GCE

Edexcel GCE
Physics (6731/ 01)

Summer 2005

Mark Scheme (Results)

Contents

Notes on the Mark Schemes 1
Unit PHY1 Mark Scheme 2

Notes on the Mark Schemes

1. Alternative responses: There was often more than one correct response to a particular question and these published mark schemes do not give all possible alternatives. They generally show only the schemes for the most common responses given by candidates. They are not model answers but indicate what the Examiners accepted in this examination.
2. Error carried forward: In general, an error made in an early part of a question is penalised there but not subsequently, i.e. candidates are penalised once only, and can gain credit in later parts of a question by correct reasoning from an earlier incorrect answer.
3. Quantity algebra: The working for calculations is presented using quantity algebra in the mark schemes for Units PHY1, PHY2, PHY3 (Topics), PHY4, PHY5/01, and PHY6 but candidates are not required to do this in their answers.
4. Significant figures: Use of an inappropriate number of significant figures in the theory papers will normally be penalised only in "show that" questions where too few significant figures has resulted in the candidate not demonstrating the validity of the given answer. Use of an inappropriate number of significant figures will normally be penalised in the practical tests. In general candidates should nevertheless be guided by the numbers of significant figures in the data provided in the question.
5. Unit penalties: A wrong or missing unit in the answer to a calculation will generally lose one mark unless otherwise indicated.
6. Quality of written communication: Each theory paper will usually have 1 or 2 marks for the quality of written communication. The mark will sometimes be a separate mark and sometimes be an option in a list of marking points.

Within the schemes:

- / indicates alternative marking point
() brackets indicate words not essential to the answer
[] brackets indicate additional guidance for markers
- The following standard abbreviations are used:
a.e. arithmetic error (-1 mark)
e.c.f. error carried forward (allow mark(s))
s.f. significant figures (-1 mark only where specified)
no u.e. no unit error

6731 Unit Test PHY1

1.

Unit	Physical Quantity
$\mathrm{m} \mathrm{s}^{-1}$	Velocity
$\mathrm{m} \mathrm{s}^{-2}$	Acceleration / deceleration
$\mathrm{kg} \mathrm{m}^{-3}$	Density
N m	Moment / energy / (gravitational)potential energy / kinetic energy/heat/work (done) / torque
$\mathrm{kg} \mathrm{m} \mathrm{s}^{-1}$	Momentum / impulse
$\mathrm{N} \mathrm{m} \mathrm{s}^{-1}$	Power

2. (a) Free body force diagram for magnet

(b) Newton's third law pairs

Force	Body on which corresponding force acts	Direction of the corresponding force
Contact	(Wooden) stand/base	Downwards / down / \downarrow
Magnetic	(Magnet) M ${ }_{1}$	$\checkmark \checkmark$
Weight	Earth / Earth's surface	Upwards / up / \uparrow
\checkmark		

3. (a) Principle of moments

In equilibrium
sum of clockwise moment (about any point) is equal to sum of anticlockwise moment (about that point)
(b)(i) Weight

Use of "width x thickness x length"
Use of "density = mass"
volume
Correct value
$V=1.2 \times 0.6 \times 200\left(\mathrm{~cm}^{3}\right)=144\left(\mathrm{~cm}^{3}\right)$
Using $\rho=\frac{m}{V}, m=8\left(\mathrm{~g} \mathrm{~cm}^{-3}\right) \times 144\left(\mathrm{~cm}^{-3}\right)=1152 \mathrm{~g}$
Weight $=m g=1152 \times 10^{-3}(\mathrm{~kg}) \times 9.81\left(\mathrm{~m} \mathrm{~s}^{-2}\right)=11.3(\mathrm{~N}) / 12$ (N)
(ii) Force F

Correct substitution into correct formula
Correct value with correct unit
$F \times 60(\mathrm{~cm})=11.3(\mathrm{~N}) \times 40(\mathrm{~cm}) / 12(\mathrm{~N}) \times 40(\mathrm{~cm}) / 11(\mathrm{~N}) \times 40$
(cm)
$=7.5 \mathrm{~N} / 8 \mathrm{~N} / 7.3 \mathrm{~N}$
(iii) Force R
$18.3 \mathrm{~N} / 18.8 \mathrm{~N} / 20 \mathrm{~N}$
(iv) Sketch graph

Any line upwards
Correct shape for F [concave shaped curve]
\checkmark
1
4. (a) Moment

Correct substitution into correct formula

Correct value with correct unit
Moment $=$ force \times distance
$=1 \times 10^{-4}(\mathrm{~kg}) \times 9.81\left(\mathrm{~N} \mathrm{~kg}^{-1}\right) \times 5 \times 10^{-2}(\mathrm{~m})$
$=4.9 \times 10^{-5} \mathrm{~N} \mathrm{~m}$
(b) Work done

Correct substitution of a distance and weight into correct formula
Calculation of distance
Correct value

Work done $=$ force \times distance in the direction of the force EITHER
Use circumference $=2 \pi r$
whence distance $=\frac{2 \pi 5 \times 10^{-2}}{60}=5.2 \times 10^{-3}(\mathrm{~m})$
OR
Use $\sin 6^{\circ}=\frac{\text { distance }}{5 \times 10^{-2}}$
whence distance $=5 \times 10^{-2} \times 0.1045=5.2 \times 10^{-3}(\mathrm{~m})$
Work done $=1 \times 10^{-4}(\mathrm{~kg}) \times 9.81\left(\mathrm{~N} \mathrm{~kg}^{-1}\right) \times 5.2 \times 10^{-3}(\mathrm{~m})=$ $5.1 \times 10^{-6}(\mathrm{~J})$
OR
Use $\tan 6^{\circ}=\frac{\text { distance }}{5 \times 10^{-2}}$
whence distance $=5 \times 10^{-2} \times 0.1051=5.3 \times 10^{-3}(\mathrm{~m})$
Work done $=1 \times 10^{-4}(\mathrm{~kg}) \times 9.81\left(\mathrm{~N} \mathrm{~kg}^{-1}\right) \times 5.3 \times 10^{-3}(\mathrm{~m})$

$$
=5.2 \times 10^{-6}(\mathrm{~J})
$$

(c) Comparison

No work is done on the hand to move it horizontally (so value is less) / as movement is perpendicular to force / distance moved in direction of force is zero/less / moment is smaller.
(d) Average power

Identifying "power = work done / energy" time

Correct value with correct unit
Centre of gravity raised by $10 \times 10^{-2}(\mathrm{~m})$
Work done $=1 \times 10^{-4}(\mathrm{~kg}) \times 9.81\left(\mathrm{~N} \mathrm{~kg}^{-1}\right) \times 10 \times 10^{-2}(\mathrm{~m})$
$=9.81 \times 10^{-5}(\mathrm{~J})$
Average power $=\frac{\text { work done }}{\text { time taken }}=\frac{9.81 \times 10^{-5}(\mathrm{~J})}{30(\mathrm{~s})}=3.3 \times 10^{-6} \mathrm{~W}$
(e) Different design

Less/zero work done / less friction / less wear on the mechanism the c of $\mathrm{g} /$ weight is not raised OR less/zero moment OR (hand is) balanced/in equilibrium
5. (a) Explanation
V_{b} has a horizontal component equal to V_{a}
V_{b} has a vertical component
[V_{b} has two components of velocity is 1 mark]
[$V_{\mathrm{b}} \cos 45=V_{\mathrm{a}}$ is 2 marks]
(b) Explanation

EITHER
QowC
The average speed / velocity of A is greater (than B) / converse
(because) A continually accelerates whereas B slows down / decelerates (initially)
[description of both A and B necessary for this $2^{\text {nd }}$ physics mark]
OR
QoWC
$V_{\mathrm{a}}=$ horizontal component of V_{b} and they travel the same
horizontal distance
Vertical component of projectile's motion does not affect
(\checkmark) horizontal motion
6. (a) Energy change

Both parts correct [NB 1 mark only]
Gravitational potential (energy) to kinetic / movement (energy) / work done
(b) Principal of conservation of energy

EITHER
Energy can be neither created nor destroyed
OR
Energy cannot be created/destroyed / total energy is not (\checkmark) lost/gained
merely transformed from one form to another / in a closed/isolated system
(c) Speed of water

Correct substitution into correct formula
Correct value with correct unit
Power $=$ force \times velocity
$1.7 \times 10^{9}(\mathrm{~W})=3.5 \times 10^{8}(\mathrm{~N}) \times V$
$V=4.86 \mathrm{~m} \mathrm{~s}^{-1}$
(d) Explanation

Not all the energy of the falling water is transferred to the output power OR system is not 100% efficient OR water is not brought to rest OR friction OR some of the energy is transferred to heat/sound/surroundings.
(e) Time

Correct value with correct unit.
Time $=\frac{7 \times 10^{6}\left(\mathrm{~m}^{3}\right)}{390\left(\mathrm{~m}^{3} \mathrm{~s}^{-1}\right)}=17949 \mathrm{~s}(=299 \mathrm{~min})(=5 \mathrm{~h})$

(f) Work done

Correct substitution into correct formula to find mass of water Identifying
"work done $=$ force x distance moved in direction of force"
Correct value with correct unit
Mass of water $=$ volume \times density

$$
=7 \times 10^{6}\left(\mathrm{~m}^{3}\right) \times 10^{3}\left(\mathrm{~kg} \mathrm{~m}^{-3}\right)\left(=6.9 \times 10^{9} \mathrm{~kg}\right)
$$

Work done $=$ force \times distance
Work done $=6.9 \times 10^{9}(\mathrm{~kg}) \times 9.81\left(\mathrm{~ms}^{-2}\right) \times 500(\mathrm{~m})$
$=3.43 \times 10^{13} \mathrm{~J}$

7.(a)(i) Complete equation

Correct identification of ${ }_{2}^{4}$ for α

Correct substitution
${ }_{13}^{27}$ OR correct values which balance the candidate's equation
(ii) Completion of $2^{\text {nd }}$ equation
${ }_{1}$
Correct identification of positron / positive (+ ve) electron / $\beta^{+} /$ antielectron
[If incorrectly given ${ }_{-1}^{0}$ allow electron $/ \beta^{-}$ie 1 mark]
[Correct spelling only]
(b) Half-life

Average
Time taken for the activity/intensity/count rate to drop by half OR time taken for half the atoms/nuclei to decay
[NOT mass, count, particles, radioisotope, sample]

Isotope

Same: proton number / atomic number
[Not same chemical properties]
Different: neutron number / nucleon number / mass number
Max 3 [Not different physical properties/density]
(c) γ-ray emission

EITHER
OR
(The loss of a helium The nucleus emits its surplus nucleus/electron has left the energy (in the form of a quantum remaining) nucleus in an of γ-radiation)
excited state/with a surplus of energy
8. (a) Inelastic scattering

Kinetic energy is not conserved / (some) kinetic energy is 'lost'
(b) Structure

There are point charges/quarks/smaller particles within the nucleon OR mass not uniform
(c) Quantity conserved

Momentum / energy / charge / mass
\checkmark
1
(d) No information

Electron was repelled (by the (outer) electron shell(s)) OR \checkmark 1 captured to make an ion.

