ELECTRIC FIELD \& CAPACITOR MODEL SOLUTION

JUNE 2002

$$
\text { 3. } \begin{aligned}
\text { Charge, } \mathbf{Q} & =\mathbf{C V} \\
& =20 \mu \times 6000 \\
& =\underline{\mathbf{0 . 1 2} \mathbf{C}}
\end{aligned}
$$

$$
\text { Energy, } \begin{aligned}
\mathbf{E} & =1 / 2 \mathbf{C V}^{2} \\
& =1 / 2 \times 20 \mu \times 6000^{2} \\
& =\underline{\mathbf{3 6 0 ~ J}}
\end{aligned}
$$

$$
\text { Resistance, } \begin{aligned}
\mathrm{R} & =\mathrm{V} / \mathbf{I} \\
& =\mathbf{6 0 0 0} / 40 \\
& =\underline{\mathbf{1 5 0 \Omega}}
\end{aligned}
$$

$$
\text { Time, } \begin{aligned}
\mathbf{t} & =\mathbf{Q} / \mathbf{I} \\
& =\mathbf{0 . 1 2} / 40 \\
& =\underline{\mathbf{3 . 0} \times 10^{-3} \mathrm{~s}}
\end{aligned}
$$

In practice the time for discharge is longer than this calculated time because the rate of discharge decreases with time.

W

At equilibrium,
Vertically, $\mathbf{W}=\mathbf{T} \boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}$
Horizontally, $\mathbf{F}=\mathbf{T} \boldsymbol{\operatorname { s i n }} \boldsymbol{\theta}$
$F / W=\tan \theta$
Therefore $\mathbf{F}=\mathbf{W} \tan \boldsymbol{\theta}$
$\mathbf{F}=\mathbf{k Q q} / \mathbf{r}^{2}$
$\mathrm{Fr}^{2}=$ constant
For $\mathbf{r}=36 \times 10^{-3} \mathrm{~m}$

$$
\begin{aligned}
F\left[36 \times 10^{-3}\right]^{2} & =\left[142 \times 10^{-3}\right]\left[18 \times 10^{-3}\right]^{2} \\
F & =[18 / 36]^{2}\left[142 \times 10^{-3}\right]
\end{aligned}
$$

$$
=35.5 \times 10^{-3} \mathrm{~N}
$$

For $\mathrm{r}=27 \times 10^{-3} \mathrm{~m}$

$$
\begin{aligned}
F\left[27 \times 10^{-3}\right]^{2} & =\left[142 \times 10^{-3}\right]\left[18 \times 10^{-3}\right]^{2} \\
F & =[18 / 27]^{2}\left[142 \times 10^{-3}\right] \\
& =\underline{63.1 \times 10^{-3} \mathrm{~N}}
\end{aligned}
$$

It was necessary for the student to take measurements quickly using this arrangement because of the discharging of charge.

PREPARED BY MR.DERYK NG

UCSI UNIVERSITY
A LEVEL ACADEMY

