

advancing learning, changing lives

GCE Edexcel GCE Physics (6733/01)

Summer 2005

Mark Scheme (Results)

Edexcel GCE Physics (6733/01)

Notes on the Mark Schemes	1
Unit PHY3 (Topics) Mark Scheme	2

Notes on the Mark Schemes

- 1. *Alternative responses:* There was often more than one correct response to a particular question and these published mark schemes do not give *all* possible alternatives. They generally show only the schemes for the most common responses given by candidates. They are **not** model answers but indicate what the Examiners accepted in this examination.
- 2. *Error carried forward:* In general, an error made in an early part of a question is penalised there but not subsequently, i.e. candidates are penalised once only, and can gain credit in later parts of a question by correct reasoning from an earlier incorrect answer.
- 3. *Quantity algebra:* The working for calculations is presented using quantity algebra in the mark schemes for Units PHY1, PHY2, PHY3 (Topics), PHY4, PHY5/01, and PHY6 but candidates are not required to do this in their answers.
- 4. *Significant figures:* Use of an inappropriate number of significant figures in the theory papers will normally be penalised only in "show that" questions where too few significant figures has resulted in the candidate not demonstrating the validity of the given answer. Use of an inappropriate number of significant figures will normally be penalised in the practical tests. In general candidates should nevertheless be guided by the numbers of significant figures in the data provided in the question.
- 5. *Unit penalties:* A wrong or missing unit in the answer to a calculation will generally lose one mark unless otherwise indicated.
- 6. *Quality of written communication:* Each theory paper will usually have 1 or 2 marks for the quality of written communication. The mark will sometimes be a separate mark and sometimes be an option in a list of marking points.

Within the schemes:

- / indicates alternative marking point
 - () brackets indicate words not essential to the answer
 - [] brackets indicate additional guidance for markers
- The following standard abbreviations are used:

a.e.	arithmetic error (–1 mark)
e.c.f.	error carried forward (allow mark(s))
s.f.	significant figures (-1 mark only where specified)
no u.e.	no unit error

6733/01 Unit Test PHY3 (Topics)

Topic A - Astrophysics

(a)	Base units of intensity		
(i)	$W = J s^{-1} / N m s^{-1}$ or $P = E / t$ or $P = F v$	\checkmark	
	$J = kg m^2 s^{-2} or kg m s^{-2} m$	✓	
	Algebra to kg s ⁻³ shown (e.g. kg m ² s ⁻² s ⁻¹ m ⁻²)	\checkmark	3
	Luminosity calculation		
(ii)	Correct substitution	1	
	3.82 or 3.8 [ignore 10 ⁿ]	• •	
	hence $3.8(2) \times 10^{26}$ W [ue] [allow 3.9 or 4]	√	3
(b)	CCD advantages		
(i)	Any three from:		
	 Higher (quantum) efficiency / more sensitive Detect fainter or more distant stars More linear response Digital / link to computer / remote imaging No processing time / use repeatedly / real-time imaging Quicker image collection (i.e. quicker & reason) Greater range of wavelengths 	$\sqrt{\sqrt{\sqrt{1}}}$	
(ii)	CCD disadvantage	✓	Max 4
	Resolution / pixel size larger		
(c)	Satellite advantages		
	Quality of written communication	\checkmark	
	No atmosphere (for radiation to pass through / above atmosphere)	✓	
	Idea of no absorption (of i.r.)	\checkmark	3
(d)	Forces within star		
(i)	1. Fusion forces [allow 'pressure from nuclear reactions' or	✓	
	 A. Gravitational / Weight (not just gravity) 	✓	
(ii)	Equal	\checkmark	3

(iii) White dwarf & red giant differences

Any three from:

		TOTAL	32
	$\Delta\lambda = 30$ nm (when rounded to 1 s.f.)	\checkmark	3
	530 nm or 500 nm [no ue]	\checkmark	
(iv)	Use of $\lambda_{(max)}T = 2.90 \times 10^{-3} \text{ m K}$	√	
	Wien's law		
	Hence 5800 – 5500 [or 330, 308, 310]	√	4
	Hence 5500 (K) [no ecf]	√	
	Correct substitution [ecf]	√	
(iii)	$L = \sigma T^4 A$ (or implied)	√	
	Show temperature change		
	$5.5 \times 10^{18} \text{ m}^2 / 5.5 \text{ x} 10^{12} \text{ km}^2$	\checkmark	4
(ii)	1.06^2 used	\checkmark	
	$2.8 \ge 10^{26} \text{ W}$	√	
(i)	Attempted use of $L_{\odot} = 1.4 L$	\checkmark	
(e)	When Sun was formed		
	Must be > 1.4 M_{\odot} or < 2.5 M_{\odot}	\checkmark	2
	Core remnants' mass	\checkmark	
(iv)	Neutron star		
	[no numerical values for any property - max 2/3)		
	 Temperature: T_{wd} (6000K - 30000K) > T_{rg} (2000K - 5000K) Volume: V_{rg} > V_{wd} - allow A / d / r / bigger Mass: e.g. M_{wd} < 1.4 M_o AND (0.4M_o <) M_{rg} < 8m_o Fusion (of He / heavier elements) in rg / no fusion in wd Luminosity: L_{rg} [10² - 10⁶] > L_{wd} [10⁻² - 10⁻⁴] in terms of L_o Wd is (core) remnant of rg / rg before wd stage Density: ρ_{wd} > ρ_{rg} 	$\checkmark\checkmark\checkmark$	Max 3

Topic B - Solid Materials

(a)	Base units of energy density		
(i)	$J m^{-3} $ or $N m^{-2}$	\checkmark	
	$J = kg m^2 s^{-2}$ or $N = kg m s^{-2}$	\checkmark	
	Algebra to kg m ⁻¹ s ⁻² shown (i.e. kg m ² s ⁻² m ⁻³ or kg m s ⁻² m ⁻²)	\checkmark	3
(ii)	Energy density calculation		
	200×10^6 used	\checkmark	
	Energy density = $\frac{1}{2} \sigma \varepsilon$ (or implied)	\checkmark	
	Correct substitution to 95 000 [no ue]	\checkmark	3
(b)	Rubber band graph		
(i)	Clear labels (or arrows up <u>&</u> down)	✓	1
(ii)	Hysteresis	✓	1
	Maximum stress		
(iii)	Use of F/A with 12 (N)	✓	
	$2 \times 10^{6} \text{ Pa} / \text{N m}^{-2}$ [ue, no ecf]	\checkmark	2
(iv)	Internal energy gain		
	Any attempt at area / $0.5 F x$	✓	
	Correct values approximated [ignore 10 ⁿ] [allow counting squares] [ecf]	\checkmark	
	$(\frac{1}{2} \times)$ 12 N × 500 × 10 ⁻³ or counted squares conversion to energy (1cm ² : 0.2 J)	✓	
	3 J [when rounded to 1sf, ue, no ecf]	\checkmark	4
(v)	Hence show loop area		
	Attempt at loop area / attempt at area under unloading line	\checkmark	
	Hence working to show 1 J	\checkmark	2
	Mechanism		
(vi)	Creep	\checkmark	1

Hooke's law

		TOTAL	32
	Describe bonds between chains		-
	Polythene / Polymer chains / long molecules [may be as a label in diagram]	v √	4
	Diagram showing cross-links	•	
	Quality of written communication	v	
(d)	Cross-linked polymers	1	
	$3.0 \times 10^{-4} \text{ m}$	\checkmark	4
	 S.I. conversion of d and l σ = F / A and ε = Δl / l [or E = F l / A Δl (may be implied)] Any use of E = σ / ε [or use of E = F l / A Δl, allow incorrect A] Correct use of πr² / ¼πd² (no 10ⁿ penalty) 	$\checkmark \checkmark \checkmark$	
	Any three from:		
(ii)	Extension calculation		
	[-1 per error if more than two properties circled]		
	Stiff	\checkmark	2
	Brittle	\checkmark	
(c)(i)	Glass properties	\checkmark	4
	Accuracy technique (eye-level, clamp ruler, use set-square)		
	Ruler and masses/weights, both labelled	\checkmark	
	Clamp and rubber band, both labelled	\checkmark	
(viii)	Valid diagram	\checkmark	
	Force-extension apparatus		
	[OR may be $F = k\Delta x$ with symbols defined]	\checkmark	1
(vii)	(Loading) force is proportional to extension		

Topic C - Nuclear and Particle Physics

(a)	Base units of eV		
(i)	Reference to joule	\checkmark	
	Useful energy equation / units shown [e.g. $\frac{1}{2}mv^2$, mgh, mc ² , Fd, not	\checkmark	
	QV or Pt]		
	Algebra to $J = kg m^2 s^{-2}$ shown (e.g. $kg (m s^{-1})^2$ or $kg m s^{-2} m$)	\checkmark	3
(ii)	Energy released		
	146 shown or used	\checkmark	
	Δm calculation [1.9415, ecf]	\checkmark	
	Multiply by 930 [allow $E = mc^2$ with mass in kg]	✓	
	1800 MeV [no ue]	\checkmark	4
(b)	Nuclear forces		-
	Strong (nuclear)	✓	
	Electromagnetic (not electrostatic)	\checkmark	
	Nucleons or neutrons and protons for strong AND protons for	\checkmark	
	elcetromagnetic		
	Within nucleus, infinite/beyond nucleus [allow inverse square law]	\checkmark	4
(c)(i)	<u>N-Z plot</u>		
	α - top right [above and to right of N=100 intersect with plot]	\checkmark	
	β^- - above plots AND β^+ - below plots	\checkmark	
	Both β regions near [< 5 mm] stability line [ecf if β swapped]	\checkmark	3
(ii)	Central region		
	Quality of written communication	\checkmark	
	Region of stability / nuclei do not decay in stable region	\checkmark	
	Nuclei decay to / move to this region	\checkmark	3

		TOTAL	32
	3. due to charge conservation	\checkmark	1
(vi)	$\underline{\Sigma}^+$ decay		
	Charge conservation requires negative particle	\checkmark	2
(v)	Change in quark flavour / strangeness not conserved	\checkmark	
(iv)	Exchange particle	\checkmark	1
	<u>W⁻ particle</u>		
(iii)	proton / H^+ / hydrogen nucleus / Δ^+ [mark is dependent on seeing uud on X in diagram]	✓	1
	d and ū	\checkmark	2
(ii)	First u and W^-	\checkmark	
	<u>Diagram</u>		
	Q: $1 = 1 + 0$	\checkmark	2
	B: $1 = 1 + 0$	\checkmark	
(e)(i)	Conservation laws		
	no hadrons 1 mark out of 2 and vice versa]		4
	[only penalise once for including meson] [if both baryon correct bu	ıt	-
	v: lepton only	\checkmark	
	β^+ : lepton and antimatter only	\checkmark	
	neutron: baryon and hadron only	\checkmark	
	Proton: baryon and hadron only	\checkmark	
(ii)	Tick the boxes		
	$^{0}_{1}\beta^{+}$ and $^{0}_{0}\nu$	\checkmark	2
	$^{1}_{1}$ p and $^{1}_{0}$ n	\checkmark	
(d)(i)	Decay numbers		

Topic D - Medical Physics

(a)	Base units of intensity		
(i)	$W = J s^{-1} / N m s^{-1}$ or $P = E / t$ or $P = F v$	✓	
	$J = kg m^2 s^{-2} or kg m s^{-2} m$	\checkmark	
	Algebra to kg s ⁻³ shown (e.g. kg m ² s ⁻² s ⁻¹ m ⁻²)	\checkmark	3
	Inverse square law		
(ii)	(Use of) Id^2 = constant	\checkmark	
	Substitution correct	\checkmark	2
	1.1 m (1.07 m)	✓	3
	OR		
	calculate P [11.5]	\checkmark	
	2 nd substitution correct	\checkmark	
	1.1 m (1.07 m)	\checkmark	
(b)	Electron energy and speed		
(i)	Use of $W = QV$ and 1.60×10^{-19} C	\checkmark	
	1.04×10^{-14} [no ue]	\checkmark	2
(ii)	Use of $\frac{1}{2}mv^2$	\checkmark	
	Correct substitution with 9.11×10^{-31} kg	✓	
	1.51×10^8 m s ⁻¹ [or 1.48 or 1.5]	\checkmark	3
(iii)	Electron energy		
	Heat / Internal energy	\checkmark	
	X-rays	\checkmark	2
(iv)	Target features		
	Rotates / Made of tungsten / Copper heat sink / oil-cooled	$\checkmark\checkmark$	7
(c)	Ultrasound image		4

- (i) B-scan
- (ii) Quality of written communication

Any four from:

- (B =) brightness
- <u>Transducer</u> and gel/oil/coupling medium
- <u>Pulse</u> goes in and comes out
- (Transducer) rocked / array
- Image: brighter areas (white areas) = (more) reflections

(d)(i) Radioactive tracer terms

(Average) time for activity to half / half the radioactive atoms to disintegrate/decay

1

5

3

3

3

VVV

 \checkmark

1

Time for biological processes / excretion to remove half of the \checkmark tracer <u>from body [not organ]</u>

Time for activity to half due to (combination of) other two half \checkmark lives / within patient [organ acceptable] <u>OR</u> equation and definition in words

(ii) <u>Biological half life calculation</u>

$1/t_e = 1/t_r + 1/t_b$ [seen or implied]	\checkmark

Correct substitution

22 (21.8) days (2×10^6 s)

(iii) <u>Decay curves</u>

Two curves - start together on *y*-axis, do not cut *x*-axis [\geq 50 days \checkmark needed]

Decay curve P below decay curve L

Half-lives of ~ 16 and 60 days attempted (not 22 days)

(iv) <u>Radiation type for tracer</u>

	TOTAL	32
to minimise dose / damage / least ionisation to patient / cells / tissue	\checkmark	2
(γ) to penetrate <u>skin</u> / be detected <u>outside body</u> / by gamma camera	\checkmark	