
ELECTRIC FIELD & CAPACITOR MODEL SOLUTION

1.

Electric field, E = V / d= 2000 / 10 X 10⁻³ = <u>2.0 X 10⁵ V m⁻¹</u>

Electric force, F = QE = $[2 \times 1.6 \times 10^{-19}][2.0 \times 10^{5}]$ = <u>6.4 × 10^{-14 N</u>

2. Capacitors in Parallel Charge on C₁, Q = CV = $12\mu X 6$ = $\underline{72\mu C}$

Energy $= \frac{1}{2} CV^2$ $= \frac{1}{2} X 12\mu X 6^2$ $= 216 \mu J$

Capacitors in Series Charge on C₂, Q = CV = $[12^{-1} + 12^{-1}]^{-1} \mu X 6$ = <u>36 \muC</u>

Total energy stored on C_1 and $C_2 = \frac{1}{2} [12^{-1} + 12^{-1}]^{-1} \mu \ge 6^2$ =108 μJ

PREPARED BY MR.DERYK NG UCSI UNIVERSITY A LEVEL ACADEMY