of principle of moments
i.e. $180 \times\left(10^{-3} \mathrm{~m}\right) \times \mathrm{W}=228 \times\left(10^{-3} \mathrm{~m}\right) \times 9(\mathrm{~N})$
[Allow 1 wrong distance]

$$
11.4(\mathrm{~N})
$$

\checkmark
[At least 3 sig fig required. No u.e.] [In this question allow reverse calculation to gain full marks] [Bald answer scores 0]
(ii) Reading on newtonmeter and normal contact

Fully correct moment equation
$F \times 448 \times\left(10^{-3} \mathrm{~m}\right)=11.4(\mathrm{~N}) \times 40 \times\left(10^{-3} \mathrm{~m}\right)$
[allow $11 \mathrm{~N} \times 40 \times\left(10^{-3}\right) \mathrm{m}$ or ecf from bi]
$=1.0 \mathrm{~N}$
Normal contact force (11.4 N/11 N-1 N) = 10.4 N or 10 N (upwards)[ecf]

3. (a) Calculation of weight

Use of $\mathrm{L} \times \mathrm{W} \times \mathrm{H}$
Substitution into density equation with a volume and density
Correct answer [49.4 (N)] to at least 3 sig fig. [No ue]
[Allow $50.4(\mathrm{~N})$ for answer if $10 \mathrm{~N} / \mathrm{kg}$ used for g.]
[If 5040 g rounded to 5000 g or 5 kg , do not give $3^{\text {rd }}$ mark; if conversion to
kg is omitted and then answer fudged, do not give $3^{\text {rd }}$ mark]
[Bald answer scores 0 , reverse calculation $2 / 3$]
$80 \mathrm{~cm} \times 50 \mathrm{~cm} \times 1.8 \mathrm{~cm}=7200 \mathrm{~cm}^{3}$
$7200 \mathrm{~cm}^{3} \times 0.70 \mathrm{~g} \mathrm{~m}^{-3}=5040 \mathrm{~g}$
$5040 \mathrm{~g} \times 10^{-3} \times 9.81 \mathrm{~N} / \mathrm{kg}$
$=49.4(\mathrm{~N})$
[May see :
$\left.80 \mathrm{~cm} \times 50 \mathrm{~cm} \times 1.8 \mathrm{~cm} \times 0.7 \mathrm{~g} \mathrm{~m}^{-3} \times 10^{-3} \times 9.81 \mathrm{~N} / \mathrm{kg}=49.4(\mathrm{~N})\right]$
(b)(i) Horizontal and vertical components

Horizontal component $=(83 \cos 37 \mathrm{~N})=66.3 \mathrm{~N} / 66 \mathrm{~N}$
Vertical component $=(83 \sin 37 \mathrm{~N})=49.95 \mathrm{~N} / 50 \mathrm{~N}$
[If both calculated wrongly, award 1 mark if the horizontal was identified
as $83 \cos 37 \mathrm{~N}$ and the vertical as $83 \sin 37 \mathrm{~N}$]
(ii) Add to diagram

Direction of both components correctly shown on diagram
(iii) Horizontal force of hinge on table top
$66.3(\mathrm{~N})$ or $66(\mathrm{~N})$ and correct indication of direction [no ue]
[Some examples of direction: acting from right (to left) / to the left / West / opposite direction to horizontal. May show direction by arrow. Do not accept a minus sign in front of number as direction.]

4. \quad Expression for E_{K} and work done / base unit

(a)(i) Kinetic energy $=1 / 2 m u^{2}$

Work done $=F d$
[must give expressions in terms of the symbols given in the question]
(ii) Base units for kinetic energy $=\left(\mathrm{kg}\left(\mathrm{m} \mathrm{s}^{-1}\right)^{2}\right)=\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2}$

Base units for work done $=\mathrm{kgms}^{-2} \cdot \mathrm{~m}=\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2}$
[derivation of $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2}$ essential for $2^{\text {nd }}$ mark to be given]
[Ignore persistence of $1 / 2$] [For $2^{\text {nd }}$ mark ecf mgh for work from ai]
(b) Show that the braking distance is almost 14 m
[Bald answer scores 0 ; Reverse calculation max 2/3]

Either

Equating work done and kinetic energy[words or equations]
Correct substitution into kinetic energy equation and correct substitution into work done equation

Correct answer [13.8(m)] to at least 3 sig fig. [No ue]

$$
0.5 \times m \times\left(13.4 \mathrm{~m} \mathrm{~s}^{-1}\right)^{2}=m \times 6.5 \mathrm{~m} \mathrm{~s}^{-2} \times d
$$

$$
\begin{equation*}
\frac{0.5 \times m \times\left(13.4 \mathrm{~ms}^{-1}\right)^{2}}{m \times 6.5 \mathrm{~ms}^{-2}}=13.8(\mathrm{~m}) \tag{3}
\end{equation*}
$$

[m may be cancelled in equating formulae step and not seen subsequently]

OR

Selecting $v^{2}=u^{2}+2$ as OR 2 correct equations of motion
Correct magnitudes of values substituted
[i.e. $\left.0=\left(13.4 \mathrm{~m} \mathrm{~s}^{-1}\right)^{2}+2\left((-) 6.5 \mathrm{~m}^{-2}\right) \mathrm{s}\right]$
Correct calculation of answer [13.8(m)] to at least 3 sig fig. [No ue]

(c) Why braking distance has more than doubled

QOWC

Either

(Because speed is doubled and deceleration is unchanged) time (to be brought to rest) is doubled/increased.
$($ Since $)$ distance $=$ speed \times time [mark consequent on first] or $s=u t+1 / 2 a t^{2}$ the distance is increased by a factor of (about) 4

Or

Recognition that (speed) ${ }^{2}$ is the key factor
Reference to $v^{2}=u^{2}+2 a s$ or rearrangement thereof or kinetic energy [second mark consequent on first]
(Hence) distance is increased by a factor of (almost) 4
Or
Do calculation using $v^{2}=u^{2}+2$ as and use $26.8 \mathrm{~m} \mathrm{~s}^{-1}$ and $6.5 \mathrm{~m} \mathrm{~s}^{-2}$ Some working shown to get answer 55.2 m
(Conclusion that) distance is increased by a factor of (almost) 4
[Note : unlikely that QWOC mark would be awarded with this method]

Or

Accurate labelled v - t graphs for both
Explanation involving comparison of areas
Distance is increased by a factor of (almost) 4
[In all cases give $4^{\text {th }}$ mark if 4 is not mentioned but candidate shows more than doubled eg "Speed is doubled and the time increased, therefore multiplying these gives more than double."]
5. (a) From what height?

Use of $m g \Delta h$ and $1 / 2 m v^{2}$
[ignore power of 10 errors]
$\operatorname{mg} \Delta h=1 / 2 m v^{2}$
[shown as formulae without substitution, or as numbers substituted into formulae]

Answer [0.8(2) m]
[It is possible to get 0.8 m by a wrong method:

- If $v^{2}=u^{2}+2 a s$ is used, award 0 marks
- If you see v^{2} / a then apply bod and up to $2 / 3$ marks - the $2^{\text {nd }}$ and $3^{\text {rd }}$ marks. Note that v^{2} / g is correct and gains the first 2 marks, with the $3^{\text {rd }}$ mark if 0.8 m is calculated]
$80 \times\left(10^{-3}\right) \mathrm{kg} \times 9.81 \mathrm{~N} \mathrm{~kg}^{-1} \times \Delta h=1 / 2 \times 80\left(\times 10^{-3}\right) \mathrm{kg} \times\left(4 \mathrm{~m} \mathrm{~s}^{-1}\right)^{2}$
$h=\frac{0.5 \times 80 \times 10^{-3} \mathrm{~kg} \times\left(4 \mathrm{~ms}^{-1}\right)^{2}}{80 \times 10^{-3} \mathrm{~kg} \times 9.81 \mathrm{~N} \mathrm{~kg}^{-1}}$
$=0.8(2) \mathrm{m}$
(b)(i) Law of conservation of linear momentum

Provided no external[other/resultant/outside] force acts
The total momentum (of a system) does not change / total momentum before(collision)= total momentum after (collision)
[Total seen at least once] [Ignore all references to elastic and inelastic]
[Do not credit simple statement that momentum is conserved]
(ii) Speed of trucks after collision

Any correct calculation of momentum
Use of conservation of momentum leading to the answer $1.3(3) \mathrm{m} \mathrm{s}^{-1}$
$80 \times\left(10^{-3}\right) \mathrm{kg} \times 4 \mathrm{~m} \mathrm{~s}^{-1}=240 \times\left(10^{-3}\right) \mathrm{kg} \times \mathrm{u}$, giving $\mathrm{u}=1.3(3) \mathrm{m} \mathrm{s}^{-1}$
(c) Time for trucks to stop
[Do not penalise candidates for using a total frictional force of $0.36 \mathrm{~N} .3 / 3$ possible]

Either

Correct use of power $=f \times \mathrm{v}$ and $1 / 2 m v^{2}$
[Do not penalise power of 10 errors or not dividing by 2 in $f \times V$ equation]
Use of energy divided by power
Answer in range 2.6 s to 2.7 s
[ecf their value for u]
$\mathrm{P}=0.12 \mathrm{~N} \times \frac{1.33}{2} \mathrm{~m} \mathrm{~s}^{-1}=0.08 \mathrm{~W}$
$\mathrm{KE}=1 / 2 \times(3) \times 80 \times\left(10^{-3}\right) \mathrm{kg} \times\left(1.33 \mathrm{~m} \mathrm{~s}^{-1}\right)^{2}=0.21 \mathrm{~J}$
$\frac{\text { Energy }}{\text { power }}=\frac{0.21 \mathrm{~J}}{0.08 \mathrm{~W}}$
$\mathrm{t}=2.6(5) \mathrm{s}$
[accept 2.6 or 2.7 as rounding]

OR

Use of $F=m a$
Use of either $v=u+a t$ i.e. or $a=\frac{\Delta v}{t}$
Answer in range 2.6 s to 2.7 s
$(-) 0.12 \mathrm{~N}=(3) \times 80 \times\left(10^{-3}\right) \mathrm{kg} \times a\left(\mathrm{a}=(-) 0.5 \mathrm{~m} \mathrm{~s}^{-2}\right)$
$0=1.33 \mathrm{~m} \mathrm{~s}^{-1}-0.5 \mathrm{~m} \mathrm{~s}^{-2} \times \mathrm{t}$ or $(-) 0.5 \mathrm{~m} \mathrm{~s}^{-2}=\frac{(-) 1.33 \mathrm{~m} \mathrm{~s}^{-1}}{t}$
$t=2.6(6) \mathrm{s}$
OR
Select $F t=\Delta p$
Substitution $(-) 0.12 t=(-3) \times 80 \times\left(10^{-3}\right) \mathrm{kg} \times 1.33 \mathrm{~m} \mathrm{~s}^{-1}$
[Allow omission of any bracketed value]
Answer in range 2.6 s to 2.7 s

6. (a)(i) Newton's First law of Motion

An object will remain (at rest or) uniform/constant velocity/speed/motion in a straight line unless (an external/impressed) force acts upon it / provided resultant force is zero.
(ii) Everyday situation

Reference to air resistance / friction / drag etc.
(iii) Equilibrium

The resultant force is zero / no net force /sum of forces is zero / forces are balanced / acceleration is zero
[Accept moments in place of force]
(b)(i) Identify the other force

Earth
Gravitational [consequent on first mark] [Do not credit gravity.]
(ii) Why normal contact forces are not a Newton's third law pair

Do not act along the same (straight) line / do not act from the same point They act on the same body
They act in the same direction / they are not opposite forces
They are of different magnitudes
7. (a) Sources of background radiation

2 from:

Cosmic rays, rocks, soil, food, nuclear power/industry[buried waste as alternative], atmosphere, building material, medical uses, nuclear weapons testing (in the 60 s), Sun, radon gas
[Do not credit more than 1 example in each category e.g.coffee and Brazil nuts is 1 mark not 2]
(b)(i) Measurement of background count rate

- Use GM tube or stop watch/ratemeter/datalogger
- All sources must be in their (lead) containers / placed away from the experiment / place thick lead around tube
- Measure count over measured period of time (and divide count by time)
- Repeat and average / measure the count for at least 5 minutes
- Subtract background (count rate) from readings
(b)(i) Measuremen
(ii) Why it might be unnecessary to measure background count rate

Count rate for the radioactive material is much greater than the background count rate.
[Comparison required with count rate of radioactive material]

Will not: decay / disintegrate / be radioactive / emit radiation / emit particles / break down
[Do not accept will not emit energy]
(ii) Complete equation
${ }_{1}^{1} \mathrm{Y}$
(iii) Identify particles

$$
\begin{aligned}
& \mathrm{X}=\text { neutron } \\
& \mathrm{Y}=\text { proton }
\end{aligned}
$$

(b)(i) Decay Constant

Use of $\lambda=\frac{0.69}{t_{1 / 2}}$ i.e. $=\frac{0.69}{5568 \times 3.2 \times 10^{7} \mathrm{~s}}$
[Do not penalise incorrect time conversion]
Correct answer [$3.87 \times 10^{-12}\left(\mathrm{~s}^{-1}\right)$] to at least 2 sig fig. [No ue] [Bald answer scores 0]
(ii) Number of nuclei

Use of $\mathrm{A}=\lambda \mathrm{N}$ eg $\frac{16}{60}=(-) 4 \times 10^{-12} \mathrm{~N}$
[Ecf their value of λ] [Do not penalise incorrect time conversion]

Answer in range 6.6×10^{10} to 7.0×10^{10}

