

GCE Edexcel GCE Physics (6732/01)

Summer 2005

Mark Scheme (Results)

advancing learning, changing lives

Edexcel GCE Physics (6732/01)

Notes on the Mark Schemes	1
Unit PHY2 Mark Scheme	2

Notes on the Mark Schemes

- 1. *Alternative responses:* There was often more than one correct response to a particular question and these published mark schemes do not give *all* possible alternatives. They generally show only the schemes for the most common responses given by candidates. They are **not** model answers but indicate what the Examiners accepted in this examination.
- 2. *Error carried forward:* In general, an error made in an early part of a question is penalised there but not subsequently, i.e. candidates are penalised once only, and can gain credit in later parts of a question by correct reasoning from an earlier incorrect answer.
- 3. *Quantity algebra:* The working for calculations is presented using quantity algebra in the mark schemes for Units PHY1, PHY2, PHY3 (Topics), PHY4, PHY5/01, and PHY6 but candidates are not required to do this in their answers.
- 4. *Significant figures:* Use of an inappropriate number of significant figures in the theory papers will normally be penalised only in "show that" questions where too few significant figures has resulted in the candidate not demonstrating the validity of the given answer. Use of an inappropriate number of significant figures will normally be penalised in the practical tests. In general candidates should nevertheless be guided by the numbers of significant figures in the data provided in the question.
- 5. *Unit penalties:* A wrong or missing unit in the answer to a calculation will generally lose one mark unless otherwise indicated.
- 6. *Quality of written communication:* Each theory paper will usually have 1 or 2 marks for the quality of written communication. The mark will sometimes be a separate mark and sometimes be an option in a list of marking points.

Within the schemes:

- / indicates alternative marking point
 - () brackets indicate words not essential to the answer
 - [] brackets indicate additional guidance for markers
- The following standard abbreviations are used:

a.e.	arithmetic error (–1 mark)
e.c.f.	error carried forward (allow mark(s))
s.f.	significant figures (-1 mark only where specified)
no u.e.	no unit error

6732 Unit Test PHY2

1. <u>Circuits</u>

	Base unit: Derived quantity: Derived unit: Base quantity: [If two answers are g to gain the mark]	ampere OR amperes OR amp OR amps charge OR resistance volt OR volts OR ohm OR ohms current iven to any of the above, both must be correct	$\begin{array}{c} \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \end{array}$	4
2.(a)	Io and Jupiter: Time	aken for electrons to reach Jupiter		
	$t = s/\upsilon = (4.2 \times 10^8 \mathrm{m})$	$h)/(2.9 \times 10^7 \text{ m s}^{-1}) = 14.48 \text{ s}^{-1}$		
	Correct substitution in	n $v = s/t$ (ignore powers of ten)	\checkmark	
	Answer: 14.48 s, 14.5	5 s [no ue]	\checkmark	2
(b)	Estimate of number of	<u>f electrons</u>		
	Q = ne = It			
	n = It/e			
	$n = (3.0 \times 10^6 \text{ A}) (1\text{s})$	$/(1.6 \times 10^{-19} \text{ C})$		
	Use of $ne = It$		\checkmark	
	$(1.8 - 2.0) \times 10^{25}$		\checkmark	2
(c)	Current direction			
	From Jupiter (to Io) /	to Io / to the moon	\checkmark	1
			-	5

3.(a) <u>p.d. across 4 Ω resistor</u>

$$1.5 (A) \times 4 (\Omega)$$

$$= 6 V \qquad \checkmark \qquad 1$$

 \checkmark

 \checkmark

 \checkmark

 \checkmark

 \checkmark

 \checkmark

 \checkmark

 \checkmark

2

3

6

(b) <u>Resistance R_2 </u>

Current through $R_2 = 0.5 A$

$$R_2 = \frac{6 (V)}{0.5 (A)}$$

 $R_2 = 12 \Omega$ [allow ecf their pd across 4 Ω]

(c) <u>Resistance R_1 </u>

p.d. across $R_1 = 12 - 6 - 4$

$$= 2 V$$

Current through $R_1 = 2 A$

$$R_1 = \frac{2 (V)}{2 (A)} = 1\Omega$$

[allow ecf of pd from (a) if less than 12 V]

Alternative method

Parallel combination = 3Ω

Circuit resistance = 12(V)/2 (A) = 6Ω

 $R_1 = 6 - (3 + 2) = 1 \Omega$ [allow ecf of pd from (a) and R from (b)] 4.(a) <u>Current in filament lamp</u>

P = VI or correct rearrangement

2 A

(b)(i) <u>Sketch graph</u>

Correct shape for their axes

-*I*-*V* quadrant showing fair rotational symmetry

(ii) <u>Explanation of shape</u>

(As the voltage/p.d. increases), current also increases	\checkmark
(As the current increases), temperature of lamp increases	✓
(This leads to) an increase in resistance of lamp	\checkmark
so equal increases in V lead to smaller increases in I OR rate of increase in current decreases OR correct reference to their correct gradient	\checkmark
[If a straight line graph was drawn though the origin then $\checkmark \times \times \checkmark$ for the following:	
<i>V</i> is proportional to <i>R</i> therefore the graph has a constant gradient]	

 \checkmark

 \checkmark

 \checkmark

 \checkmark

2

2

4

8

5.(a)(i) Graph

			11
	Reference to insulating properties of mug	✓	Max 2
	Hence reduced rate of temperature rise [consequential mark]	\checkmark	
	Reference of need to heat mug	\checkmark	
(ii)	Explanation		
	initially below given graph (consequential mark)	\checkmark	2
(i)	Curve of reducing gradient starting at 20 °C, 0 s	\checkmark	
(c)	<u>Graph</u>		
	(rate of) <u>energy</u> lost to the <u>surroundings</u> OR due to evaporation[do not credit boiling] approaches (rate of) energy supply OR increases with temperature difference.	\checkmark	2
(b)	Heating process		
	[no ecf from gradient]		
	Value for rate within acceptable range $18 - 50 \text{ W}$ or $1100 - 3000 \text{ J min}^{-1}$	✓	3
	Converts g to kg	\checkmark	
	Formula $\Delta Q / \Delta t = mc \Delta T / \Delta t$ used	\checkmark	
(ii)	Power of heater		
	Value calculated with units in K s ⁻¹ / K min ⁻¹ / $^{\circ}$ C s ⁻¹ / $^{\circ}$ C min ⁻¹ Range 0.07 – 0.18 K s ⁻¹ or 4.4 – 11.0 K min ⁻¹	✓	2
	Attempt to find gradient at start of graph ie over 11 °C rise or less	\checkmark	

6.(a)(i)	Definition of quantities		
	nnumber of molesRmolar gas constant	\checkmark	2
(ii)	Meaning of the temperature absolute zero		
	Temperature at which pressure [or volume] of a gas is zero		
	OR		
	temperature at which kinetic energy of molecules is zero	\checkmark	1
(b)	Number of moles of gas		
	Use of $pV = nRT$	\checkmark	
	$n = \frac{1.1 \times 10^{5} (\text{Pa}) \times 60 (\text{m}^{3})}{8.31 (\text{J K}^{-1} \text{mol}^{-1}) 298 (\text{K})}$		
	= 2665 moles		
	Conversion to kelvin	\checkmark	
	Answer	√	3
			6

7.(a)(i) <u>Replacement</u>

 V_1

(ii)	Expl	anation
	-	

(b)

(i)

(ii)

[ONE pair of marks]

Resistance: resistance of \underline{V}_1 [not just the voltmeter] is much larger than 100 Ω OR combined resistance of parallel combination is \checkmark approximately 100 Ω

 \checkmark

1

Voltage: p.d. across V_1 is much greater than p.d. across 100 Ω OR \checkmark all 9 V is across V_1

OR

Current: no current is flowing in the circuit / very small current	\checkmark	
Resistance: because V_1 has infinite/very large resistance	\checkmark	
OR (Correct current calculation 0.9 x 10 $^{-6}$ A and) correct pd calculation 90 x 10 $^{-6}$ A This is a very small/negligible pd	√ √	2
Circuit diagram		
V_1 or equivalent resistor symbol labelled 10 M Ω	\checkmark	
$\overline{V_2}$ or equivalent resistor symbol labelled 10 M Ω	\checkmark	2
[They must be shown in a correct arrangement with R]		
Value of <i>R</i>		
6 (V): 3 (V) = 10 (M Ω): 5 (M Ω) / R_{total} of parallel combination is 5 M Ω	\checkmark	
$1/5 (M\Omega) = 1/10 (M\Omega) + 1/R$ OR some equivalent correct substitution to show working	\checkmark	
$R = 10 \text{ M}\Omega$	\checkmark	3
		8

8.(a) <u>Terms in efficiency equation</u>

- T₁: temperature of <u>hot reservoir/hot source</u>
- T₂: temperature of <u>cold reservoir/cold sink</u>

Reference to kelvins/absolute

(b)(i) <u>Calculation of initial temperature</u>

$$E = 1 - \frac{T_2}{T_1}$$
$$\frac{T_2}{T_1} = 1 - E = 1 - 0.53$$
$$T_1 = \frac{373 \text{ (K)}}{0.47}$$

Max 2

 \checkmark

 \checkmark

 \checkmark

$$T_1 = 794 \text{ K}/521 \text{ °C}$$

(ii)

Substitution into equation [no rearranging] E and $T_1 ignore \ powers \ \checkmark \ of 10$

Use of 373 K	\checkmark	•
Answer	\checkmark	3
Improvement of efficiency of power station		
Increase value of T_1 / reduce value of T_2 / increase temperature difference	\checkmark	1
[ecf their terms for T_1/T_2]	-	6

9.(a) <u>Smoke particles</u>

(b)

Smoke particles/bright specks moving randomly/irregularly	\checkmark	
[Ensure it is <i>not</i> air]		
Motion is due to collisions with <u>air molecules / gas molecules</u>	\checkmark	
Any one further comment from:		
 air molecules cannot be seen / invisible uneven collisions produce / resultant force produced air molecules have high speed (in order to be able to move 		
heavier smoke particles)	\checkmark	
Quality of written communication	\checkmark	4
Diagram		
Path that has		
different length straight sections (min of 5)	\checkmark	
different directions	\checkmark	2
	-	6