1. No mark scheme available

2.	The list gives son International (SI)			<i>Underline</i> th	ose which are	base quantities of the	
	coulomb	force	<u>length</u>	mole	newton	temperature interval	(2 marks)
	Define the volt. Volt	= Joule/Cou	llomb or V	Vatt/Ampere			(2 marks)
	Use your definition Volt	on to express = J/C	the volt in	terms of base	units.		
		= kg m ² s ⁻	⁻² /A s				
		= kg m² s ^{_3}					(3 marks)
	Explain the differ Vect	ence betwee or has mag			tities		
	Scal	ar has magı	nitude only	/			(2 marks)
	Is potential differ Scal		or vector o	quantity?			
						[Tota	(1 mark) I 10 marks]
3.	written as the pro	duct of a nur	nber and a		-	f a physical quantity is	
	followed b	y the idea o	f multiplic	ation (1)			
							(2 marks)
	If the units	s on one side	e differ fro different k	m those on t	he other, the	nits if it is to be correct n the two sides of They cannot be	t.
							(1 mark)
		rect but hom	nogeneous	eneous, but st algebraic or sure =stress/	word equation	on : or 0)	
						[Tot	(2 marks) al 5 marks]

4. For each of the four concepts listed in the left hand column, place a tick by the correct example of that concept in the appropriate box.

	se quantity mole length 🖌 kilogram	7	
	se unit coulomb ampere \checkmark volt		
A sc	alar quantity torque velocity kinetic energy 🗸		
	ctor quantity mass weight \checkmark density		
		_ [Tota	l 4 mark
(a)	Straight line parallel to pipe	(1)	
	Two or more parallel lines	(1)	
	Muddled/swirly lines	(1)	
	to side of/all over pipe	(1)	
			(4 mark
(b)	Critical speed: Maximum speed for smooth flow/speed at which flow becomes turbulent	(1)	
		(1)	
	Initial quietness: Liquid is undisturbed/still/calm/not moving around (in tank whence it comes)	(1)	
	Boundary layer:	()	
	Liquid immediately/directly in contact with a surface/cylinder/boundary	(1)	<i>(</i> - .
			(3 mark
(c)	Re useful:		
	Flow of liquid along pipes	(1)	
	Flow of liquid past cylinder/pipe Common feature:	(1)	
	Roughness of pipe wall/cylinder surface OR reference to drag	(1)	
			(3 mark
(d)	μ must have same units as pvd	(1)	
	$\rho \text{ is } \text{kg } \text{m}^{-3}; v \text{ is } \text{m } \text{s}^{-1}; d \text{ is } \text{m} \qquad \text{All}$ $\therefore \mu \text{ is } \text{kg } \text{m}^{-1} \text{ s}^{-1} \qquad (\text{Allow e.c.f})$	(1) (1)	
	$N \equiv kg m s^{-2}$	(1)	
	: N s m ⁻² = (kg m s ⁻²) (sm ⁻²)= kg m ⁻¹ s ⁻¹	(1)	(E
			(5 mark
(e)	$v \propto \mu$ and $v \propto 1/\rho$ (Accept bald answers)	(1) (1)	
	Mercury has high ρ / tomato sauce has low ρ	(1)	
	Tomato sauce has high μ / mercury has low μ	(1)	
	\Rightarrow <i>v</i> mercury < <i>v</i> tomato sauce (no error carried forward)	(1)	(E mort
			(5 mark
(f)	(i) $\frac{\rho v d}{\mu} = \frac{(830 \text{ kg m}^{-3}) (0.42 \text{ m s}^{-1}) (0.16 \text{ m})}{9.6 \times 10^{-2} \text{ N s m}^{-2}}$	(1)	
	$\mu = 580$	(1)	
	(which is less than $\text{Re} = 1300$) \therefore smooth flow	(1)	
			(3 mark

5.

(ii)

(g)

Sketch: Section (vertical or horizontal) or 3D

Section (vertical or horizontal) or 3D	(1)
$\bigcirc \qquad \bigcirc \qquad$	
Calculation:	
Use of $F/l = 4C_{\rm D}\rho v^2 r$	(1)
$= 4 \times 5.0 \times (830 \text{ kg m}^{-3}) (0.42 \text{ m s}^{-1})^2 (0.01 \text{ m})$	(1)
$= 29 \text{ N m}^{-1}$	(1)
	(4 marks)
At $Re = 10$: viscous	(1)
At $Re = 1000$: inertial	(1)
When $Re = 10$, $C_D = 2$ to 4.	(1)
Graph:	
Reference to power/log/exponential	(1)
$\lg c_{\rm D} = \arg Re + b / c_{\rm D} = b Re^a$	(1)
Attempt to evaluate a or b	(1)
	(Max 5 marks)
	[Total 32 marks]

Classify each of the terms in the left-hand column by placing a tick in the relevant box. 6.

[Total 6 marks]

7.	(a)	(i)	Ion pair: Charged particles Positive and negative	(1) (1)	
		(ii)	Space charge: Region/area containing positively charged massive/slow-moving particles/ions	(1) (1)	
		(iii)	Dead time: Period/time when GM tube is insensitive to arrival of further particles	(1)	(5 marks)
			Avalanche: Electrons accelerate/gain energy causing ionisation idea of a cascade, e.g. chain reaction	(1) (1) (1)	(3 marks)
	(b)	Use $\alpha = \pi(1)$ = 41		(1) (1) (1) (1)	(4 marks)
		α-pa so th	culty: rticles easily stopped/have short range/are least penetrating in end windows needed forces/pressures are high	(1) (1) (1) (Ma	x 2 marks)

(c)	(i)	Thickness of mica = $(2 \times 10^{-2} \text{ kg m}^{-2}) \div (2800 \text{ kg m}^{-3})$ = 7.14 × 10 ⁻⁶ m Therefore number of molecules = 7.14 × 10 ⁻⁶ m ÷ 8.4 × 10 ⁻⁹ m = 850	(1) (1) (1) (1) (Max 3 ma	ırks)
	(ii)	α ionises more densely than β as it has twice the charge/is slower than β Therefore β penetrates more/gets through thicker windows than α	(1) (1) (1) (3 ma	ırks)
(d)	with	al lins/parallel lines arrows outwards arked/anode-cathode marked consistent with arrows	(1) (1) (1) (3 ma	ırks)
	F = 0	$\dot{P}2 \times 10^{-14} \text{ N}$	(1) (1) (1) (1) (4 ma	urks)
(e)	(i)	ln(r_a/r_c) no units/ $r_a \div r_c$ no units/ln is number $\varepsilon_0 l$ has unit F m ⁻¹ × m = F which is unit of capacitance	(1) (1) (1) (3 ma	ırks)
	(ii)	Time constant = RC = $(1 \times 10^5 \Omega) (10 \times 10^{-12} \text{ F})$ = $1 \times 10^6 \text{ s}$	(1) (1) (2 ma [Total 32 ma	

8.	Joule:	kg m ² s ⁻² (1)
	Coulomb:	Derived unit (1)
	Time:	Scalar quantity (1)
	Volt:	$W \times A^{-1}$ (1)

[Total 4 marks]

1

3

9. What is meant by "an equation is homogeneous with respect to its units": Each side/term has the same units

Equation $x = ut + \frac{1}{2} at^2$: $ut - (m s^{-1}) s = m$ $at^2/2 (m s^{-2}) s^2 = m$ all 3 terms reduce to m [Allow dimensions] Explanation:

Wrong numerical constant/wrong variables

Units same, numbers wrong/

Units same, magnitudes wrong

Example = 1 kg + 2 kg = 5 kg

10. The joule in base units:

kg m² s⁻² [No dimensions] (1)

Homogeneity of formula:

$$\rho \quad \text{kg m}^{-3} \text{ (1)}$$

$$r \quad \text{m, } f = \text{s}^{-1} \text{ (1)}$$
(Right hand side units = (kg m⁻³) (m)⁵ (s⁻¹)²) [Correct algebra]
= kg m² s⁻² [Only if 1st two marks are earned] (1) 3

[Ignore numbers; dimensions OK if *clear*]

Why formula might be incorrect:

The $\frac{1}{2}$ could be wrong (1)

11. Labels of elements:

1

1

1

[5]

[5]

	D close to O: AND U \geq 200 (1)		
	Fe at peak (1)	2	
	Meaning of binding energy:		
	Energy needed to split/separate a nucleus (1)		
	into protons and neutrons/nucleons (1)		
	OR		
	Energy released when nucleus formed (1)		
	from protons and neutrons/nucleons (1)		
	OR		
	Energy released due to mass change/defects (1)		
	Sum of masses of protons and neutrons $>$ mass of nucleus (1)		
	[In each of the cases above, the second mark is consequent upon the first]		
	Explanation:		
	Uranium (1)		
	Binding energy per nucleon of products is higher OR		
	Products/atoms/element/nuclei nearer peak (1)		
	Therefore more stable (1)	5	[7]
			[,]
12.	Calculation of the magnitude of the electric field strength:		
	Correct use of $E = kq/r^2$ [all substitutions, any value of q] (1)		
	$q = 92 \times e (1)$		
	Magnitude = 2.4×10^{21} N C ⁻¹ OR V m ⁻¹ (1)		
	Direction of electric field:		
	Away from nucleus/outwards/on diagram (1)	4	
	Similarity and difference between electric and gravitational field:		
	Similarity - Both radial/obey inverse square law/ $\propto 1/r^2$ (1)		
	Difference - Magnitude of g field $\leq E$ -field		
	OR G-field direction towards nucleus, E field away from nucleus		
	OR G-field attractive only, E field attractive OR repulsive (1)	2	
			[6]

13. Estimate of time constant, using graph:

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
Method (1)					
Value $23 \rightarrow 26 \text{ s}$ (1)	2				
Calculation of resistance and hence capacitance:					
$R = \frac{V}{i} \text{ OR } \frac{9}{0.19 \times 10^{-3}} $ (1)					

-		
Resistance = $47 \text{ k}\Omega$ [ue] (1)		
Substitute in $t = RC$ [e.c.f their t, their R] OR answer 300 μ F		
Capacitance = $500 \ \mu F$ (1)	3	
Addition to graph of line showing how potential difference varies with time:		
A curve of shape shown below, i.e. getting less steep (1)		
Any convex curve ending at ≈ 7.5 V, crossing at ≈ 15 s (1)	2	

14.	(a)	Either

(b)

Bunch of threads/hair (1)Connected to top of sphere (1)Fan out repelling each other (1)OrLight conductor on insulating thread [e.o.p. plastic sphere] (1)Touch to sphere (1)Hold at side repelled (1)[May all be on labelled diagram]Max 2Unit of *I*, *w* and *v* as A, m and m s⁻¹ (1)As A s = C (1)unit of *X* is C m⁻²

so X may be the charge density/per unit area (on belt) (1)

3

[7]

(c) (i) Radial lines [be generous] (1)
 > 4 lines (1)
 Arrows inward [to surface only] (1)

(ii) $E = Q/4 \pi \varepsilon_0 r^2 \rightarrow Q = 4 \pi \varepsilon_0 r^2 E(\mathbf{1})$ $\therefore Q = 4\pi (8.85 \times 10^{-12} \text{ F m}^{-1}) (0.15 \text{ m})^2 (3.6 \times 10^5 \text{ N C}^{-1})$ $= 0.90 \times 10^{-6} \text{ C OR } 0.90 \ \mu\text{C}(\mathbf{1})$ $V = Q/4 \pi \varepsilon_0 r^2 \text{ OR } V = Er(\mathbf{1})$

Substitution [allow e.c.f for Q] $\rightarrow V = 54 \times 10^3$ V OR 54 kV

(d) (i) Leakage current:

(Fast) random movement (1) (Very) slow drift velocity [down] (1)

On belt:

Uniform velocity [up] (1)

(ii) Axes showing:

V (up) and 120 s/2 min (along) (1)V/2 OR origin OR 60 s [i.e. zero on one axis implied] (1)Exponential curve from (O s, V) not reaching time axis (1)Max 5

15. Correct quantities on diagram:

Upj	per ellipse	capacitance	[not energy]	[Accept capacitance ⁻¹]	(1)
Lov	ver ellipse	resistance	[not power]	[Accept conductance/resistance ⁻¹]	(1)
					2
Expl	anation:				
	Base quant	ities/units	[Not func	lamental]	(1)
	Not derived from other (physical) quantities				

OR other (physical) quantities are derived from them

OR cannot be split up/broken down

2

6

[4]

[16]

16. Calculation of energy released for each fission:

. ,
(1)
(1)
(1) 4

Calculation of power output:

Energy per mole = $3.04 \times 10^{-11} \text{ J} \times 6 \times 10^{23}$ (1)

Full e.c.f. their energy =
$$1.8 \times 10^{13}$$
 J

Power =
$$\frac{\text{Any energy J}}{5 \text{ s}}$$
 [No e.c.f.] (1)

$$= 3.6 \times 10^{12} \text{ W} \text{ [Accept J s}^{-1]}$$
(1)

[7]

5

5

3

3

Max 2

17.	(a)	(i)	Light travels very fast/insta To travel 1.5 km, sound tak Measuring time enables dis	tes 4.4 s
		(ii)	Sheet lightning: flash/stroko within a cloud/from cloud t	
	(b)	Char Jagge Nega	ge negative on cloud ge positive on tower ed line from cloud to tower ative leader is column of char ative leader marked on diagra	-
	(c)	(i)	Either	Or
			$P = 4 \times 10^{10} \mathrm{W}$	$P = IV \Longrightarrow \frac{p}{l} = I\frac{V}{l}$
			$p = IV \rightarrow V = \frac{P}{I}$	$E = \frac{V}{l} = \frac{P/l}{I}$
			$\Rightarrow V = 2 \times 10^{6} \text{V}$	$= 5000 V m^{-1}$
		(ii)	$E = \frac{V}{d}$	E = Vl (1)
			$= 5000 \text{ V m}^{-1}(1)$	$= 2 \times 10^{6} V$ (1)
	(d)	(i)	Thunder Air heated Rapid expansion	
		(ii)	Air temperature, any value	in kelvin
			n	

$$\frac{p}{T} = \text{constant}$$

Assume V constant

$$\Rightarrow P = \text{around } 10 \ 000 \ \text{kPa}$$
Breathing stops (when struck by lightning)
(alone means) no-one to help get it going again 2

(f) The electrical discharge ionises/excites gas/air molecules/particles

(e)

	(g)	which return to their ground state emitting (a flash of) visible photons Quality of written communication e.h.t. /Van de Graaf with voltmeter Two terminals/spheres/plates Raise voltage/bring t.s.p closer Suggestions: atmospheric conditions	4 Max 4	[32]
18.	(a)	 (i) X = 520 N and Y = 637 N to 650 N (ii) moment of weight/650 N and moment of towing force/520 N must be equal as 520 N varies she must alter its moment <i>or</i> that of her weight by altering the distance of either force from (the point of) the ski 		
	(b)	(through which the resultant of X and Y acts) The push of the water on her/the board inward/towards the centre of the curved path/circle the only vertical force on her is her weight/gravity	4	
		[Not "no vertical reaction "]		
	(c)	(65 kg) $a = 520$ N $\rightarrow a = 8.0$ m s $^{-2}$		
		Force X reduces as she slows/X depends on speed	3	
	(d)	Doppler shift (of spectral lines) Tells us speed of recession (of galaxy) Nature of emission/absoption (of spectral) lines Tells us chemical composition (of stars) Quality of written communication	5	[15]
19.	(a)	 (i) Current in coil produces a magnetic field ∴ (magnetic) flux through ring changes/field lines are cut by ring so induced e.m.f. in ring 		
		The current feels a <i>Bil</i> force/motor effect/ Fleming/left hand rule		
		because of opposing B-fields/Lenz's law opposing		
		Quality of written communication	6	

	(ii)	$P = I^2 R \Longrightarrow R = P/I^2 (1)$		
		$= 1.6 \text{ W} \div (140 \text{ A})^2$ (1)		
		$= 8.2 \times 10^{-5} \Omega$ (1)		
		$R = \rho l / A $ (1)		
		A calculated as $(2.0 \times 10^{-3} \text{m}) (15 \times 10^{-3} \text{m})$		
		<i>Or</i>		
		<i>l</i> calculated as $2\pi (12 \times 10^{-3} \text{m})$ (1)		
		$\Rightarrow \rho = 3.3 \times 10^{-8} \Omega \text{ m} (1)$	Max 5	
(b)	(i)	Measure:		
		Mass of ring and mass of water Initial and final temperatures of water/ $\Delta \theta$ water Look up s.h.c. of aluminium and water	3	
	(ii)	Detail of where/when heat losses occur		
		Calculated temperature too small	2	[16]
				[.•]
(a)	(i)	(The particles are accelerated through a circular accelerating tube) The particles are accelerated by passing repeatedly through accelerating voltages. (1) Alternating voltages are used, so the electric field is always attractive (The particles travel in a circle therefore a centripetal force is needed (1) This is provided by (large) magnets, because charged particles experience a force when moving in a magnetic field (1) Because it is a circle the particles can go round many times, gaining more energy each time (1) Quality of written communication (1)		
	(ii)	$m\frac{\upsilon^2}{r} = Bq\upsilon$ $\rightarrow r = \frac{m\upsilon}{Bq}$		
		Since $\frac{m}{Bq}$ is constant, <i>r</i> increases as v increases	3	
(b)	(i)	The particles ionise hydrogen atoms Bubbles form on these ionised atoms Light shining on/reflecting from the bubbles (makes them visible)	3	
	(ii)	Particle 2 is charged negatively Particle 3 does not ionise/is neutral	3	
	(iii)	Mass-energy is conserved/mention of $\Delta E = c^2 \Delta m$ In this case the mass lost has become kinetic energy	2	[17]

20.

21.	(a)	v = (9)	(u) + at Evider 9.8/10 m s ⁻²) (value 150 - 160 Mm s ²)	ue of t from s^{-1}		4 × 3600 s (1)	5 (1)	
		=	$1.5 - 1.6 \times 10^8$ m $150 - 16 \times 10^6$ 1		.f. value c	of t] (1)		3
	(b)	(i)	$E = \frac{V}{d} = \frac{100}{0.004}$					
			$= 2.5 \times 10^4 / 25 $ C	$000 \text{ V m}^{-1}/2$	N C ⁻¹ OR	25 V mm	⁻¹ (1)	
		(ii)	F = QE [Bewa = $(1.6 \times 10^{-19} \text{ C})$ = $4.04 \times 10^{-15} \text{ N}$	-	-	-	1)	
		(iii)	$a = \frac{F}{m} \qquad (1)$					
			Use of $m_e = 9.1/$ = 4.4 × 10 ¹⁵ r		³¹ kg ((1)		Max 6
	(c)	Relat Exert	tron gun at) <i>high</i> ive to earth/below s force on/repels use of large) char	earth [A electrons	ccept ano (1)	de for eart	-	Max 3
	(d)	Narro Abou Abou	ing: peaks [up or down ow [dependent on t 3 div/cm apart [t 1/3 div/cm wide base scale shown	2 peaks] Award a 3 [Apply to	(1) cm wide		(1)	4
	(e)	(i)	m is mass of disl c is s.h.c. (1)	k/B/alumin	ium (1)		
		(ii)	1 volt is a joule j [Not a definition	of p.d.]	(1)	-	mpere (1)	
			NeV units are (ne	one) $\times C \times$	$\frac{J}{C}$ [hen	ce J]		4
	(f)	(i)	T/MeV $t/10^{-8}$ s $v/10^{8}$ m/s $v^{2}/10^{16}$ m ² /s ²	0.25 3.85 2.18 4.76	0.50 3.28 2.56 6.56	1.00 3.03 2.77 7.68/9	1.50 2.92 2.88 [all correct] 8.27/8	
			[may be o	n graph]	[attempted]		
			[2 s.f. ok]	[Table ig	nore unit	S]		2
			$\frac{1}{2}mv^2 = eV rout$	te: e.o.p. 0/	/2			
		(ii)	Graph:					
			[Can be all from Sensible axes lal Points correctly Graph smooth cu	pelled plus plotted e.c.	units [a .f. [ignore	xes either $(1,0,0)$ (1	way] (1) l) (1)	

(iii)	Comment: [No/yes] [From here only credit $v^2 v T$ graphs] (1) $v^2 v T$ is not straight line / through zero $v^2 v T$ is straight line through zero		
(iv)	At very high <i>T</i> : line flattens out [owtte] / has max at (1) Reference to <i>c</i> /speed of light/9 × 10^{16} m ² s ⁻² / (1) 3×10^{8} m s ⁻¹	5	
(g) (i)	Concept of delay (1) For each must be (made) the same [Beware signals arriving at same time] (1)		
(ii)	To check/confirm that $T = eV/$ to measure T independently [T or energy or k.e.] (1)	Max 3	[31]

22. (a) (i) (Extending) force, extension [Not displacement, length, distance] [Accept $l - l_0$ implied] (1) Potential difference/voltage, charge (1)

(ii)
$$W_{\rm s} = \frac{1}{2} \frac{xF}{k} F^2$$
 (1)
 $= \frac{1}{2} \frac{F^2}{k}$ [Accept bald answer in correct order] (1)
EITHER OR
 $W_{\rm s} = \frac{1}{2} \frac{(kx)^2}{k}$ $W_{s} = \int_{0}^{x} F dx = \int_{0}^{x} kx dx$ (1)
 $= \frac{1}{2} kx^2$ $= \left[k \frac{x^2}{2}\right] = \frac{1}{2} kx^2$

OR

$$W_{\rm s} = \frac{1}{2} xF = \frac{1}{2} x(kx) \qquad \qquad W_{\rm c} = \frac{1}{2} \frac{Q^2}{C}$$
$$= \frac{1}{2} kx^2 \qquad \qquad = W_{\rm s} = \frac{1}{2} kx^2 \qquad (1)$$

(b) (i)
$$W_c = \frac{1}{2} CV^2 = \frac{1}{2} (0.0047 \text{ F}) (25 \text{ V})^2 [\text{Ignore } 10^n]$$
 (1)
= 1.5 J / 1.47 J [no e.c.f.] (1)

Quality of written communication $W_{\rm c}$ is (very) small (1) Even at 50 V it is only 6 J (1) Any ΔT is difficult to measure/wire spread out/ (1) something like a thermocouple is needed (1) Wire (might) melt/fuse (1) Heat/energy loss to air/surroundings [not to connecting wires] (1) Max 4

(ii) Exponential (decay) (1) Radioactive decay/radioactivity [independent] (1) Use of one of *five* approved methods [Name it] (1) Data off graph appropriate to method [ignore 10^n] (1) Use of *RC*/use of R = V/I (1) $R = 7.2 \Omega - 8.5 \Omega$ [no e.c.f.] (1) [7200 $\Omega - 8500$ gets 3/4]

[17]

6

4

[Methods:

M1 _*RC* = time to $Q_0 \div e [35 - 39 \text{ ms}]$

- M2 $RC \ln 2 = t_{1/2}$ [24 28 ms]
- M3 RC = where initial tangent hits t axis [32 40 ms]
- M4 Use of *RC* in $Q = Q_0 e^{-t/RC}$ with numbers [\approx correct]
- M5 Calculation of T_0 initial current from gradient [2.7 3.0 A]

23. (a) (i)
$$v = \frac{2\pi r}{T} / \omega = \frac{2\pi}{T}$$
 [Use of] (1)
Use of $a = \frac{v^2}{r} / r\omega^2 = 0.22 \text{ m s}^{-2}$ (2)

e.m.f. = 60ε (1)

Centripetal/towards (centre of) Earth (1)

(ii)
$$g = G \frac{m_E}{r^2} / G \frac{m}{r^2}$$
 with *m* defined (1)
 $\Rightarrow m_E = \frac{gr^2}{G}$ or numbers $[\rightarrow 5.3 - 5.8 \times 10^{24} \text{ kg}]$ (1) 6

(b) (i)
$$18\ 000 \times (12 \times 10^{-4} \text{ m}^2) (1.4 \times 10^3 \text{ W m}^{-2})$$
 (1)
(= 30.24 kW) [Ignore 10ⁿ] (1)
 $\eta = \frac{4500 \text{ W}/4.5 \text{ kW}}{\text{their power}}$
 $\Rightarrow \eta = 15\%/0.15$ [no e.c.f.] [Beware 0.15%] (1) 3
(ii) Evidence of × 60 (series) (1)
Evidence of ÷ 300 (parallel) (1)
 $\Rightarrow R = 8.0 \ \Omega/8 \ \Omega$ [200 $\Omega \rightarrow 1/3$ e.o.p.] (1)

(iii) S open: read V to get
$$\varepsilon/e.m.f.$$
 of cell (1)
S closed:
Read mV to get $V/p.d./voltage$ across R OR terminal voltage/voltage of cell (1)
Current $I = V/R$ (1)
Use $\varepsilon = I(R + r) / V = \varepsilon - Ir/Ir = \varepsilon - V = lost volts$ (1)
 $\varepsilon = V + IR$
Value for R : 10 Ω - 100 Ω (1) Max 4

[17]

24.	(a)	(i) (ii)	$c = f\lambda \Rightarrow \lambda = c/f (1)$ $\lambda = \frac{3.00 \times 10^8 \text{ m s}^{-1}}{1.07 \times 10^9 \text{ Hz}} [\text{Ignore } 10^n] (1)$ = 0.28 m (1) Plane polarised: Rotate aerial [Not a grid] (1) about horizontal axis/still pointing to transmitter (1) Note max to min signal (on TV) i.e. change (1) Superposed: Waves add/combine [Not interfere] OR $\bigwedge + \bigcap = \bigcap \text{OR} \bigcap + \bigcup = -$ OR nodes and antinodes (1) Displacements add/vector addition (1) $\frac{\lambda}{2}$ /0.14 m OR $\frac{\lambda}{4}$ /0.7 m apart OR $n\lambda$ OR $n\frac{\lambda}{2}$ (1)	Max 5	
			so that waves arrive in phase/to get (because) path difference of λ /to get constructive interference/to get the receiving dipole at an antinode (1)	4	
	(b)	(i)	<i>I</i> is in W m ⁻² (given) [Unit = kg s ⁻³] Evidence of <i>B</i> in N A ⁻¹ m ⁻¹ (1) Evidence of <i>c</i> in m s ⁻¹ and μ_0 in N A ⁻² (data) (1) Evidence of m N as J/J as kg m ² s ⁻² (1) Evidence of J s ⁻¹ as W (1)	Max 3	
		(ii)	Connect coil to galvo / datalogger / oscilloscope / ammeter / voltmeter OR current in coil and magnet on top pan balance Move coil (rapidly) out of field/to or from magnet (1) OR detect force No movement \rightarrow no reading/current (1) OR steady force means steady field	(1)	[15]
25.	(a)	(i)	Force per unit area (1)		
201	(u)	(1)	on a surface/object/body (1)		
			by light/e-m radiation/e-m waves (1)		
		(ii)	Away from the Sun/in direction of waves (1)		
		(iii)	A bounce/collision (of e.g. molecule or ball or trolley) which conserves k.e./transfers twice its momentum (1)	Max 5	
	(b)	(i)	LHS: kg m s ^{-1} /N s (1)		
			RHS: W/m^2 (1)		
			$\times m^2 \times s \div m/s$ (1)		
			Use of W as J/s OR use of J as N m/kg m ² s ⁻² (1) OR N as kg, m s ⁻² (1)	4	

	(ii)	$U = IAt = (12 \text{ W/cm}^2) (460 \text{ cm}^2) (30 \times 60 \text{ s}) [Ignore 10^n]$	
		$\times 0.8$	
		$= 7.95/8.0 \times 10^6 $ J (1)	3
(c)	(i)	Step 1: Newton's 2^{nd} law/force = rate of change of momentum $F = \Delta p/t$ impulse = Ft (1)	
		Step 2: pressure = force,/area $p = F/A$ (1)	
	(ii)	20 N is a small force/produces small acceleration/'needs a vehicle of small mass (1)	
		but operates continually (1)	
		but S falls off (1)	
		as inverse square law (1)	
		control of (2 km ²) sails difficult/subject to damage (1)	Max 5
(d)	(i)	Switch light on and off (1)	
		Graph: A against f with a peak and axes labelled (1)	
		$f_{\rm o}$ /resonant frequency indicated (1)	
	(ii)	Any two from:	
		 increase distance MM¹ use a weaker suspension/thinner suspension increase area of mirror use longer suspension (1) (1) 	5
	(iii)	Mass of (metal) disc (1)	
		Area illuminated/area of disc or mirror (1)	
		s.h.c. of disc (1)	
		Time illuminated (1)	
	(iv)	Either	
		Measured v predicted = $0.05 \ \mu Pa \div 7.06 \ \mu Pa$ (1)	
		= 0.71%	
		which is $< 1.5\%$ (so confirmed) (1)	
		Or	
		7.01 μ Pa ± 1.5% = (7.01 ± 0.11) μ Pa (1)	
		which is from 6.90 μ Pa to 7.12 μ Pa (so confirmed) (1)	Max 5
(e)	(i)	Because we don't fall backwards when opening a window [i.e. quote] OR light/e-m waves/photons have no mass (1)	
	(ii)	Use of $E = hf(1)$ Use of $f = c/\lambda$ (1)	
		$\Rightarrow p = hc/\lambda c = h/\lambda$	
		∴ p = (6.6 × 10 ⁻³⁴ Js) ÷ (560 × 10 ⁻⁹ m) = 1.2 × 10 ⁻²⁷ Ns (1)	4

Sun + comet + orbit/tangential line (1) (f) Tail not along orbit and away from Sun (1) 2 [33] Comet Sun 26. (i) Tracks (of alphas) are the same length/alphas travel same or (a) equal distance (1) $H/p + Li \rightarrow 2\alpha/2He$ (1) (ii) $^{1}_{1}$ p and $^{4}_{2}$ He correctly labelled (1) $^{7}_{3}$ Li (1) 4 Mass defect = 0.01865u(1)(iii) Either Or Use of $\times 1.66 \times 10^{-27}$ Use of \times 930 (1) Use of \times 9.0 \times 10¹⁶ Use of $\times 1.6 \times 10^{-13}$ (1) $\Rightarrow 2.79 \times 10^{-12} \text{ J}$ $\Rightarrow 2.78 \times 10^{-12} \text{ J} (1)$ Assume: proton has zero/very little k.e. (1) Max 4 (b) Quality of written communication (1) p/α ionise ,gas/liquid (particle) (1) producing (a line of visible) drops/bubbles (1) Detail e.g sudden drop of temperature/pressure/condensation/boiling, 4 or liquid H/alcohol (1) Use of $F_{e_r} = kQ_1Q_2/r^2$ and $F_g = Gm_1m_2/r^2$ [$k = 1/4\pi\epsilon_0$ OK] (1) (c) Evidence of *r* cancelling in ratio (1) Qs as e and 3e (1) ms as m and 7m (1) 4 [16] 60 m.p.h. = $(60 \times 1.6 \times 1000 \text{ m}) \div (3600 \text{ s})$ (1) 27. (a) $= 27 \text{ m s}^{-1}$ $a = 27 \text{ m s}^{-1} \div 4.5 \text{ s}$ (1) 5.9 m s^{-2} $\therefore a/g = 0.60/0.59 \text{ OR }\% \text{ OR expressed as fraction (1)}$ *P*: the forward push/force of the road/ground (on the car) (1) (ii) *W*. the pull/gravitational force of the Earth (on the car) (1) 5

(iii) 1 : hot reservoir/source (1)
2: cold reservoir/sink (1)
3:work/mechanical energy (1)

Branching diagram

(b) (i) Change of wavelength/frequency from moving source/surface (1) $\Delta f = 2\upsilon f/c = 2/29 \text{ m s}^{-1} (1.1 \times 10^{10} \text{ Hz}) \div (3.0 \times 10^8 \text{ m s}^{-1}) (1)$

- = 2100 Hz/2.1 kHz [no e.c.f] (1)
- (ii) Any four from:
 - Two Slit superposition/stationary waves (1)
 - Decent diagram (e.g. scale/waves/perpendicular reflector) (1)
 - What is done (1)
 - What is measured (1)
 - How λ is found (1) Max 4

 $\left[\frac{xs}{D}\right]$ loses last two marks: screen to detect loses marks 2 and 3]

(a)	(i)	Either	Or
		The (magnetic) flux	The (moving) axle/conductor wire (1)
		linking OR linkage/trough the circuit/WXYZ	cuts (across/trough)/sweeps (1)
		changes	the magnetic field (1) (1)
	(ii)	<i>d</i> from 1 m – 4m	

11) d from 1 m – 4m

28.

 $v \text{ from 1 m s}^{-1} - 30 \text{ ms}^{-1}$

 $\Rightarrow \varepsilon$ from 48 μ V – 5.8 mV (1)

(iii) EITHER $\varepsilon = I(R + r)$ OR $\varepsilon = IR + Irl$ OR $V = \frac{R}{R + r}$ (1)

$$\Rightarrow I = \varepsilon / (R + r) (1)$$

$$P = I^2 R \text{ OR } p = \frac{V^2}{R} (1)$$

$$= \varepsilon^2 R/(R+r)^2$$

Either

(b)

(i)

Ammeter in circuit/series with RVoltmeter across R/WZ Measure I and V with axle rolling P = IV

Use ohmmeter (1) Measure R with no current (1) Measure I/V with A/V (1) $P = I^2 R/V^2 \div R$ (1)

[Direct *P* by heating water: max 2]

(ii) Current in axle \Rightarrow force / Fleming LHR/two B-fields interact (1)

Or

[16]

4

3

Max 5

3

			given by $F = B_V Id/BIe$ (1) which is horizontal/parallel to rails/along rails (1) No good F small/huge I needed (1)	Max 3	[15]
29.	(a)	Tern	ninals/output connected OR component bypassed	1	
		by lo	tow R / wire / low resistance path	1	
	(b)	(i)	d.c	1	
		(ii)	Speed/frequency of rotation/disc [not <i>f</i>]	1	
			Radius/diameter/area [not r]	1	
			<i>B</i> / <i>B</i> -field / magnetic field	1	
		(iii)	To study the properties of matter (under extreme conditions) [not to produce large B / as a research tool] as an electromagnetic gun/to project small masses at high speeds / to study problems of re-entry	1	
	(c)	(i)	Method, i.e. attempt to find area under graph / use $Q = It$	1	
			5 – 6 squares/triangle as $\frac{1}{2}bh$ / triangles as $\frac{1}{2}bh$ / rectangle I_{av}	1	
			Area number $2.4 - 3.3$	1	
			Area (e.c.f.) $\times 10^{6}$ C	1	
		(ii)	<u>Use of $P = I^2 R$ or $P = I^2 r$ [wrong equation –2 e.o.p.]</u>		
			Peak <i>I</i> as 1.6 (A) or 1.7 (A)	1	
			$= 3 - 3.5 \times 10^8$ W [c.e.p. kW/MW e.c.f. no 10^6]	1	
	(d)	V as	J C^{-1} /Wb as V s / WA ⁻¹	1	
		B as	$N A^{-1} m^{-1} / Wb m^{-2}$	1	
		R OF	R r as m and f as s^{-1} [not if $m^2 - m^2$ which then disappears]	1	
		Evid	ence of J as N m/ A as C s ^{-1} / N as kg m s ^{-2} [one only]	1	
	(e)	(i)	Chemical energy / electrical energy	1	
			kinetic energy /k.e.	1	
			[one energy only 0/2]		
		(ii)	Magnetic force on the current/electrons/ $F = BIl$ or BQv or motor or Fleming / catapult effect [not e-m force] / LH rule	1	
		(iii)	$\upsilon = 2\pi r f$	1	
			$\Rightarrow v = 2\pi (1.8 \text{ m})(15 \text{ Hz}) \text{ [not } 3.6 \text{ m]}$	1	
			$= 170 \text{ m s}^{-1}$		
			which is less than 200 m s ⁻¹ [e.c.f. their υ]	1	

 $\varepsilon - V = IR$ or $I = (\varepsilon - V) \div R$ or $\varepsilon = V + IR$ or $V = \varepsilon - IR$ (f) 1 [do not allow *r* for *R* here, then ignore] As speed increases V/generated e.m.f. increases / generated voltage increases 1 So $\varepsilon - V$ decreases ($\Rightarrow I$ decreases) / net voltage decreases 1 (i) $m \frac{\upsilon^2}{r} = G \frac{mm_E}{r^2} \text{ or } \frac{\upsilon^2}{r} = G \frac{m_E}{r^2}$ (g) 1 [Ignore sloppy use of suffix E] $r = r_{\rm E} + h$ 1 $\Rightarrow \upsilon = \left(\frac{Gm_{\rm E}}{r_{\rm E} + h}\right)^{1/2} \text{ [No mark]}$ Substitute $m_{\rm E} = 6.0 \times 10^{24}$ kg, $\upsilon = 7 (\times 10^3)$ m s⁻¹ and $G = 6.7 \times 10^{-11}$ N m² kg⁻² (ii) 1 1.8×106 (m) / 1.77×106 (m) 1 [No e.c.f. 7 m s^{-1}] [31] Protons are positively charged / like current 30. (a) (i) 1 refer to Fleming or motor rule / Rev / Bqv / perpendicular F and 1 υ [**not** right hand rule] (ii) $m\frac{v^2}{m} = Bev$ $mr\omega^2 = Be\psi$ 2 [accept q for e] $\upsilon = \frac{2\pi r}{T} / \frac{\pi r}{t}$ $\omega = \frac{2\pi}{T} / \frac{\pi}{t}$ 1 (iii) Quality of written communication 1 Each time it crosses gap/between dees it accelerated / is attracted / is given E1 Idea that p.d. between the dees reverses while the proton completes half a revolution / c.e.p. 1 As energy becomes large the mass/inertia of the proton increases 1 [**not** protons hit edge] so it cannot exceed the speed of light [i.e. ref to c]/synchronous property breaks down/formula no longer gives constant f 1

(iv)
$$\Delta E = (1.6 \times 10^{-19} \text{ C}) (12000 \text{ V}) \text{ [allow } \times 12 \text{]}$$

= 1.9/1.92 x 10⁻¹⁵ (J) [no e.c.f.]

1

	(v)	$r^2 = 2m \times \text{k.e.} \div B^2 e^2 r = \sqrt{\text{same}}$		
		Substitute 1.66 / 1.7×10^{-27} kg /1860 m_e /2000 m_e and 1.6×10^{-19} C	1	
		Use of k.e. = $(1.9 \times 10^{-15} \text{J}) \times 850$ [e.c.f. for $1.9 \times 10^{-15} \text{ J}$ e.g. $2 \times 10^{-15} \text{J} \Rightarrow 1.7 \times 10^{-12} \text{J}$]	1	
		\Rightarrow r = 0.575 m /57.5 cm	1	
		$[2 \times 10^{-15} \text{J} \Rightarrow 0.59 \text{ m}]$ [9.1 × 10 ⁻³¹ kg \Rightarrow 0.0137 m e.o.p. max 1/3]		
(b)	(i)	$m\frac{v^2}{r} = T\sin\theta$ is second law / $F = ma / a \propto F$	1	
		$mg = T\cos\theta$ is first law	1	
		[third law $\times \times$]		
	(ii)	Assumption is that θ is small or $\tan \theta = r/l$ or r/l is small or $\tan \theta$ = $\sin \theta$ or $\tan \theta = \theta$ or $\sin \theta = \theta$	1	
	(iii)	Give the pendulum bob a push	1	
		which is tangential/along the direction of motion	1	
		for any r or v the time period is unchanged	1	
		Higher speed/energy \Rightarrow bigger radius	1	[40]
				[18]

31.	(a)	(i)	$\binom{222}{86} \text{Rn} \rightarrow \frac{4}{2} \text{He} + \frac{218}{84} \text{Po} + 218$	1
			2 + 84 [accept α for He but if unlabelled then $218 + 84$, 1 mark out of 2]	1
		(ii)	Gains electron(s) / e^-	1
			two	1
	(b)	(i)	$l_{\rm A} < l_{\rm B}$	1
			Ratio diameters/ 12:1	1
			[Accept 10 – 14] [$V_A \approx 4 \text{ cm}^3$; $V_B \approx .025 \text{ cm}^3$]	
			\Rightarrow volumes/cross-sectional areas 144:1 OR V _A =150 their V _B calculated	1
			[Accept 100:1 to 200:1)	
		(ii)	pV = constant / Boyles' law	1
			$p = 20$ (Pa) \div answer to (i) [e.c.f. (comes to 0.13 Pa)]	1
		(iii)	So that $\alpha\mbox{-particles}$ are not absorbed by/can penetrate them / can , get into tube A	1

[16]
[15]

33. (a) (i) Mention of kelvin (scale) (1) Celsius plus 273/(which depends on) ideal gas behaviour (1) $[T/K = \theta/^{\circ}C + 273$ both marks]

- (ii) Change in/broadening of frequency or wavelength/lines (1) caused by motion of source/atom/observer (1)
- (iii) (process which) happens spontaneously / by chance / unpredictably (1) 5

- (b) (i) Use of 1.6×10^{-19} (1) $\lambda = hc/E \text{ OR } f = E/h$ (1) Substitute $h = 6.6 \times 10^{-34} \text{ J s and } c = 3.0 \times 10^8 \text{ m s}^{-1}$ (1) (=> 620/622 nm) Visible (part of e-m spectrum) [e.c.f.] (1)
 - (ii) Four horizontal lines (1) 6 lines drawn (1) Words or diagram to indicate each vertical gives a wavelength/labels E_0E_1 etc plus $\Delta E = E_2 - E_0$ etc (1)

(c) (i) One photon in (1) Two photons out (1)

- (ii) A photon entering gas (1)
 Mention of population inversion/negative temperature (1)
 produces an extra/a stimulated photon (1)
 Max 4
 [Allow 1/3 for "by stimulated emission of radiation"]
- (d) Mention of $N_1 < N_2 / N_2 > N_1$ (1) i.e. number of atoms / electrons in higher level is more than number of atoms / electrons in lower level (1) [Allow excited state/ground state for N_2 / N_1]
- (e) (i) Use of k.e. = $\frac{1}{2} \text{ m} v^2$ (1) => $v = 420/423 \text{ m s}^{-1}$ (1)
 - (ii) Use of $\frac{\Delta \lambda}{\lambda} = \frac{\upsilon}{c}$ (1) with $c = 3/3.0 \times 10^8 \text{ (m s}^{-1} \text{) (1)}$ $=> \Delta \lambda = 8.46/8.5 \times 10^{-13} \text{ (m) (1)}$

(iii) Idea of $v \rightarrow$ and $v \leftarrow OR v$ used is an average speed/energy (1)

(ii) (By) thermal agitation / heating / raising temperature (1)
(g) (i)
$$\Delta E/kT$$
 calculated using given values (1)

(i) $\Delta E/kT$ calculated using given values (1) (i.e. 1.06×10^{-19} J, 1.38×10^{-23} J K⁻¹, 1150 K) => 6.68 (1) Negative exponent × 2 000 000 => N_4 = 2513/2510/2500 (1)

(ii) Use of
$$N_4 = 2513/2510/2500$$
 [e.c.f.] (1)
=> $N_5 = 114/115$ (1) 5

[31]

4

3

2

6

34.	(a)	(i)	k.e. 3.0 MeV = $3.0 \times 10^{6} \times 1.6 \times 10^{-19}$ J (1) (1) use of $\Delta E = c^{2} \Delta m/E = mc^{2}$ (1) => $\Delta m/m = 5.3 \times 10^{-30}$ (kg) Use of u = $1.66/1.7 \times 10^{-27}$ kg (1) so $m_{\text{Li}} = 7.0 \times 1.66 \times 10^{-27}$ kg / $\Delta m = 0.0032$ u => $\Delta m / m_{\text{Li}} = 0.0445 - 0.0459\% / 0.046\% / 0.05\% / 0.04\%$ (1)		
		(ii)	Use of k.e. = $\frac{1}{2} m v^2$ with correct <i>m</i> (1) =:> $v = 9.1 \times 10^6$ m s ⁻¹ [e.c.f. no 10^6 for <i>m</i>] (1)	7	
	(b)	(i)	Quality of written communication (1) Vacuum (1) Mention of (drift) tubes / cylinders (1) With different lengths/which get longer OR reference to synchronous condition (1) Reference to alternating voltage (1) [Could all be on a diagram]		
		(ii)	Quarks/structure of protons or neutrons (1)	Max 5	
	(c)	(i)	$1/C_{\rm T} = N/C$ (1) Total capacitance = C/N (1)	2	
		(ii)	Place N springs in parallel (1) So total force = Nkx [e.c.f. series => kx/N] (1)	2	[16]
35.	(a)	(i)	$T_{\rm h} - T_{\rm c}$. temperatures outside-inside fridge (1) $Q_{\rm h}$ (thermal/ internal) energy (supplied) to kitchen/room (1) $Q_{\rm c}$ ditto from fridge (1) [Energy transfer related to $Q_{\rm h}$ and $Q_{\rm c} => 1/2$]		
		(ii)	$Q_{\rm h} = W + Q_{\rm c} (1)$		
		(iii)	Use of $P = IV/W = IVt$ (1) $I = 42\ 000\ J \div (230\ V)\ (3.5 \times 60\ s)\ (1)$ $= 0.87\ A/870\ mA\ (1)$	7	
	(b)	Diagram: Identical structure (i.e. outline) [Beware 'upside down'] (1) Arrow out labelled <i>W</i> /work (1)		3	
	(c)	(i)	w/arrows from hot to cold (1) Use of $H = ml/\Delta H = l\Delta m$ (1) $=> l = 26 \times 10^6 \text{ J} \div 60 \text{ kg} [\text{Allow } 10^n \text{ errors}]$ (1) $= 4.3 \times 10^{-5} \text{ J kg}^{-1}/430 \text{ kJ kg}^{-1}$ (1)	3	
		(ii)	Use of electrical heater (1) Sensible way of finding Δm (1) Measurement of <i>I</i> and <i>V</i> (1) OR Mixing ice with (warm) water (1) Measure θ before and after (melting) (1) Masses known (1)	3	
A -				J	[16]
36.	(a)		e than four radial lines/four symmetric lines (1) ws inwards (1)	2	

Reference to speed of (gas) molecules $[e.g. > 10 \text{ m s}^{-1}]$ (1) (b) Greater than escape speed/ v_e (1) 2 $m_{\rm A}$ in kg and $r_{\rm A}$ in m (1) (c) (i) N (in G) in kg m s⁻² (ii) $m_{\rm A} = r_{\rm A} v_{\rm e}^{2} / 2G$ (1) $\Rightarrow m_{\rm A} = 5.8 \times 10^{15} \, (\text{kg}) \, (1)$ Use of $\rho = m/V$ and $V = 4/3 \pi r^{3}$ (1) 5 $\Rightarrow \rho = 2900 \text{ kg m}^{-3} / 2940 \text{ kg m}^{-3} [3018 \text{ kg m}^{-3} \text{ from } 6 \times 10^{15} \text{ kg}]$ Size or volume of Universe/distance between galaxies (d) (i) against *t*/time (1) Line rising which does not level off (1) Big Bang/t = 0 labelled (1) S or S t (ii) Average (1) Density/mass-density (of Universe) (1) Max 4 Use of $\Delta p/m\Delta \upsilon = F\Delta t$ (1) (e) (i) $\Delta \upsilon = (2 \times 10^6 \text{N}) (7000 \text{ s}) \div 5.8/6 \times 10^{15} \text{ kg} (1)$ $= 2/2.3 \times 10^{-6} \text{ m s}^{-1}$ (1) Will/will not alter asteroid's course [No mark] (ii) Justification: refer to $\Delta s = t \Delta v / s = v t$ (1) 4 [17] (i) Number of protons and neutrons (in nucleus) (1) (a) (ii) Mention of (chemical) elements (1) (iii) Beam of one/speed/velocity energy ions or particles/ions of same energy (1) Mention of like charges repelling (1) 4 (iv) (b) Two protons and two neutrons/labelled sketch (1) (i) 2 MeV = $(2 \times 10^6 \text{ eV}) (1.6 \times 10^{-19} \text{ J eV}^{-1})$ [Ignore 10⁶] (1) (ii) Equate energy to $\frac{1}{2} m v^2$ (1) $=>v = 9.8 \times 10^6 \text{ m s}^{-1}$ (1) (iii) α -particles come randomly/o.e.p. (1) 5

37.

(c) (i) After momentum =
$$-4m \times 3u/5 + 16m \times 2u/5$$
 (1)
(± vectors)
 $\Rightarrow 4 mu$ (1)
(ii) Using $k = 7/T_0 = \frac{1}{2} 4 m (3u/5)^2 + \frac{1}{2} 4 mu^2$ (1)
 $= 0.36/\frac{9}{25}$
Using $k = (m_t - m_t)^2 + (m_t + m_t)^2 = (16 m - 4 m)^2 + (16 m + 4 m)^2 = 0.36/\frac{9}{25}$ [u.e. once only] (1) 5
(d) (i) m_t 12m 24m 48m 120m
 $k = 0.25 - 0.51 - 0.72 - 0.88$
[-1 each wrong]
Table (1) (1)
Graph: [Can be sketch]
 $k = \frac{1}{25} \frac{1}$

38.	(a)	(i)	 Activity: (the number of) nuclei/atoms/particles (1) decaying per unit time (1) Unit: bequerel/Bq/s⁻¹ [Not s⁻¹ if above] (1) 		
		(ii)	$I \propto Q$ (1) 1/RC [dependent on 1 st mark] (1) <i>A</i> and <i>I</i> both involve rate of change/change with time (1) <i>A</i> of nuclei atoms/particles/decays and <i>I</i> of charge (1)	7	
		(iii)	EITHER <i>E</i> - and <i>g</i> - fields/forces (1) Both involve inverse square laws (1)		
			$E = kq/r^2$ and $g = Gm/r^2/F = \frac{kq_1q_2}{r^2} + F = \frac{Gm_1m_2}{r^2}$ (1)		
			OR Springs and capacitors (1) $F = kx$ and $V = Q/C$ OR $E = \frac{1}{2} Fx = \frac{1}{2} VQ$ (1) An action produces a change OR energy stored (1) OR Other analogy spelled out in a similar manner, but not		
			radioactive decay and the discharge of a capacitor.	3	
	(b)	(i)	Use of $\lambda t_{1/2} = \ln 2/0.69/0.693$ (1) with $t_{1/2} = 18 \times 365 \times 24 \times 60 \times 60$ (1) Use of $P = A \times$ energy per decay OR use of $\lambda N \times$ energy per decay (1) $\Rightarrow P = 22.7$ (W) OR $N = 1.76 \times 10^{22}$ (1)	4	
		(ii)	Use of $e^{-\lambda t}$ (with <i>P</i> , <i>A</i> or <i>N</i>) (1)		
			15 W ÷ 20 W = 0.75 (1) ⇒ $t = 7.6 \text{ y}/2800 \text{ a}/67 000 \text{ h}/2.3 \text{ or } 2.4 \times 10^8 \text{ s}$	3	[17]
39.	(a)	-	em A: chemical energy \rightarrow e-m energy/light (1) em B: mechanical energy \rightarrow e-m energy/light (1) [<u>not</u> kinetic]		
		EITH OR:		3	
	(b)	(i)	System A:same power/brightness all the time (1)System B:poor power/brightness/efficiency going up hill/slowly [Not energy] (1)		
		(ii)	System A: energy in cell/battery runs out/decreases (1) [Not power]		
			System B: no change with time (1)	4	

	(c)	(i)	Two cells in series (1) Switch and lamp (1)		
		(ii)	E = IVt = (0.80 A) (1.2 V) (3600 s)/Q = It = 2880 C (1) = 3460 J/3500 J OR $E = QV = 3460 \text{ J} (1)$ Two cells $\Rightarrow E = 6900 \text{ J/6.9 kJ} (1)$	5	
	(d)	(i)	Magnetic flux (1) changing through coil/magnetic field cuts coil (1) so an e.m.f /voltage/p.d. is induced/produced (1)		
		(ii)	Graph + and – on axes of I against t (1) Sinusoidal shape (1)	5	[17]
40.	(a)	(i)	Use of $t = s/\upsilon$ (1) Use of × 2 (1) = $7.9 \times 10^{-8} \text{ s}/7.895 \times 10^{-8} \text{ s}$ (1)	3	
		(ii)	Answer above $\div 2 \times 10^{n}$ (1) = 0.0395 cm/0.395 mm/ \approx 0.4 mm OR $\frac{1}{2}$ of this (1) Probably not/just noticeable [ecf] (1)		
		(iii)	The time base (of the oscilloscope) moves from left to right (1)	4	
	(b)	(i)	Complete radial lines > 2 (1) Symmetrically spaced (1) [Arrows either way] No field outside sheath (1)		
		(ii)	(Inside) <i>B</i> -field is circular/clockwise/anticlockwise/ perpendicular <i>E</i> -field (1) Outside <i>B</i> -field is zero	Max 4	
	(c)	(i)	$C = (7.5 \text{ m}) (120 \text{ pF m}^{-1})$ = 900 pF/9 × 10 ⁻¹⁰ F/0.90 nF [cao] (1)		
		(ii)	Use of Hz as s ⁻¹ (1) EITHER		
			Use of F as C V ⁻¹ (1) Unit of $X = 1/C \text{ s}^{-1} \text{ V}^{-1}$ use of C s ⁻¹ as A (1) OR	4	
			$RC \text{ has unit s/F } \Omega = s (1)$ $\therefore s \div F = \Omega (1)$		
					[15]

41.	(a)	(i)	E = F/q Force divided by c [must define F and q] Small / point (test) charge (-		
		(ii)	A graph with straight line to one increases by factor N, or $OR \ y = mx$ $y = kx / I = kE$ Charges produced/separate	other increases by factor N E where <i>m</i> , <i>k</i> is a constant		4
	(b)	(i)	(Produced) when two differ rub together / a cloth rubs a explicit example / thunderc V der G			
		(ii)	(Used to) check for <i>E</i> -field up) of <u>atmospheric</u> charges	÷ .		2
	(c)	(i)	Use of $E = V/d$ (1) $V = Ed = (240 \text{ N C}^{-1}) (60 \times 10^{-1}) (40 \times 10^{-1}) (40 \times 10^{-1})$ $= 1.4(4) \times 10^{-1} \text{ V/14 MV}$ (1) Assume that <u>field</u> is uniform		L)	
		(ii)	$q = CV \Longrightarrow C = q/V (1)$ $\therefore C = 1.1 \times 10^{6} \text{ C} \div 14.4 / [\implies 77 \text{ mF} / 79 \text{ mF}]$	14×10^6 V e.c.f. (1)		
	(d)	(i)	Positive charge collects in a Negative charge collects or [Because the atmosphere as $\Rightarrow 1$ out of 2 – consolation	n Earth / surface / ground (1) ets as a giant capacitor		
		(ii)	Ionosphere and Earth's sur [could be concentric circles Field lines reaching Earth's Arrows towards Earth's sur	s/parallel lines] s surface (1)		5
	(e)	(i)	Attempt to draw plates one Holes not overlapping at al			2
		(ii)	Aware that $q = \varepsilon_0 EA$ is rele $I = q/t \Delta q \div \Delta t$ / rate of flow For $I \propto E$, there must be no		t (1)	3
		(iii)	Curve: period (shown as) (symmetric + and -			2
	(f)			1		
		Eith		Or		
		Uni	t for $E: N C^{-1}$	Unit for $E: V m^{-1}$	(1)	
		Uni	t for $\boldsymbol{\epsilon}_0$: F m ⁻¹ \Rightarrow C V ⁻¹	Unit for $\boldsymbol{\varepsilon}_0$ & A : F m ⁻¹ and m ²	(1)	
		1			(1)	

$\bigcup_{i=1}^{n} \bigcup_{i=1}^{n} \bigcup_{i$		
m^{-1}	Unit: F as C V^{-1}	(1)
Unit: $V = J C^{-1}$ or $J = N m$		

[or look for $\varepsilon_0 \equiv \text{kg}^{-1} \text{ m}^{-3} \text{ s}^4 \text{ A}^2 \Rightarrow 2/3$; $E \equiv \text{kg m s}^{-3} \text{ A}^{-1} \Rightarrow 2/3$; if both 3/3]

- (g) Resistor/R in series with electrostatic mill (1) Voltmeter / oscilloscope across R (1) (Measure) I as (peak) V/R [not V = IR] (1) $R \ge 10 \text{ k}\Omega$ (1) $R \text{ in k}\Omega/M\Omega \rightarrow V \text{ in }\mu \text{V/mV}$ (1) Max 4 [battery in circuit, first two marks only]
- (a) (i) QOWC (1) Link track to bubbles (1) Which reflects light / are illuminated (1) (produced as) the electron / it <u>ionises</u> liquid / particles / (1) H₂ / air
 (ii) Mention of *B*-field/*F* = *Bqv*/*F* = *Bev*/ FLHR (1) *B* is perpendicular to v/ direction of motion / in or out (1) of page

Electron loses energy/slows down (1) Colliding with / interacting with / ionising liquid particles / H_2 (1) 4

(b) (i) & (ii)

42.

_	<i>r/</i> m	<i>r/</i> mm	$p/kg m s^{-1}$	<i>m/</i> kg
Р	$62 - 67 \times 10^{-3}$	62 - 67	$1.2 - 1.3 imes 10^{-20}$	$4.0 - 4.3 \times 10^{-29}$
Q	$43 - 48 \times 10^{-3}$	43 – 48	$0.83 - 0.92 \times 10^{-20}$	$2.8 - 3.1 \times 10^{-29}$
R	$28 - 33 \times 10^{-3}$	28 - 33	$0.54 - 0.63 \times 10^{-20}$	$1.8 - 2.1 \times 10^{-29}$

Values for r in range above [ignore 10^n and units] (1)

 $p = Ber \Rightarrow$ any one correct p [ignore 10ⁿ but must have (1) unit] [ecf] (1)

All *ps* correct numerically [no ue] (1) $p = mv \Rightarrow m = p/v$ (1)

Any one correct m [ignore 10^n but must have unit]

EITHER

Comment [e.c.f.]: any reference to 9×10^{-31} kg/rest (1) mass (of electron) / electron mass Because electron is moving close to / at the speed of light OR (effective) mass (of electrons) is decreasing (1) reference to $E = mc^2 / \Delta E = c^2 \Delta m / \text{mass-energy}$ (1) conservation

[15]

[31]

4

3

43.	(a)	(i)	Lead shot loses <u>g.p.e.</u> (which becomes/lost to/transfers t energy/heat		2	
		(ii)	Use of 60 $mg\Delta h$ [allow between 0 Use of $mc\Delta\theta/mc\Delta T$ (1) = 3.6 K [\Rightarrow 3.2 K] / 3.6 °C (1)	.70 m and 0.80 m] (1)	3	
		(iii)	Expect ΔT to be less (1) Any 2 of: Tube/plastic warms up; because lead falls < 80 cm; energy surroundings/tube/cork/air; poor thermocouple (1) (1)	y lost to	3	
		(iv)	As <i>m</i> cancels / mass does not math but as <i>c</i> is higher (1) ΔT will be lower (1)	ter (1)	3	
	(b)	(i)				
			Either	Or		
			$I = (1.50 \text{ V} \div 47 025\Omega)$			
			$V_{25} = (3.19 \times 10^{-4} \text{ A})(25.0 \Omega)$	$\frac{V_{25}}{1.50V} = \frac{25.0\Omega}{47025\Omega}$		
			Correct method [ignore no k / no 2 Using k and 25 Ω in correct method = 0.797 or 0.798 or 0.799 × 10 ⁻³ V Assume resistance of (micro)amm resistance cell / wires negligible]	od (1) V [n.b. 3 s.f.] (1)	4	
		(ii)	0.797 mV / 0.799 mV [e.c.f. value	e from (i)] (1)		
		(iii)	Advantage: Low heat capacity/low energy nee detect small ΔTs / more sensitive OR can be a transducer sensor for	-		
			OR no parallax problem with ther	mocouple (1)	2	[17]
44.	(a)	(i)	Its chemical composition / <u>surface</u> (not velocity)	temperature (1)	1	
		(ii)	Use of $\Delta \lambda / \lambda = \upsilon / c$ [some substituti see $\lambda = 440$ or 400 (1) = 1.36 × 10 ⁷ m s ⁻¹ (1) [if bald answer: 1.43 × 10 ⁷ (1)xx 1.50 × 10 ⁷ (1) (1)x; 1.5 × 10 ⁷ (1) towards the Earth / us (1)	$x; 1.4 \times 10^7$ (1)xx;	4	

(b)	(i)	Electrons (are removed) from P / photoelectric effect (1) Current is from P to capacitor / left to right / opposite (1) to emitted e^-	2	
	(ii)	P/plate becomes positively charge/voltage of P rises (1) until electrons can no longer escape/don't have k.e. to (1) escape	2	
	(iii)	Use of $Q = CV = [(22 \times 10^{-12} \text{ F}) (0.58 \text{ V})]$ (1) [Ignore 10 ⁿ until the final answer] = 1.28 × 10 ⁻¹¹ C/ 1.3 × 10 ⁻¹¹ C / 12.8 pC [no ue] (1) Their $Q \div 1.6 \times 10^{-19}$ C (1) $\Rightarrow N = (1.28 \times 10^{-11} \text{ C}) \div (1.6 \times 10^{-19} \text{ C})$ = 8.0 × 10 ⁷ / 80 million [79–81 million] (1) [2.4 × 10 ⁸ electrons $\Rightarrow 2/4$ from $q = C \div V$]	4	
(c)	Vari Emit (mic Volt	ocell in envelope with two electrodes (1) able applied power supply / potential divider[not rheostat] (1) tter as positive [emitter labelled or light on it] (1) ro)ammeter in series [only if a power supply included] (1) meter across photocell/power supply (1) power supply – max 2/4]	Max 4	[17]

45. (a) <u>Graph</u>

Line from origin curving towards (horizontal) (1)

becoming horizontal and terminal velocity marked (1)

- (i) Fluid/liquid/gas [do not accept air] (1) Resistive/drag forces for (movement) through it (1)
- (ii) Charge comes in multiples of a basic charge/e (1)
- (b) (i) Use of $\frac{4}{3}\pi r^{3}\rho g(1)$

Correct answer $[W = 1.86 / 1.9 \times 10^{-14} (N)]$ to at least 2sf (1) [Watch out for 10^{-5} followed by 'right' answer – loses second mark] [Do not credit bald answer] [no ue]

(ii) Use of $4/3\pi r^3 \rho' g$ as buoyant force [could be implied] (1) Recognition of $\rho' \div \rho$ OR $U = 2.4 \times 10^{-17}$ N (1) Hence U/W = 0.13(%) [no ue]

[allow use of 2×10^{-14} giving 0.12%]

- (iii) $4/37\pi r^3(\rho \rho')g = 6\pi r \eta \upsilon$ (1) Hence $r = \sqrt{\frac{9\eta \nu}{2g(\rho - \rho')}}$ (1) 7 [accept any equivalent of 9/2 e.g. 18/4; accept substitution into $(\rho - \rho')$]
- (c) (i) Sketch: \geq 3 vertical lines (1) [ignore curved lines at edges and central gap] Arrows down/consistent with \pm (1)

	(ii)	Rearran	gement of $E = V/d \Rightarrow V = Ed$ (1)		
		$\Rightarrow V = 7$	780 V (1)		
	(iii)	E.m.f. =	$2 \times 780 \text{ V} / 1560 \text{ V}$ [ecf their V] (1)		
			: (power) <u>supply</u> has zero resistance or no internal (1) ce or voltmeter has infinite resistance	6	
(d)	[eg (7.4, 5) (8.	ues correctly read from graph 5 or 8.6, 4) (10.2, 3) (13.8–14.0, 2) , 3.1) (12, 2.3–2.4) (14, 2.0) (7, 5.4)]		
	Rang	ge of at lea	ast 2 N (1)		
			d [e.g. multiplied together / calculate k and use edicted to actual value] [ignore 10^n error] (1)		
			sion: not proportional (1) ark, no ecf from using close values or wrong method]	4	
(e)	[Acc	ept symbo	ols/words/formulae throughout part (e)]		
	(i)	Ĵ Ĵ	(ii) • ↓		
			t down AND buoyancy (force) up on (1) [do not accept gravity]		
	Ident	tify electri	ic (force) up on (i) [Allow electric field] (1)		
	Ident	tify viscou	us (force) up on (ii) (1)		
	[Acc	ept 2 labe	ls on 1 up arrow]		
	(i)	W = B +			
			any correct rearrangement]	E	
	(11)	W = B + [Accept	any correct rearrangement]	5	
(f)	Men	tion of ion	nising/ionisation (1)		
	Com	ment on a	relevant property of α and γ (1)	2	
(g)	Diag	ram:	Downward drift [curves/wiggles OK] (1) [not straight down] (1) Non-equal straight lines (1) At random angles (1)		
	Expl	anation:	Droplet is bombarded (1) by <u>air</u> molecules [1/2 for stating Brownian motion without further detail]	5	[34]
					[04]

46.	(a) (b)	Proto Acce Alter The For t	 Quality of written communication (1) Protons drift/move uniformly inside tubes (1) Accelerate between the tubes/in the gaps (1) Alternating p.d. reverses while p is in tube (1) The tubes must get longer as p speeds up (1) For time inside tube to be constant or to synchronise movement with the pd (1) (i) Multiply by 419 or 420 (1) 		
			Multiply by 1.6×10^{-19} (1) Correct answer to at least 2 sf (1) [5.36/5.38/5.4 × 10 ⁻¹¹ (J)] [no ue]		
			$\Delta m = \text{energy} \div (9.0 \times 10^{16} \text{ m}^2 \text{ s}^{-2}) \text{ (1)}$ [ecf their energy or 5 × 10 ⁻¹¹] (1)		
			$\Delta m \div 1.01 \times 1.66 \times 10^{-27} \text{kg} [\text{ecf their } \Delta m] (1)$		
			Correct answer (1) [0.36 or 36%] [Use of 5×10^{-11} gives 33%] (1)	6	
			[Accept routes via Δm in u and m_p in J]		
		(ii)	Use of 1/ <i>f</i> (1)		
			:. time down linac = $420 \div 3.9 \times 10^8 \text{ s}^{-1}$ or $210 \div 3.9 \times 10^8 \text{ s}^{-1}$ (1) $[t = 1.07/1.08/1.1 \times 10^{-6}(\text{s}) \text{ or } 0.54 \times 10^{-6}(\text{s})]$	2	
	(c)	(i)	Fixed target: Large(r) number of /more collisions or more likely to get collisions [not easier to get collisions] (1)		
			Other particle beams produced (1)		
		(ii)	Colliding beams: More energy available for new particles (1) p = 0 so all energy available (1)	Max 2	[15]
47.	(a)	Men	tion of natural frequency (of water molecules) (1)		
			there is a large/increased amplitude (1)		
			hence max energy transfer / max power transfer / max iency / max heating (1)	3	
	(b)	$\Rightarrow 23$ + 60	kg)(3200 J kg ⁻¹ K ⁻¹)(75 K) seen (1) 88 kJ 0 s to give a power in W [\Rightarrow 480 W] (1) siency 480 W e.c.f \div 800 W [= 60%] (1)		
		There will be heat/energy/power losses from the meat/to the (1) surroundings or water evaporation needs LHV or water evaporation leaves fewer molecules to vibrate			
	(c)	(i)	See c = 3 × 10 ⁸ (m s ⁻¹) used in c = $f\lambda$ (1) [$\Rightarrow \lambda = 0.12 \text{ m/12 cm/120 mm}$]		

		(ii)	Measure SQ[34 mm], QP[34 mm] and SP[32 mm] and multiply readings by 5 [170 mm, 170 mm, 160 mm] (1) [No tolerance on measurements, no ue]		
			Add SQ and QP [ecf their values] (1)		
			Mention of path difference or attempt to find path difference (1) e.g. $(SQ+QP) - SP$		
			Conversion of any length to wavelengths (1) Correct discussion of superposition/phase difference (1) relevant to their path difference		
			[Allow maximum if mention π phase shift on reflection]	6	
		(iii)	Mention of nodes/antinodes (1) [not constructive/destructive interference]		
			Energy at antinodes/no energy at nodes (1) [Accept heating at antinodes]		
			Rotate meat (plate)/reflect waves from (metal) (1) paddle/move meat several times	3	[16]
					[16]
48.	(a)	Time	a end of slinky in suddenly/quickly (1) e how long to reach end (1) sure length of slinky and use $v = defined \ length/defined \ time$ (1)		
		Relia	ability: repeat and average/use very short pulse (1)	4	
		(i)	$ \begin{array}{c} \text{LHS: m s}^{-1} \\ \text{RHS: } l \text{ is m and } m \text{ is kg} \end{array} \right\} (1) $		
			$k ext{ is N m}^{-1}$		
			N is kg m s ^{-2}		
			[k is kg s ⁻² is last 2 marking points]		
		(ii)	<i>k</i> is double (that of a spring) (1)	4	
	(c)	(i)	Rearrangement of $B = \mu_0 n I \Rightarrow n = B/\mu_0 I$ (1)		
			$\therefore n = (0.34 \times 10^{-3} \text{ N A}^{-1} \text{ m}^{-1}) \div (4\pi \times 10^{-7} \text{ N A}^{-2})(5 \text{ A}) (1)$ = 54 m ⁻¹ (1)	3	
		(ii)	Mention of magnetic flux/flux/ ϕ (1) [Do not accept magnetic flux density]		
			Increasing/changing ϕ (as pulse reaches coil) (1) [Accept decreasing]		
			Because ϕ or <i>B</i> depends on <i>n</i> (1) [can be symbols or words]		
			Reference to Faraday /rate of change of ϕ or B (1) Producing induced a m f /voltage in coil [pot current] (1)	Max 4	
			Producing induced e.m.f./voltage in coil [not current] (1)		[15]