GCE

Edexcel GCE
Physics (6733/01)

Summer 2005

Mark Scheme (Results)
Notes on the Mark Schemes 1
Unit PHY3 (Topics) Mark Scheme 2

Notes on the Mark Schemes

1. Alternative responses: There was often more than one correct response to a particular question and these published mark schemes do not give all possible alternatives. They generally show only the schemes for the most common responses given by candidates. They are not model answers but indicate what the Examiners accepted in this examination.
2. Error carried forward: In general, an error made in an early part of a question is penalised there but not subsequently, i.e. candidates are penalised once only, and can gain credit in later parts of a question by correct reasoning from an earlier incorrect answer.
3. Quantity algebra: The working for calculations is presented using quantity algebra in the mark schemes for Units PHY1, PHY2, PHY3 (Topics), PHY4, PHY5/01, and PHY6 but candidates are not required to do this in their answers.
4. Significant figures: Use of an inappropriate number of significant figures in the theory papers will normally be penalised only in "show that" questions where too few significant figures has resulted in the candidate not demonstrating the validity of the given answer. Use of an inappropriate number of significant figures will normally be penalised in the practical tests. In general candidates should nevertheless be guided by the numbers of significant figures in the data provided in the question.
5. Unit penalties: A wrong or missing unit in the answer to a calculation will generally lose one mark unless otherwise indicated.
6. Quality of written communication: Each theory paper will usually have 1 or 2 marks for the quality of written communication. The mark will sometimes be a separate mark and sometimes be an option in a list of marking points.

Within the schemes:

- / indicates alternative marking point
() brackets indicate words not essential to the answer
[] brackets indicate additional guidance for markers
- The following standard abbreviations are used:

a.e.	arithmetic error (-1 mark)
e.c.f.	error carried forward (allow mark(s))
s.f.	significant figures (-1 mark only where specified)
no u.e.	no unit error

6733/01 Unit Test PHY3 (Topics)

Topic A - Astrophysics

(a) Base units of intensity
(i) $\quad W=\mathrm{J} \mathrm{s}^{-1} / \mathrm{N} \mathrm{m} \mathrm{s}^{-1}$ or $P=E / t$ or $P=F v$
$\mathrm{J}=\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2}$ or $\mathrm{kg} \mathrm{m} \mathrm{s}^{-2} \mathrm{~m}$

Algebra to $\mathrm{kg} \mathrm{s}^{-3}$ shown (e.g. $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2} \mathrm{~s}^{-1} \mathrm{~m}^{-2}$)
Luminosity calculation
(ii) Correct substitution

3.82 or 3.8 [ignore 10^{n}]

hence $3.8(2) \times 10^{26} \mathrm{~W}$ [ue] [allow 3.9 or 4]
(b) CCD advantages
(i) Any three from:

- Higher (quantum) efficiency / more sensitive
- Detect fainter or more distant stars
- More linear response
- Digital / link to computer / remote imaging
- No processing time / use repeatedly / real-time imaging
- Quicker image collection (i.e. quicker \& reason)
- Greater range of wavelengths
(ii) CCD disadvantage

Resolution / pixel size larger
(c) Satellite advantages

Quality of written communication
No atmosphere (for radiation to pass through / above atmosphere)
Idea of no absorption (of i.r.)
(d) Forces within star
(i) 1. Fusion forces [allow 'pressure from nuclear reactions' or 'hydrogen burning'] or radiation / photon pressure
2. Gravitational / Weight (not just gravity)
(ii) Equal
(iii) White dwarf \& red giant differences

Any three from:

- Temperature: $T_{\mathrm{wd}}(6000 \mathrm{~K}-30000 \mathrm{~K})>T_{\mathrm{rg}}(2000 \mathrm{~K}-5000 \mathrm{~K})$
- Volume: $V_{\mathrm{rg}}>V_{\mathrm{wd}}$ - allow $A / d / r /$ bigger
- Mass: e.g. $M_{\mathrm{wd}}<1.4 M_{\odot}$ AND $\left(0.4 M_{\odot}<\right) M_{\mathrm{rg}}<8 m_{\odot}$
- Fusion (of $\mathrm{He} /$ heavier elements) in rg / no fusion in wd
- Luminosity: $L_{\mathrm{rg}}\left[10^{2}-10^{6}\right]>L_{\mathrm{wd}}\left[10^{-2}-10^{-4}\right]$ in terms of L_{\odot}
- Wd is (core) remnant of $\mathrm{rg} / \mathrm{rg}$ before wd stage
- Density: $\rho_{\mathrm{wd}}>\rho_{\mathrm{rg}}$
$\checkmark \checkmark \checkmark$
Max 3
[no numerical values for any property $-\max 2 / 3$)
(iv) Neutron star

Core remnants' mass
Must be $>1.4 M_{\odot}$ or $<2.5 M_{\odot}$
(e) When Sun was formed
(i) Attempted use of $L_{\odot}=1.4 L$
$2.8 \times 10^{26} \mathrm{~W}$
(ii) 1.06^{2} used
$5.5 \times 10^{18} \mathrm{~m}^{2} / 5.5 \times 10^{12} \mathrm{~km}^{2}$
Show temperature change
(iii) $L=\sigma T^{4} A$ (or implied)

Correct substitution [ecf]
Hence $5500(\mathrm{~K})$ [no ecf]
Hence 5800 - 5500 [or 330, 308, 310]
Wien's law
(iv) Use of $\lambda_{(\max)} T=2.90 \times 10^{-3} \mathrm{~m} \mathrm{~K}$

530 nm or 500 nm [no ue]
$\Delta \lambda=30 \mathrm{~nm}$ (when rounded to 1 s.f.)
(a) Base units of energy density
(i) $\mathrm{J} \mathrm{m}^{-3}$ or $\mathrm{N} \mathrm{m}^{-2}$
$\mathrm{J}=\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2}$ or $\mathrm{N}=\mathrm{kg} \mathrm{m} \mathrm{s}^{-2}$
Algebra to $\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-2}$ shown (i.e. $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2} \mathrm{~m}^{-3}$ or $\mathrm{kg} \mathrm{m} \mathrm{s}^{-2} \mathrm{~m}^{-2}$)
(ii) Energy density calculation
200×10^{6} used
Energy density $=1 / 2 \sigma \varepsilon$ (or implied)
Correct substitution to 95000 [no ue]
(b) Rubber band graph
(i) Clear labels (or arrows up $\underline{\&}$ down)
(ii) Hysteresis

Maximum stress
(iii) Use of F / A with $12(\mathrm{~N})$
$2 \times 10^{6} \mathrm{~Pa} / \mathrm{N} \mathrm{m}^{-2}$ [ue, no ecf]
(v) Hence show loop area

Attempt at loop area / attempt at area under unloading line
Hence working to show 1 J
Mechanism
(vi) Creep

Hooke's law

(vii) (Loading) force is proportional to extension
[OR may be $F=k \Delta x$ with symbols defined]

Force-extension apparatus

(viii) Valid diagram

Clamp and rubber band, both labelled
Ruler and masses/weights, both labelled
Accuracy technique (eye-level, clamp ruler, use set-square)
(c)(i) Glass properties

Brittle
Stiff
[-1 per error if more than two properties circled]
(ii) Extension calculation

Any three from:

- S.I. conversion of d and l
- $\quad \sigma=F / A$ and $\varepsilon=\Delta l / l[$ or $E=F l / A \Delta l$ (may be implied) $]$
- Any use of $E=\sigma / \varepsilon$ [or use of $E=F l / A \Delta l$, allow incorrect A]
- Correct use of $\pi r^{2} / 1 / 4 \pi d^{2}$ (no 10^{n} penalty)
$3.0 \times 10^{-4} \mathrm{~m}$
(d) Cross-linked polymers

Quality of written communication
Diagram showing cross-links
Polythene / Polymer chains / long molecules be as a label in diagram]

Describe bonds between chains

Topic C - Nuclear and Particle Physics

(a) Base units of eV
(i) Reference to joule

Useful energy equation / units shown [e.g. ${ }^{1 / 2 m v^{2}}, m g h, m c^{2}, F d$, not $Q V$ or $P t]$

Algebra to $\mathrm{J}=\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2}$ shown (e.g. $\mathrm{kg}\left(\mathrm{m} \mathrm{s}^{-1}\right)^{2}$ or $\mathrm{kg} \mathrm{m} \mathrm{s}^{-2} \mathrm{~m}$)
(ii) Energy released

146 shown or used
Δm calculation [1.9415, ecf]
Multiply by 930 [allow $E=m c^{2}$ with mass in kg]
1800 MeV [no ue]
(b) Nuclear forces

Strong (nuclear)
Electromagnetic (not electrostatic)
Nucleons or neutrons and protons for strong AND protons for elcetromagnetic

Within nucleus, infinite/beyond nucleus [allow inverse square law]
(c)(i) $\mathrm{N}-\mathrm{Z}$ plot
α - top right [above and to right of $\mathrm{N}=100$ intersect with plot]
β^{-}- above plots AND β^{+}- below plots
Both β regions near $[<5 \mathrm{~mm}$] stability line [ecf if β swapped]
(ii) Central region

Quality of written communication
Region of stability / nuclei do not decay in stable region
Nuclei decay to / move to this region
(d)(i) Decay numbers

```
p and \mp@subsup{}{0}{1}n
\mp@subsup{1}{1}{0}}\mp@subsup{\beta}{}{+}\mathrm{ and }\mp@subsup{}{0}{0}
(ii) Tick the boxes

Proton: baryon and hadron only
neutron: baryon and hadron only
\(\beta^{+}\): lepton and antimatter only
\(v\) : lepton only
[only penalise once for including meson] [if both baryon correct but no hadrons 1 mark out of 2 and vice versa]
(e)(i) Conservation laws
B: \(1=1+0\)
\(\mathrm{Q}: 1=1+0\)

Diagram
(ii) First \(u\) and \(W^{-}\)
d and \(\overline{\mathrm{u}}\)
(iii) proton / \(\mathrm{H}^{+} /\)hydrogen nucleus \(/ \Delta^{+}[\)mark is dependent on seeing uud on X in diagram]

W- particle
(iv) Exchange particle
(v) Change in quark flavour / strangeness not conserved

Charge conservation requires negative particle
1

2
(vi) \(\underline{\Sigma^{+} \text {decay }}\)
3. due to charge conservation
(a) Base units of intensity
(i) \(\quad W=\mathrm{J} \mathrm{s}^{-1} / \mathrm{N} \mathrm{m} \mathrm{s}^{-1}\) or \(P=E / t\) or \(P=F v\)
\(\mathrm{J}=\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2}\) or \(\mathrm{kg} \mathrm{m} \mathrm{s}^{-2} \mathrm{~m}\)
Algebra to \(\mathrm{kg} \mathrm{s}^{-3}\) shown (e.g. \(\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2} \mathrm{~s}^{-1} \mathrm{~m}^{-2}\) )
Inverse square law
(ii) (Use of) \(I d^{2}=\) constant

Substitution correct
\(1.1 \mathrm{~m}(1.07 \mathrm{~m})\)
OR
calculate P [11.5]
\(2^{\text {nd }}\) substitution correct
\(1.1 \mathrm{~m}(1.07 \mathrm{~m})\)
(b) Electron energy and speed
(i) Use of \(W=Q V\) and \(1.60 \times 10^{-19} \mathrm{C}\)
\(1.04 \times 10^{-14}\) [no ue]
(ii) Use of \(1 / 2 m v^{2}\)

Correct substitution with \(9.11 \times 10^{-31} \mathrm{~kg}\)
\(1.51 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}\) [or 1.48 or 1.5 ]
(iii) Electron energy

Heat / Internal energy
X-rays
(iv) Target features

Rotates / Made of tungsten /
Copper heat sink / oil-cooled

(c) Ultrasound image
(i) B-scan
(ii) Quality of written communication

Any four from:
- \((\mathrm{B}=)\) brightness
- Transducer and gel/oil/coupling medium
- Pulse goes in and comes out
- (Transducer) rocked / array
- Image: brighter areas (white areas) \(=(\) more \()\) reflections
(d)(i) Radioactive tracer terms
(Average) time for activity to half / half the radioactive atoms to disintegrate/decay

Time for biological processes / excretion to remove half of the tracer from body [not organ]

Time for activity to half due to (combination of) other two half lives / within patient [organ acceptable] OR equation and definition in words
(ii) Biological half life calculation
\(1 / t_{\mathrm{e}}=1 / t_{\mathrm{r}}+1 / t_{\mathrm{b}}\) [seen or implied]
Correct substitution
22 (21.8) days \(\left(2 \times 10^{6} \mathrm{~s}\right)\)
(iii) Decay curves

Two curves - start together on \(y\)-axis, do not cut \(x\)-axis [ \(\geq 50\) days needed]

Decay curve P below decay curve L
Half-lives of \(\sim 16\) and 60 days attempted (not 22 days)
(iv) Radiation type for tracer
\((\gamma)\) to penetrate skin / be detected outside body / by gamma camera
to minimise dose / damage / least ionisation to patient / cells / \(\checkmark\)
\(\checkmark \quad 2\) tissue

TOTAL```

