ELECTRIC FIELD & CAPACITOR MODEL SOLUTION

JUNE 2002

3. Charge, Q = CV = $20\mu \times 6000$ = 0.12 CEnergy, E = $\frac{1}{2} CV^2$ = $\frac{1}{2} X 20\mu \times 6000^2$ = 360 JResistance, R = V / I = 6000 / 40= 150Ω Time, t = Q / I = 0.12 / 40= $3.0 \times 10^{-3} s$

In practice the time for discharge is longer than this calculated time because the rate of discharge decreases with time.

At equilibrium, Vertically, $W = T \cos \theta$ Horizontally, $F = T \sin \theta$ $F / W = \tan \theta$ Therefore $F = W \tan \theta$

 $F = kQq / r^2$ Fr² = constant

For $r = 36 \times 10^{-3} m$

 $F [36 X 10^{-3}]^2 = [142 X 10^{-3}][18 X 10^{-3}]^2$ $F = [18/36]^2 [142 X 10^{-3}]$ = <u>35.5 X 10⁻³ N</u>

For $r = 27 \times 10^{-3} m$

 $F [27 X 10^{-3}]^{2} = [142 X 10^{-3}][18 X 10^{-3}]^{2}$ $F = [18/27]^{2} [142 X 10^{-3}]$ $= \underline{63.1 X 10^{-3} N}$

It was necessary for the student to take measurements quickly using this arrangement because of the discharging of charge.

PREPARED BY MR.DERYK NG UCSI UNIVERSITY A LEVEL ACADEMY