1. No mark scheme available
2. The list gives some quantities and units. Underline those which are base quantities of the International (SI) System of units.
coulomb force length mole newton temperature interval

Define the volt.
Volt $=$ Joule/Coulomb or Watt/Ampere

Use your definition to express the volt in terms of base units.

$$
\begin{aligned}
\text { Volt } & =\mathrm{J} / \mathrm{C} \\
& =\mathrm{kg} \mathrm{~m}^{2} \quad \mathrm{~s}^{-2 / A ~ s} \\
& =\mathrm{kg} \mathrm{~m}^{2} \mathrm{~s}^{-3} \mathrm{~A}^{-1}
\end{aligned}
$$

Explain the difference between scalar and vector quantities
Vector has magnitude and direction
Scalar has magnitude only

Is potential difference a scalar or vector quantity?
Scalar
3. With the aid of an example, explain the statement "The magnitude of a physical quantity is written as the product of a number and a unit".

Both number and unit identified in an example
(1)
followed by the idea of multiplication (1)

Explain why an equation must be homogeneous with respect to the units if it is to be correct.
If the units on one side differ from those on the other, then the two sides of
the equation relate to different kinds of physical quantity. They cannot be
equal [or similar positive statements]

Write down an equation which is homogeneous, but still incorrect.
Any incorrect but homogeneous algebraic or word equation :
$2 \mathrm{mgh}=1 / 2 \mathrm{mv}^{2}, 2 \mathrm{~kg}=3 \mathrm{~kg}$, pressure $=$ stress/strain (2 or 0)
4. For each of the four concepts listed in the left hand column, place a tick by the correct example of that concept in the appropriate box.

5. (a) Straight line parallel to pipe
(1)
(1)

Two or more parallel lines
(1)

Muddled/swirly lines

to side of/all over pipe
(1)
(4 marks)
(b) Critical speed:

Maximum speed for smooth flow/speed at which flow becomes turbulent
(1)

Initial quietness:
Liquid is undisturbed/still/calm/not moving around (in tank whence it comes)
Boundary layer:
Liquid immediately/directly in contact with a surface/cylinder/boundary
(1)
(3 marks)
(c) Re useful:

Flow of liquid along pipes
(1)

Flow of liquid past cylinder/pipe
(1)

Common feature:
Roughness of pipe wall/cylinder surface OR reference to drag
(1)
(3 marks)
(d) $\quad \mu$ must have same units as pvd
(1)
ρ is $\mathrm{kg} \mathrm{m}^{-3} ; v$ is $\mathrm{m} \mathrm{s}^{-1} ; d$ is m
All
(1)
$\therefore \mu$ is $\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-1}$
(Allow e.c.f)
$\mathrm{N} \equiv \mathrm{kg} \mathrm{m} \mathrm{s}^{-2}$
$\therefore \mathrm{N} \mathrm{s} \mathrm{m}^{-2}=\left(\mathrm{kg} \mathrm{m} \mathrm{s}^{-2}\right)\left(\mathrm{sm}^{-2}\right)=\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-1}$
(1)
(1)
(e) $v \propto \mu$
and $v \propto 1 / \rho$
(Accept bald answers)
Mercury has high $\rho /$ tomato sauce has low ρ
Tomato sauce has high μ / mercury has low μ
$\Rightarrow v$ mercury $<v$ tomato sauce (no error carried forward)
(f) (i) $\quad \frac{\rho v d}{\mu}=\frac{\left(830 \mathrm{~kg} \mathrm{~m}^{-3}\right)\left(0.42 \mathrm{~m} \mathrm{~s}^{-1}\right)(0.16 \mathrm{~m})}{9.6 \times 10^{-2} \mathrm{~N} \mathrm{~s} \mathrm{~m}^{-2}}$

$$
=580
$$

(which is less than $\mathrm{Re}=1300$) \therefore smooth flow
(1)
(1)
(1)
(1)
(1)
(5 marks)
(1)
(1)
(5 marks)
)
1)
)
(1)
(3 marks)
(ii) Sketch:

Section (vertical or horizontal) or 3D
(1)

Calculation:
Use of $F / l=4 C_{\mathrm{D}} \rho^{2} r$
$=4 \times 5.0 \times\left(830 \mathrm{~kg} \mathrm{~m}^{-3}\right)\left(0.42 \mathrm{~m} \mathrm{~s}^{-1}\right)^{2}(0.01 \mathrm{~m})$
$=29 \mathrm{~N} \mathrm{~m}^{-1}$
(1)
(g) At $\operatorname{Re}=10$: viscous
(1)

At $\mathrm{Re}=1000$: inertial
(1)

When $\operatorname{Re}=10, C_{D}=2$ to 4 .
Graph:
Reference to power/log/exponential
(1)
$\lg c_{\mathrm{D}}=\mathrm{a} \lg R e+b / c_{\mathrm{D}}=b R e^{a}$
(1)

Attempt to evaluate a or b
6. Classify each of the terms in the left-hand column by placing a tick in the relevant box
[Total 6 marks]
7. (a) (i) Ion pair:

Charged particles
(1)

Positive and negative
(1)
(ii) Space charge:

Region/area containing positively charged
(1)
massive/slow-moving particles/ions
(iii) Dead time:

Period/time when GM tube is insensitive to arrival of further particles
(1)
(5 marks)
Avalanche:
Electrons accelerate/gain energy
(1)
causing ionisation
(1)
idea of a cascade, e.g. chain reaction
(1)
(b) $\begin{aligned} & \Delta p=(101-11) \times 10^{3} \mathrm{~Pa} \\ & \text { Use of } F=A p \text { OR } A \Delta p \\ = & \pi\left(12 \times 10^{-3} \mathrm{~m}\right)^{2}\left(90 \times 10^{3} \mathrm{~Pa}\right) \\ = & 41 \mathrm{~N}\end{aligned}$
(1)
(1)
(1)
(1)
(4 marks)
Difficulty:
α-particles easily stopped/have short range/are least penetrating
(1)
so thin end windows needed
(1)
but forces/pressures are high
(c)
(i) Thickness of mica $=\left(2 \times 10^{-2} \mathrm{~kg} \mathrm{~m}^{-2}\right) \div\left(2800 \mathrm{~kg} \mathrm{~m}^{-3}\right)$
$=7.14 \times 10^{-6} \mathrm{~m}$
Therefore number of molecules
$=7.14 \times 10^{-6} \mathrm{~m} \div 8.4 \times 10^{-9} \mathrm{~m}$
$=850$
(1)
(Max 3 marks)
(ii) α ionises more densely than β
(1)
as it has twice the charge/is slower than β
Therefore β penetrates more/gets through thicker windows than α
(1)
(1)
(3 marks)
(d) Radial lins/parallel lines
(1)
with arrows outwards
\pm marked/anode-cathode marked consistent with arrows
(3 marks)
Calculation:
$F=\mathrm{q} E$
(1)
$=1.92 \times 10^{-14} \mathrm{~N}$
(1)
$m a=F$
(1)
$a=2.1 \times 10^{16} \mathrm{~m} \mathrm{~s}^{-2}$
(1)
(4 marks)
(e) (i) $\ln \left(r_{\mathrm{a}} / r_{\mathrm{c}}\right)$ no units $/ r_{\mathrm{a}} \div r_{\mathrm{c}}$ no units/ln is number
$\varepsilon_{0} l$ has unit $\mathrm{F} \mathrm{m}^{-1} \times \mathrm{m}$
(1)
$=\mathrm{F}$ which is unit of capacitance
(1)
(1)
(3 marks)
(ii) Time constant $=R C$

$$
\begin{align*}
& =\left(1 \times 10^{5} \Omega\right)\left(10 \times 10^{-12} \mathrm{~F}\right) \tag{1}\\
& =1 \times 10^{6} \mathrm{~s}
\end{align*}
$$

8. Joule: $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2}$ (1)

Coulomb: Derived unit
Time: \quad Scalar quantity
(1)

Volt: $\quad \mathrm{W} \times \mathrm{A}^{-1} \quad$ (1)
[Total 4 marks]
9. What is meant by "an equation is homogeneous with respect to its units":

Each side/term has the same units
Equation $x=u t+1 / 2 a t^{2}$:
ut - $\left(\mathrm{m} \mathrm{s}^{-1}\right) \mathrm{s}=\mathrm{m}$
$a t^{2} / 2\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \mathrm{s}^{2}=\mathrm{m}$
all 3 terms reduce to m
[Allow dimensions]

Explanation:
Wrong numerical constant/wrong variables
Units same, numbers wrong/
Units same, magnitudes wrong 1
Example $=1 \mathrm{~kg}+2 \mathrm{~kg}=5 \mathrm{~kg}$
10. The joule in base units:

$$
\mathrm{kg} \mathrm{~m}^{2} \mathrm{~s}^{-2} \text { [No dimensions] }
$$

Homogeneity of formula:

$$
\begin{array}{ll}
\rho & \mathrm{kg} \mathrm{~m}^{-3} \mathbf{(1)} \\
r & \mathrm{~m}, f=\mathrm{s}^{-1} \mathbf{(1)}
\end{array}
$$

(Right hand side units $\left.=\left(\mathrm{kg} \mathrm{m}^{-3}\right)(\mathrm{m})^{5}\left(\mathrm{~s}^{-1}\right)^{2}\right)$ [Correct algebra]

$$
=\mathrm{kg} \mathrm{~m}^{2} \mathrm{~s}^{-2} \text { [Only if } 1^{\text {st }} \text { two marks are earned] (1) } 3
$$

[Ignore numbers; dimensions OK if clear]
Why formula might be incorrect:
The $1 / 2$ could be wrong (1) 1
11. Labels of elements:

D close to O: AND U ≥ 200 (1)

Fe at peak (1)
Meaning of binding energy:
Energy needed to split/separate a nucleus (1)
into protons and neutrons/nucleons (1)
OR
Energy released when nucleus formed (1)
from protons and neutrons/nucleons (1)
OR
Energy released due to mass change/defects (1)
Sum of masses of protons and neutrons $>$ mass of nucleus (1)
[In each of the cases above, the second mark is consequent upon the first]
Explanation:
Uranium (1)
Binding energy per nucleon of products is higher
OR
Products/atoms/element/nuclei nearer peak (1)
Therefore more stable (1)
5
12. Calculation of the magnitude of the electric field strength:

Correct use of $E=\mathrm{kq} / \mathrm{r}^{2}$ [all substitutions, any value of q] (1)
$q=92 \times e(\mathbf{1})$
Magnitude $=2.4 \times 10^{21} \mathrm{~N} \mathrm{C}^{-1} \mathrm{OR} \mathrm{V} \mathrm{m}^{-1}(\mathbf{1})$
Direction of electric field:
Away from nucleus/outwards/on diagram (1)
Similarity and difference between electric and gravitational field:
Similarity - Both radial/obey inverse square law $/ \propto 1 / \mathrm{r}^{2} \mathbf{(1)}$
Difference - Magnitude of g field $\ll E$-field
OR G-field direction towards nucleus, E field away from nucleus
OR G-field attractive only, E field attractive OR repulsive (1)
13. Estimate of time constant, using graph:

Method
(1)

Value $23 \longrightarrow 26$ s (1)
Calculation of resistance and hence capacitance:
$R=\frac{V}{i}$ OR $\frac{9}{0.19 \times 10^{-3}}$
Resistance $=47 \mathrm{k} \Omega$ [ue] (1)
Substitute in $t=\mathrm{RC}$ [e.c.f their t, their R] OR answer $300 \mu \mathrm{~F}$
Capacitance $=500 \mu \mathrm{~F}$ (1)
Addition to graph of line showing how potential difference varies with time:
A curve of shape shown below, i.e. getting less steep (1)
Any convex curve ending at $\approx 7.5 \mathrm{~V}$, crossing at $\approx 15 \mathrm{~s} \mathbf{(1)}$
14. (a) Either

Bunch of threads/hair (1)
Connected to top of sphere (1)
Fan out repelling each other (1)
Or
Light conductor on insulating thread [e.o.p. plastic sphere] (1)
Touch to sphere (1)
Hold at side repelled (1)
[May all be on labelled diagram]
Max 2
(b) Unit of I, w and v as A, m and $\mathrm{m} \mathrm{s}^{-1}$ (1)

As A s = C (1)
unit of X is $\mathrm{C} \mathrm{m}^{-2}$
so X may be the charge density/per unit area (on belt) (1)
(c)
(i) Radial lines [be generous]
>4 lines (1)
Arrows inward [to surface
(ii) $\quad E=\mathrm{Q} / 4 \pi \varepsilon_{0} r^{2} \rightarrow Q=4 \pi \varepsilon_{0} r^{2} E$ (1)
$\therefore Q=4 \pi\left(8.85 \times 10^{-12} \mathrm{~F} \mathrm{~m}^{-1}\right)(0.15 \mathrm{~m})^{2}\left(3.6 \times 10^{5} \mathrm{~N} \mathrm{C}^{-1}\right)$
$=0.90 \times 10^{-6} \mathrm{C}$ OR $0.90 \mu \mathrm{C}$ (1)
$V=Q / 4 \pi \varepsilon_{0} r^{2} \quad$ OR $V=E r(1)$
Substitution [allow e.c.f for Q]
$\rightarrow V=54 \times 10^{3}$ V OR 54 kV
(d) (i) Leakage current:
(Fast) random movement (1)
(Very) slow drift velocity [down] (1)
On belt:
Uniform velocity [up] (1)
(ii) Axes showing:
V (up) and $120 \mathrm{~s} / 2 \mathrm{~min}$ (along) (1)
$V / 2$ OR origin OR 60 s [i.e. zero on one axis implied] (1)
Exponential curve from (O s, V) not reaching time axis (1) Max 5
15. Correct quantities on diagram:

Upper ellipse capacitance [not energy] [Accept capacitance ${ }^{-1}$]
Lower ellipse resistance [not power] [Accept conductance/resistance ${ }^{-1}$]

Explanation:
Base quantities/units
[Not fundamental]
Not derived from other (physical) quantities
OR other (physical) quantities are derived from them
OR cannot be split up/broken down
16. Calculation of energy released for each fission:
$\Delta m=0.2035 \mathrm{u}$
Convert their Δm to $\mathrm{kg}\left[\times\left(1.66 \times 10^{-27}\right) \mathrm{kg}\right] \mathrm{OR} \times 931$
Convert their kg to $\mathrm{J}\left[\times\left(3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}\right)^{2}\right] \quad \mathrm{OR} \times 1.6 \times 10^{-13}$

Calculation of power output:
Energy per mole $=3.04 \times 10^{-11} \mathrm{~J} \times 6 \times 10^{23}$
Full e.c.f. their energy $=1.8 \times 10^{13} \mathrm{~J}$
Power $=\frac{\text { Any energy } J}{5 \mathrm{~s}}$ [No e.c.f.]
$=3.6 \times 10^{12} \mathrm{~W} \quad\left[\right.$ Accept J s ${ }^{-1}$]
(1)
17. (a) (i) Light travels very fast/instantaneous/at $3 \times 10^{9} \mathrm{~m} \mathrm{~s}^{-1}$

To travel 1.5 km , sound takes 4.4 s
Measuring time enables distance to be found
(ii) Sheet lightning: flash/stroke/discharge within a cloud/from cloud to cloud
(b) Charge negative on cloud

Charge positive on tower
Jagged line from cloud to tower
Negative leader is column of charged ions
Negative leader marked on diagram
(c) (i) Either
Or

$$
\begin{array}{ll}
P=4 \times 1010 \mathrm{~W} & P=I V \Rightarrow \frac{p}{l}=I \frac{V}{l} \\
p=I V \rightarrow V=\frac{P}{I} & E=\frac{V}{l}=\frac{P / l}{I} \\
\Rightarrow V=2 \times 106 \mathrm{~V} & =5000 \mathrm{~V} \mathrm{~m}^{-1}
\end{array}
$$

(ii) $\mathrm{E}=\frac{V}{d}$
$=5000 \mathrm{~V} \mathrm{~m}^{-1}(\mathbf{1}) \quad=2 \times 10^{6} \mathrm{~V}(\mathbf{1})$
(d) (i) Thunder

Air heated Rapid expansion
(ii) Air temperature, any value in kelvin

$$
\frac{p}{T}=\text { constant }
$$

Assume V constant
$\Rightarrow \mathrm{P}=$ around 10000 kPa
(e) Breathing stops (when struck by lightning)
(alone means) no-one to help get it going again
(f) The electrical discharge ionises/excites gas/air molecules/particles
which return to their ground state
emitting (a flash of) visible photons
Quality of written communication
(g) e.h.t. /Van de Graaf
with voltmeter
Two terminals/spheres/plates
Raise voltage/bring t.s.p closer
Suggestions: atmospheric conditions Max 4
18. (a) (i) $\mathrm{X}=520 \mathrm{~N}$ and $\mathrm{Y}=637 \mathrm{~N}$ to 650 N
(ii) moment of weight/ 650 N and moment of towing force $/ 520 \mathrm{~N}$ must be equal
as 520 N varies she must alter its moment or that of her weight by altering the distance of either force from (the point of) the ski (through which the resultant of X and Y acts)
(b) The push of the water on her/the board
inward/towards the centre of the curved path/circle
the only vertical force on her is her weight/gravity
[Not "no vertical reaction"]
(c) $(65 \mathrm{~kg}) a=520 \mathrm{~N}$
$\rightarrow a=8.0 \mathrm{~m} \mathrm{~s}^{-2}$
Force X reduces as she slows/X depends on speed 3
(d) Doppler shift (of spectral lines)

Tells us speed of recession (of galaxy)
Nature of emission/absoption (of spectral) lines
Tells us chemical composition (of stars)
Quality of written communication
5
19. (a) (i) Current in coil produces a magnetic field
\therefore (magnetic) flux through ring changes/field lines are cut by ring so induced e.m.f. in ring
The current feels a Bil force/motor effect/
Fleming/left hand rule
because of opposing B-fields/Lenz's law opposing
Quality of written communication
(ii) $\quad P=I^{2} R \Rightarrow R=P / I^{2}$ (1)
$=1.6 \mathrm{~W} \div(140 \mathrm{~A})^{2} \mathbf{(1)}$
$=8.2 \times 10^{-5} \Omega(\mathbf{1)}$
$R=\rho l / A$ (1)
A calculated as $\left(2.0 \times 10^{-3} \mathrm{~m}\right)\left(15 \times 10^{-3} \mathrm{~m}\right)$
or
l calculated as $2 \pi\left(12 \times 10^{-3} \mathrm{~m}\right)(1)$
$\Rightarrow \rho=3.3 \times 10^{-8} \Omega \mathrm{~m}(\mathbf{1})$
(b) (i) Measure:

Mass of ring and mass of water
Initial and final temperatures of water/ $\Delta \theta$ water
Look up s.h.c. of aluminium and water
(ii) Detail of where/when heat losses occur

Calculated temperature too small
20. (a) (i) (The particles are accelerated through a circular accelerating tube)

The particles are accelerated by passing repeatedly through accelerating voltages. (1)
Alternating voltages are used, so the electric field is always attractive (1)
The particles travel in a circle therefore a centripetal force is needed (1)
This is provided by (large) magnets, because charged particles
experience a force when moving in a magnetic field (1)
Because it is a circle the particles can go round many times, gaining more energy each time (1)
Quality of written communication (1)
(ii) $m \frac{v^{2}}{r}=B q v$
$\rightarrow r=\frac{m v}{B q}$
Since $\frac{m}{B q}$ is constant, r increases as v increases
(b) (i) The particles ionise hydrogen atoms

Bubbles form on these ionised atoms
Light shining on/reflecting from the bubbles (makes them visible)
(ii) Particle 2 is charged negatively

Particle 3 does not ionise/is neutral
(iii) Mass-energy is conserved/mention of $\Delta E=c^{2} \Delta m$

In this case the mass lost has become kinetic energy
21. (a) $v=(u)+a t \quad$ Evidence of $183 / 182.5 \times 24 \times 3600 \mathrm{~s}$
$v=\left(9.8 / 10 \mathrm{~m} \mathrm{~s}^{-2}\right)$ (value of t from above)
(1)

$$
150-160 \mathrm{Mm} \mathrm{~s}^{-1}
$$

$$
=1.5-1.6 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}
$$

$$
150-16-\times 10^{6} \mathrm{~m} \mathrm{~s}^{-1} \quad[\text { e.c.f. value of } t]
$$

(b) (i)

$$
\begin{equation*}
E=\frac{V}{d}=\frac{100 \mathrm{~V}}{0.004 \mathrm{~m}} / \frac{100 \mathrm{~V}}{4 \mathrm{~mm}} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
=2.5 \times 10^{4} / 25000 \mathrm{~V} \mathrm{~m}^{-1} / \mathrm{N} \mathrm{C}^{-1} \text { OR } 25 \mathrm{~V} \mathrm{~mm}^{-1} \tag{1}
\end{equation*}
$$

(ii) $\quad F=Q E \quad[$ Beware $B q v \rightarrow 0 / 2$ e.o.p.] $=\left(1.6 \times 10^{-19} \mathrm{C}\right)($ value of E from above $)$

$$
\begin{equation*}
=4.04 \times 10^{-15} \mathrm{~N} \tag{1}
\end{equation*}
$$

(iii) $\quad a=\frac{F}{m}$
(1)

$$
\begin{equation*}
\text { Use of } m_{\mathrm{e}}=9.1 / 9.11 \times 10^{-31} \mathrm{~kg} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
=4.4 \times 10^{15} \mathrm{~m} \mathrm{~s}^{-2} \tag{1}
\end{equation*}
$$

(c) (Electron gun at) high voltage/potential/p.d.
1)

Relative to earth/below earth [Accept anode for earth]
(1)

Exerts force on/repels electrons
(1)
(because of large) charge/electrons on hemisphere/dome/belt
(1) $\quad \operatorname{Max} 3$
(d) Drawing:

Two peaks [up or down or one of each]
(1)

Narrow [dependent on 2 peaks]
(1)

About 3 div/cm apart [Award a 3 cm wide rectangle]
About $1 / 3 \mathrm{div} / \mathrm{cm}$ wide [Apply to single peak]
(1)

Time base scale shown (1)
1)
(e) (i) m is mass of disk/B/aluminium
(1)
c is s.h.c. (1)
(ii) 1 volt is a joule per coulomb [owtte]/watt per ampere
[Not a definition of p.d.]
(1)

NeV units are (none) $\times C \times \frac{\mathrm{J}}{\mathrm{C}}$ [hence J]
(f)
(i)

T / MeV	0.25	0.50	1.00	1.50	
$t / 10^{-8} \mathrm{~s}$	3.85	3.28	3.03	2.92	
$v / 10^{8} \mathrm{~m} / \mathrm{s}$	2.18	2.56	2.77	$2.88 \quad$ [all correct]	
$v^{2} / 10^{16} \mathrm{~m}^{2} / \mathrm{s}^{2}$	4.76	6.56	$7.68 / 9$	$8.27 / 8$	
\quad [may be on graph]					
[attempted]					

[2 s.f. ok] [Table ignore units]
$1 / 2 m v^{2}=$ eV route: e.o.p. $0 / 2$
(ii) Graph:
[Can be all from their data - sketch OK]
Sensible axes labelled plus units [axes either way]
(1)

Points correctly plotted e.c.f. [ignore 0,0]
Graph smooth curve/best fit line if no zero
(iii) Comment:
[No/yes] [From here only credit $v^{2} \mathrm{v} T$ graphs]
(1)
$v^{2} \mathrm{v} T$ is not straight line / through zero
$v^{2} \mathrm{v} T$ is straight line through zero
(iv) At very high T : line flattens out [owtte] / has max at

Reference to $c /$ speed of light $/ 9 \times 10^{16} \mathrm{~m}^{2} \mathrm{~s}^{-2} / \quad$ (1)
$3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Concept of delay (1)
For each must be (made) the same
[Beware signals arriving at same time]

(1)

(ii) To check/confirm that $T=e \mathrm{eV} /$ to measure T independently [T or energy or k.e.]

Max 3
22. (a) (i) (Extending) force, extension [Not displacement, length, distance]
[Accept $l-l_{0}$ implied]
(1)

Potential difference/voltage, charge
(1)
(ii) $W_{\mathrm{s}}=1 / 2 x F / 1 / 2 F x$
(1)

$$
\begin{equation*}
=1 / 2 \frac{F^{2}}{k} \quad[\text { Accept bald answer in correct order }] \tag{1}
\end{equation*}
$$

EITHER
$W_{\mathrm{s}}=1 / 2 \frac{(k x)^{2}}{k}$

$$
\begin{equation*}
W_{s}=\int_{0}^{x} F d x=\int_{0}^{x} k x d x \tag{1}
\end{equation*}
$$

$$
=1 / 2 k x^{2}
$$

$$
=\left[k \frac{x^{2}}{2}\right]=1 / 2 k x^{2}
$$

OR
$\begin{aligned} W_{\mathrm{s}} & =1 / 2 x F=1 / 2 x(k x) \\ & =1 / 2 k x^{2}\end{aligned}$
$W_{\mathrm{c}}=1 / 2 C V^{2}=1 / 2(0.0047 \mathrm{~F})(25 \mathrm{~V})^{2}\left[\right.$ Ignore $\left.10^{\mathrm{n}}\right]$
$=1.5 \mathrm{~J} / 1.47 \mathrm{~J} \quad$ [no e.c.f.]
(1)

Quality of written communication
W_{c} is (very) small
(1)

Even at 50 V it is only 6 J
(1)

Any ΔT is difficult to measure/wire spread out/ something like a thermocouple is needed (1)
Wire (might) melt/fuse
(1)

Heat/energy loss to air/surroundings [not to connecting wires]
(1) $\operatorname{Max} 4$
(ii) Exponential (decay) (1)

Radioactive decay/radioactivity [independent]
(1)

Use of one of five approved methods [Name it]
(1)

Data off graph appropriate to method [ignore 10^{n}]
(1)

Use of $R C /$ use of $R=V / I$
$R=7.2 \Omega-8.5 \Omega \quad$ [no e.c.f.] (1)
[7200 $\Omega-8500$ gets $3 / 4$]
[Methods:
M1 $_R C=$ time to $Q_{0} \div e[35-39 \mathrm{~ms}]$
M2 $R C \ln 2=t_{1 / 2} \quad[24-28 \mathrm{~ms}]$
M3 $\quad R C=$ where initial tangent hits t axis [32-40 ms]
M4 Use of $R C$ in $Q=Q_{0} e^{-t / R C}$ with numbers

$$
[\approx \text { correct }]
$$

M5 Calculation of T_{0} initial current from gradient

$$
[2.7-3.0 \mathrm{~A}]
$$

23. (a) (i) $v=\frac{2 \pi r}{T} / \omega=\frac{2 \pi}{T}$ [Use of]
(1)

Use of $a=\frac{v^{2}}{r} / r \omega^{2}=0.22 \mathrm{~m} \mathrm{~s}^{-2}$
Centripetal/towards (centre of) Earth
(1)
(ii) $\quad g=G \frac{m_{E}}{r^{2}} / G \frac{m}{r^{2}}$ with m defined
$\Rightarrow m_{\mathrm{E}}=\frac{g r^{2}}{G}$ or numbers $\left[\rightarrow 5.3-5.8 \times 10^{24} \mathrm{~kg}\right]$
6
(b) (i) $18000 \times\left(12 \times 10^{-4} \mathrm{~m}^{2}\right)\left(1.4 \times 10^{3} \mathrm{~W} \mathrm{~m}^{-2}\right)$
(1)
$(=30.24 \mathrm{~kW}) \quad\left[\right.$ Ignore 10^{n}]
(1)
$\eta=\frac{4500 \mathrm{~W} / 4.5 \mathrm{~kW}}{\text { their power }}$
$\Rightarrow \eta=15 \% / 0.15 \quad$ [no e.c.f.] [Beware 0.15\%]
(ii) Evidence of $\times 60$ (series)
(1)

Evidence of $\div 300$ (parallel)
(1)
$\Rightarrow R=8.0 \Omega / 8 \Omega \quad[200 \Omega \rightarrow 1 / 3$ e.o.p. $]$
e.m.f. $=60 \varepsilon$
(1)

4
(iii) S open: read V to get $\varepsilon /$ e.m.f. of cell
(1)

S closed:
Read mV to get $V / p . d . /$ voltage across R OR terminal voltage/voltage of cell Current $I=V / R \quad$ (1)
Use $\varepsilon=I(R+r) / V=\varepsilon-I r / I r=\varepsilon-V=$ lost volts
$\varepsilon=V+I R$
Value for $R: 10 \Omega-100 \Omega \quad$ (1) $\operatorname{Max} 4$
24. (a)
(i) $c=f \lambda \Rightarrow \lambda=c / f$
$\lambda=\frac{3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}}{1.07 \times 10^{9} \mathrm{~Hz}} \quad$ [Ignore 10^{n}]
(1)
$=0.28 \mathrm{~m}$
Plane polarised:
Rotate aerial [Not a grid] (1)
about horizontal axis/still pointing to transmitter (1)
Note max to min signal (on TV) i.e. change (1)
Max 5
(ii) Superposed:

Waves add/combine [Not interfere]
OR $\bigcap+\bigcap=\bigcap$ OR $\bigcap+\bigcup=-$
OR nodes and antinodes (1)
Displacements add/vector addition (1)
$\frac{\lambda}{2} / 0.14 \mathrm{~m} \mathrm{OR} \frac{\lambda}{4} / 0.7 \mathrm{~m}$ apart OR $n \lambda$ OR $n \frac{\lambda}{2}$
(1)
so that waves arrive in phase/to get (because) path difference
of λ to get constructive interference/to get the receiving dipole at an antinode (1)
(b) (i) $\quad I$ is in $\mathrm{W} \mathrm{m}^{-2}$ (given) [Unit $\equiv \mathrm{kg} \mathrm{s}^{-3}$]

Evidence of B in $\mathrm{N}^{-1} \mathrm{~m}^{-1}$
(1)

Evidence of c in $\mathrm{m} \mathrm{s}^{-1}$ and μ_{0} in $\mathrm{N} \mathrm{A}^{-2}$ (data)
Evidence of m N as J / J as $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2}$
(1)

Evidence of $\mathrm{J} \mathrm{s}^{-1}$ as W (1)
Max 3
(ii) Connect coil to galvo / datalogger / oscilloscope / ammeter
/ voltmeter OR current in coil and magnet on top pan balance
Move coil (rapidly) out of field/to or from magnet
(1)

OR detect force
No movement \rightarrow no reading/current
(1)

OR steady force means steady field
3
25. (a) (i) Force per unit area (1)
on a surface/object/body (1)
by light/e-m radiation/e-m waves (1)
(ii) Away from the Sun/in direction of waves (1)
(iii) A bounce/collision (of e.g. molecule or ball or trolley) which conserves k.e./transfers twice its momentum (1)
(b) (i) LHS: $\mathrm{kg} \mathrm{m} \mathrm{s}^{-1} / \mathrm{N} \mathrm{s}_{\text {(1) }}$

RHS: W/m ${ }^{2}$ (1)
$\times \mathrm{m}^{2} \times \mathrm{s} \div \mathrm{m} / \mathrm{s}$ (1)
Use of W as J / s OR use of J as $\mathrm{N} \mathrm{m} / \mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2}$ (1)
OR N as $\mathrm{kg}, \mathrm{m} \mathrm{s}^{-2}$ (1)
by lem (1)

OR
(ii) $U=I A t=\left(12 \mathrm{~W} / \mathrm{cm}^{2}\right)\left(460 \mathrm{~cm}^{2}\right)(30 \times 60 \mathrm{~s})\left[\right.$ Ignore $\left.10^{\mathrm{n}}\right]$
$\times 0.8$
$=7.95 / 8.0 \times 10^{6} \mathrm{~J}(\mathbf{1})$
(c) (i) Step 1: Newton's $2^{\text {nd }}$ law/force $=$ rate of change of momentum $F=\Delta p / t$ impulse $=F t(\mathbf{1})$

Step 2: pressure $=$ force, $/$ area $p=F / A$ (1)
(ii) 20 N is a small force/produces small acceleration/'needs a vehicle of small mass (1)
but operates continually (1)
but S falls off (1)
as inverse square law (1)
control of ($2 \mathrm{~km}^{2}$) sails difficult/subject to damage (1)
(d) (i) Switch light on and off (1)

Graph: A against f with a peak and axes labelled (1)
$f_{\mathrm{o}} /$ resonant frequency indicated (1)
(ii) Any two from:

- increase distance $M M^{1}$
- use a weaker suspension/thinner suspension
- increase area of mirror
- use longer suspension (1) (1)
(iii) Mass of (metal) disc (1)

Area illuminated/area of disc or mirror (1)
s.h.c. of disc (1)

Time illuminated (1)
(iv) Either

Measured v predicted $=0.05 \mu \mathrm{~Pa} \div 7.06 \mu \mathrm{~Pa}$ (1)
$=0.71 \%$
which is $<1.5 \%$ (so confirmed) (1)
Or
$7.01 \mu \mathrm{~Pa} \pm 1.5 \%=(7.01 \pm 0.11) \mu \mathrm{Pa}(\mathbf{1})$
which is from $6.90 \mu \mathrm{~Pa}$ to $7.12 \mu \mathrm{~Pa}$ (so confirmed) (1)
(e) (i) Because we don't fall backwards when opening a window [i.e.
quote] OR light/e-m waves/photons have no mass (1)
(ii) Use of $E=h f(\mathbf{1})$

Use of $f=c / \lambda$ (1)
$\Rightarrow p=h c / \lambda c=h / \lambda$
$\therefore \mathrm{p}=\left(6.6 \times 10^{-34} \mathrm{Js}\right) \div\left(560 \times 10^{-9} \mathrm{~m}\right)=1.2 \times 10^{-27} \mathrm{Ns}(\mathbf{1})$
(f) Sun + comet + orbit/tangential line (1)

Tail not along orbit and away from Sun (1)

26. (a) (i) Tracks (of alphas) are the same length/alphas travel same or equal distance (1)
(ii) $\mathrm{H} / \mathrm{p}+\mathrm{Li} \rightarrow 2 \alpha / 2 \mathrm{He}$ (1)
${ }_{1}^{1} \mathrm{p}$ and ${ }_{2}^{4} \mathrm{He}$ correctly labelled (1)
${ }_{3}^{7} \mathrm{Li}$ (1) 4
(iii) Mass defect $=0.01865 \mathrm{u}(\mathbf{1})$

Either Or
Use of $\times 1.66 \times 10^{-27} \quad$ Use of $\times 930$ (1)
Use of $\times 9.0 \times 10^{16} \quad$ Use of $\times 1.6 \times 10^{-13} \mathbf{(1)}$
$\Rightarrow 2.79 \times 10^{-12} \mathrm{~J}$
$\Rightarrow 2.78 \times 10^{-12} \mathrm{~J}(\mathbf{1})$
Assume: proton has zero/very little k.e. (1)
(b) Quality of written communication (1)
p / α ionise , gas/liquid (particle) (1)
producing (a line of visible) drops/bubbles (1)
Detail e.g sudden drop of temperature/pressure/condensation/boiling, or liquid $\mathrm{H} /$ alcohol (1)
(c) Use of F_{e}, $=k Q_{1} \mathrm{Q} 2 / r^{2}$ and $F_{\mathrm{g}}=G m_{1} m_{2} / r^{2}\left[k=1 / 4 \pi \varepsilon_{0} \quad \mathrm{OK}\right]$ (1)

Evidence of r cancelling in ratio (1)
$Q \mathrm{~s}$ as e and $3 e(\mathbf{1)}$
$m \mathrm{~s}$ as m and $7 m$ (1)
27. (a) 60 m.p.h. $=(60 \times 1.6 \times 1000 \mathrm{~m}) \div(3600 \mathrm{~s})(1)$
$=27 \mathrm{~m} \mathrm{~s}^{-1}$
$a=27 \mathrm{~m} \mathrm{~s}^{-1} \div 4.5 \mathrm{~s}$ (1)
$5.9 \mathrm{~m} \mathrm{~s}^{-2}$
$\therefore a / g=0.60 / 0.59$ OR \% OR expressed as fraction (1)
(ii) $\quad P$: the forward push/force of the road/ground (on the car) (1) W. the pull/gravitational force of the Earth (on the car) (1)
(iii) $1:$ hot reservoir/source (1)

2: cold reservoir/sink (1)
3:work/mechanical energy (1)
Branching diagram

(b) (i) Change of wavelength/frequency from moving source/surface (1)
$\left.\Delta f=2 \mathrm{v} / \mathrm{c}=2 / 29 \mathrm{~m} \mathrm{~s}^{-1}\right)\left(1.1 \times 10^{10} \mathrm{~Hz}\right) \div\left(3.0 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}\right)(\mathbf{1})$
$=2100 \mathrm{~Hz} / 2.1 \mathrm{kHz}$ [no e.c.f] (1)
(ii) Any four from:

- Two Slit superposition/stationary waves (1)
- Decent diagram (e.g. scale/waves/perpendicular reflector) (1)
- What is done (1)
- What is measured (1)
- How λ is found (1)
$\left[\frac{x s}{D}\right.$ loses last two marks: screen to detect loses marks 2 and 3]

28. (a)
(i) Either

The (magnetic) flux
linking OR linkage/trough the circuit/WXYZ
changes the magnetic field (1) (1)

Or
The (moving) axle/conductor wire (1) cuts (across/trough)/sweeps (1)
(ii) $\quad d$ from $1 \mathrm{~m}-4 \mathrm{~m}$
v from $1 \mathrm{~m} \mathrm{~s}^{-1}-30 \mathrm{~ms}^{-1}$
$\Rightarrow \varepsilon$ from $48 \mu \mathrm{~V}-5.8 \mathrm{mV}(\mathbf{1})$
Max 5
(iii) EITHER $\varepsilon=I(R+r)$ OR $\varepsilon=I R+I r l$ OR $V=\frac{R}{R+r}$ (1)
$\Rightarrow I=\varepsilon /(R+r)(\mathbf{1})$
$P=I^{2} R$ OR $\mathrm{p}=\frac{V^{2}}{R}$ (1)
3
$=\varepsilon^{2} R /(R+r)^{2}$
(b)
(i) Either

Ammeter in circuit/series with R
Voltmeter across R/WZ
Measure I and V with axle rolling
$P=I V$

Or
Use ohmmeter (1)
Measure R with no current (1)
Measure I / V with A/V (1)
$P=I^{2} R / V^{2} \div R(\mathbf{1})$
[Direct P by heating water: max 2]
(ii) Current in axle \Rightarrow force / Fleming LHR/two B-fields interact (1)
given by $F=B_{V} I d / B I e$ (1)
which is horizontal/parallel to rails/along rails (1)
No good F small/huge I needed (1)
Max 3
29. (a) Terminals/output connected OR component bypassed 1
by low R / wire / low resistance path 1
(b) (i) d.c 1
(ii) Speed/frequency of rotation/disc $[\operatorname{not} f] \quad 1$

Radius/diameter/area [not r] 1
B / B-field / magnetic field 1
(iii) To study the properties of matter (under extreme conditions) 1
[not to produce large $B /$ as a research tool]
as an electromagnetic gun/to project small masses at high speeds / to study problems of re-entry
(c) (i) Method, i.e. attempt to find area under graph / use $Q=I t \quad 1$
$5-6$ squares/triangle as $1 / 2 b h /$ triangles as $1 / 2 b h /$ rectangle $I_{\text {av }} \quad 1$
Area number 2.4-3.3 1
Area (e.c.f.) $\times 10^{6} \mathrm{C} \quad 1$
(ii) Use of $P=I^{2} R$ or $P=I^{2} r$ [wrong equation -2 e.o.p.]

Peak I as $1.6(\mathrm{~A})$ or $1.7(\mathrm{~A}) \quad 1$
$=3-3.5 \times 10^{8} \mathrm{~W}$ [c.e.p. $\mathrm{kW} / \mathrm{MW}$ e.c.f. no 10^{6}] 1
(d) $\quad \mathrm{V}$ as $\mathrm{J} \mathrm{C}^{-1} / \mathrm{Wb}$ as $\mathrm{V} \mathrm{s} / \mathrm{WA}^{-1} \quad 1$
B as $\mathrm{N} \mathrm{A}^{-1} \mathrm{~m}^{-1} / \mathrm{Wb} \mathrm{m}^{-2} \quad 1$
R OR r as m and f as s^{-1} [not if $\mathrm{m}^{2}-\mathrm{m}^{2}$ which then disappears] $\quad 1$

(e) (i) Chemical energy / electrical energy 1
kinetic energy /k.e. 1
[one energy only $0 / 2$]
(ii) Magnetic force on the current/electrons/F=BIl or BQv or motor or Fleming / catapult effect [not e-m force] / LH rule
(iii) $v=2 \pi r f \quad 1$
$\Rightarrow v=2 \pi(1.8 \mathrm{~m})(15 \mathrm{~Hz})[$ not 3.6 m$] \quad 1$
$=170 \mathrm{~m} \mathrm{~s}^{-1}$
which is less than $200 \mathrm{~m} \mathrm{~s}^{-1}$ [e.c.f. their v]
(f) $\quad \varepsilon-V=I R$ or $I=(\varepsilon-V) \div R$ or $\varepsilon=V+I R$ or $V=\varepsilon-I R$
[do not allow r for R here, then ignore]
As speed increases $V /$ generated e.m.f. increases / generated voltage increases

So $\varepsilon-V$ decreases ($\Rightarrow I$ decreases) / net voltage decreases
(g)
(i) $m \frac{v^{2}}{r}=G \frac{m m_{\mathrm{E}}}{r^{2}}$ or $\frac{\mathrm{v}^{2}}{r}=G \frac{m_{\mathrm{E}}}{r^{2}}$
[Ignore sloppy use of suffix E]
$r=r_{\mathrm{E}}+h$
$\Rightarrow v=\left(\frac{G m_{\mathrm{E}}}{r_{\mathrm{E}}+h}\right)^{1 / 2}$ [No mark]
(ii) Substitute $m_{\mathrm{E}}=6.0 \times 10^{24} \mathrm{~kg}, \mathrm{v}=7\left(\times 10^{3}\right) \mathrm{m} \mathrm{s}^{-1}$ and
$G=6.7 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$
$1.8 \times 106(\mathrm{~m}) / 1.77 \times 106(\mathrm{~m})$
[No e.c.f. $7 \mathrm{~m} \mathrm{~s}^{-1}$]
30. (a) (i) Protons are positively charged / like current
refer to Fleming or motor rule / Rev / Bqv / perpendicular F and
v
[not right hand rule]
(ii) $m \frac{v^{2}}{r}=B e v$
$m r \omega^{2}=B e v$
[accept q for e]
$\mathrm{v}=\frac{2 \pi r}{T} / \frac{\pi r}{t}$
$\omega=\frac{2 \pi}{T} / \frac{\pi}{t}$
(iii) Quality of written communication

Each time it crosses gap/between dees it accelerated / is attracted / is given E
Idea that p.d. between the dees reverses while the proton completes half a revolution / c.e.p.
As energy becomes large the mass/inertia of the proton increases
[not protons hit edge]
so it cannot exceed the speed of light [i.e. ref to c]/synchronous property breaks down/formula no longer gives constant f
(iv) $\Delta E=\left(1.6 \times 10^{-19} \mathrm{C}\right)(12000 \mathrm{~V})[$ allow $\times 12]$
$=1.9 / 1.92 \times 10^{-15}(\mathrm{~J})$ [no e.c.f.]1
(v) $r^{2}=2 m \times$ k.e. $\div B^{2} e^{2} r=\sqrt{ }$ same

Substitute $1.66 / 1.7 \times 10^{-27} \mathrm{~kg} / 1860 m_{\mathrm{e}} / 2000 m_{\mathrm{e}}$ and
$1.6 \times 10^{-19} \mathrm{C}$
Use of k.e. $=\left(1.9 \times 10^{-15} \mathrm{~J}\right) \times 850$ 1
[e.c.f. for $1.9 \times 10^{-15} \mathrm{~J}$ e.g. $2 \times 10^{-15} \mathrm{~J} \Rightarrow 1.7 \times 10^{-12} \mathrm{~J}$]
$\Rightarrow r=0.575 \mathrm{~m} / 57.5 \mathrm{~cm}$
$\left[2 \times 10^{-15} \mathrm{~J} \Rightarrow 0.59 \mathrm{~m}\right]$
$\left[9.1 \times 10^{-31} \mathrm{~kg} \Rightarrow 0.0137 \mathrm{~m}\right.$ e.o.p. $\left.\max 1 / 3\right]$
(b) (i) $m \frac{\mathrm{v}^{2}}{r}=T \sin \theta$ is second law $/ F=m a / a \propto: F$
$m g=T \cos \theta$ is first law
[third law $\boldsymbol{X} \mathbf{X}$]
(ii) Assumption is that θ is small or $\tan \theta=r / l$ or r / l is small or $\tan \theta$
$=\sin \theta$ or $\tan \theta=\theta$ or $\sin \theta=\theta$
(iii) Give the pendulum bob a push 1
which is tangential/along the direction of motion 1
for any r or v the time period is unchanged 1
Higher speed/energy \Rightarrow bigger radius 1
31. (a) (i) $\left({ }_{86}^{222} \mathrm{Rn} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{84}^{218} \mathrm{Po}\right) 4+218$
$2+84$
[accept α for He but if unlabelled then $218+84,1$ mark out of 2]
(ii) Gains electron(s) $/ e^{-}$ 1
two1
(b) (i) $l_{\mathrm{A}}<l_{\mathrm{B}} \quad 1$

Ratio diameters/ 12:1 1
[Accept 10 - 14]
$\left[\mathrm{V}_{\mathrm{A}} \approx 4 \mathrm{~cm}^{3} ; \mathrm{V}_{\mathrm{B}} \approx .025 \mathrm{~cm}^{3}\right]$
\Rightarrow volumes/cross-sectional areas 144:1 OR $\mathrm{V}_{\mathrm{A}}=150$ their V_{B}
calculated
[Accept 100:1 to 200:1)
(ii) $p V=$ constant / Boyles' law 1
$p=20(\mathrm{~Pa}) \div$ answer to (i) [e.c.f. (comes to 0.13 Pa$)] \quad 1$
(iii) So that α-particles are not absorbed by/can penetrate them / can , get into tube A
(c) (i) View/look through (diffraction) grating / prism / spectroscope / spectrometer
A source, e.g. helium tube / lamp / excited gas / discharge tube OR (absorption) white light through helium 1
Lines (are seen) [not bands or fringes] 1
(ii) Photons of certain frequencies $/ E_{1}-E_{2}=h f / \Delta E=h f$ 1

Reference to energy levels 1
Electron or atom changes 1
(iii) Mercury will produce a unique/different spectrum/ lines [e.c.f. work function from (ii)] 1
32. (a) (i) a is acceleration 1
f is frequency 1
x is displacement from equilibrium/centre/mean position 1
[beware amplitude]
Either minus sign means that a is always directed to centre/equilibrium position/mean position
OR a and x in opposite directions / a opposite to displacement 1
(ii) Attempt to use $\mathrm{vm}=2 \pi f a \quad 1$
$v_{\mathrm{m}}=2 \pi(50 \mathrm{~Hz})\left(8.0 \times 10^{-6} \mathrm{~m}\right)\left[a=4 \times 10^{-6} \mathrm{~m}\right.$ e.o.p $] \quad 1$
$=2.5 \times 10^{-3} \mathrm{~m} \mathrm{~s}^{-1} / 2.5 \mathrm{~mm} \mathrm{~s}^{-1} / 2500 \mu \mathrm{~m} \mathrm{~s}^{-1} \quad 1$
(b) (i) $\quad \rho$ in $\mathrm{kg} \mathrm{m}^{-3}$ and g in $\mathrm{m} \mathrm{s}^{-2} / \mathrm{N} \mathrm{kg}^{-1} \quad 1$
$A \rho g / m$ with units leading to $\mathrm{s}^{-2} \quad 1$
(ii) At least three peaks of y / m measured [ignore numbers] 1

EITHER
(5.4/5/6
1.2
4.4
3.7/6/8
2.4
1.6/7
1.4)

Attempt to calculate successive ratios [e.g. 0.67 or 1.5] 1
Logical statement re ratios and exponential change 1
OR
Read 3 values of x and y [ignore numbers] 1
Two half lives between 0.75 s and $0.95 \mathrm{~s} \quad 1$
Logical statement re half-lives and exponential change 1
[beware Δy not constant / use of $y=Y_{\mathrm{o}} \mathrm{e}^{-k t}$]
(iii) Starting and ending at k.e. of $0 \quad 1$
k.e. always positive 1

Two positive peaks between origin and marked $0.5 \mathrm{~s} \quad 1$
Second peak smaller 1

33. (a) (i) Mention of kelvin (scale) (1)

Celsius plus 273/(which depends on) ideal gas behaviour (1)
$\left[\mathrm{T} / \mathrm{K}=\theta /{ }^{\circ} \mathrm{C}+273\right.$ both marks $]$
(ii) Change in/broadening of frequency or wavelength/lines (1) caused by motion of source/atom/observer (1)
(iii) (process which) happens spontaneously / by chance / unpredictably (1) 5
(b) (i) Use of 1.6×10^{-19} (1)
$\lambda=h c / E \operatorname{OR} f=E / h(\mathbf{1})$
Substitute $h=6.6 \times 10^{-34} \mathrm{~J}$ s and $c=3.0 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$ (1) ($=>620 / 622 \mathrm{~nm}$)
Visible (part of e-m spectrum) [e.c.f.] (1)
(ii) Four horizontal lines (1)

6 lines drawn (1)
Words or diagram to indicate each vertical gives a wavelength/labels $E_{0} E_{1}$ etc plus $\Delta E=E_{2}-E_{0}$ etc (1)

(c) (i) One photon in (1)

Two photons out (1)

(ii) A photon entering gas (1)

Mention of population inversion/negative temperature (1) produces an extra/a stimulated photon (1)
[Allow $1 / 3$ for "by stimulated emission of radiation"]
(d) Mention of $N_{1}<N_{2} / N_{2}>N_{1}$ (1)
i.e. number of atoms / electrons in higher level is more than number of atoms / electrons in lower level (1)
[Allow excited state/ground state for N_{2} / N_{1}]
(e) (i) Use of k.e. $=1 / 2 \mathrm{~m} v^{2}$ (1)
$\Rightarrow v=420 / 423 \mathrm{~m} \mathrm{~s}^{-1}$ (1)
(ii) Use of $\frac{\Delta \lambda}{\lambda}=\frac{v}{c}$
with $c=3 / 3.0 \times 10^{8}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)(\mathbf{1})$
$\Rightarrow \Delta \lambda=8.46 / 8.5 \times 10^{-13}(\mathrm{~m})(\mathbf{1})$
(iii) Idea of $v \rightarrow$ and $v \longleftarrow O R v$ used is an average speed/energy (1)
(f) (i) Temperature
(ii) (By) thermal agitation / heating / raising temperature (1)
(g) (i) $\Delta E / k T$ calculated using given values (1)
(i.e. $1.06 \times 10^{-19} \mathrm{~J}, 1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}, 1150 \mathrm{~K}$) $\Rightarrow 6.68$ (1)

Negative exponent $\times 2000000=>N_{4}=2513 / 2510 / 2500$ (1)
(ii) Use of $N_{4}=2513 / 2510 / 2500$ [e.c.f.] (1)
$\Rightarrow N_{5}=114 / 115$ (1)
5
34. (a) (i) k.e. $3.0 \mathrm{MeV}=3.0 \times 10^{6} \times 1.6 \times 10^{-19} \mathrm{~J}$ (1) (1)
use of $\Delta E=c^{2} \Delta m / E=m c^{2} \mathbf{(1)}$
$\Rightarrow \Delta m / m=5.3 \times 10^{-30}(\mathrm{~kg})$
Use of $\mathrm{u}=1.66 / 1.7 \times 10^{-27} \mathrm{~kg}(1)$
so $m_{\mathrm{Li}}=7.0 \times 1.66 \times 10^{-27} \mathrm{~kg} / \Delta m=0.0032 \mathrm{u}$
$\Rightarrow \Delta m / m_{\mathrm{Li}}=0.0445-0.0459 \% / 0.046 \% / 0.05 \% / 0.04 \%$ (1)
(ii) Use of k.e. $=1 / 2 m v^{2}$ with correct m (1)
$=:>v=9.1 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$ [e.c.f. no 10^{6} for m] (1)
(b) (i) Quality of written communication (1)

Vacuum (1)
Mention of (drift) tubes / cylinders (1)
With different lengths/which get longer OR reference to synchronous condition (1)
Reference to alternating voltage (1)
[Could all be on a diagram]
(ii) Quarks/structure of protons or neutrons (1)

Max 5
(c) (i) $\quad 1 / C_{\mathrm{T}}=N / C$ (1)

Total capacitance $=C / N(\mathbf{1})$
(ii) Place N springs in parallel (1)

So total force $=N k x[$ e.c.f. series $=>k x / N]$ (1)
35. (a) (i) $T_{\mathrm{h}}-T_{\mathrm{c}}$. temperatures outside-inside fridge (1)
Q_{h} (thermal/ internal) energy (supplied) to kitchen/room (1)
Q_{c} ditto from fridge (1)
[Energy transfer related to Q_{h} and $Q_{\mathrm{c}}=>1 / 2$]
(ii) $\quad Q_{\mathrm{h}}=W+Q_{\mathrm{c}}(\mathbf{1})$
(iii) Use of $P=I V / W=I V t$ (1)
$I=42000 \mathrm{~J} \div(230 \mathrm{~V})(3.5 \times 60 \mathrm{~s})(\mathbf{1})$
$=0.87 \mathrm{~A} / 870 \mathrm{~mA}(\mathbf{1})$
(b) Diagram:

Identical structure (i.e. outline) [Beware 'upside down'] (1)
Arrow out labelled $W /$ work (1)
Arrow/arrows from hot to cold (1)
(c) (i) Use of $H=m l / \Delta H=l \Delta m$ (1)
$=>l=26 \times 10^{6} \mathrm{~J} \div 60 \mathrm{~kg}$ [Allow 10^{n} errors] (1)
$=4.3 \times 10^{5} \mathrm{~J} \mathrm{~kg}^{-1} / 430 \mathrm{~kJ} \mathrm{~kg}^{-1}$ (1)
(ii) Use of electrical heater (1)

Sensible way of finding Δm (1)
Measurement of I and $V(\mathbf{1})$
OR
Mixing ice with (warm) water (1)
Measure θ before and after (melting) (1)
Masses known (1)
36. (a) More than four radial lines/four symmetric lines (1)

Arrows inwards (1)
(b) Reference to speed of (gas) molecules [e.g. $>10 \mathrm{~m} \mathrm{~s}^{-1}$] (1) Greater than escape speed/ v_{e} (1)
(c) (i) $\quad m_{\mathrm{A}}$ in kg and r_{A} in m (1)

N (in G) in $\mathrm{kg} \mathrm{m} \mathrm{s}^{-2}$
(ii) $m_{\mathrm{A}}=r_{\mathrm{A}} v_{\mathrm{e}}^{2} / 2 G$ (1)
$\Rightarrow m_{\mathrm{A}}=5.8 \times 10^{15}(\mathrm{~kg})(\mathbf{1})$
Use of $\rho=m / V$ and $V=4 / 3 \pi r^{3}$ (1)
$\Rightarrow \rho=2900 \mathrm{~kg} \mathrm{~m}^{-3} / 2940 \mathrm{~kg} \mathrm{~m}^{-3}\left[3018 \mathrm{~kg} \mathrm{~m}^{-3}\right.$ from $\left.6 \times 10^{15} \mathrm{~kg}\right]$
(d) (i) Size or volume of Universe/distance between galaxies against $t /$ time (1)
Line rising which does not level off (1)
Big Bang $/ t=0$ labelled (1)

(ii) Average (1)

Density/mass-density (of Universe) (1)
(e) (i) Use of $\Delta p / m \Delta v=F \Delta t$ (1)
$\Delta v=\left(2 \times 10^{6} \mathrm{~N}\right)(7000 \mathrm{~s}) \div 5.8 / 6 \times 10^{15} \mathrm{~kg}(1)$
$=2 / 2.3 \times 10^{-6} \mathrm{~m} \mathrm{~s}^{-1}(\mathbf{1})$
(ii) Will/will not alter asteroid's course [No mark]

Justification: refer to $\Delta s=t \Delta v / s=v t(\mathbf{1)}$
37. (a) (i) Number of protons and neutrons (in nucleus) (1)
(ii) Mention of (chemical) elements (1)
(iii) Beam of one/speed/velocity energy ions or particles/ions of same energy (1)
(iv) Mention of like charges repelling (1)
(b) (i) Two protons and two neutrons/labelled sketch (1)
(ii) $2 \mathrm{MeV}=\left(2 \times 10^{6} \mathrm{eV}\right)\left(1.6 \times 10^{-19} \mathrm{~J} \mathrm{eV}^{-1}\right)\left[\right.$ Ignore $\left.10^{6}\right]$ (1)

Equate energy to $1 / 2 m v^{2}(\mathbf{1})$
$\Rightarrow>v=9.8 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$ (1)
(iii) α-particles come randomly/o.e.p. (1)
(c) (i) After momentum $=-4 m \times 3 u / 5+16 m \times 2 u / 5$ (1) (\pm vectors)
$\Rightarrow 4 m u(1)$
(ii) Using $k=T / T_{0}=1 / 24 m(3 u / 5)^{2} \div 1 / 24 m u^{2}$ (1)
$=0.36 / \frac{9}{25}$
Using $k=\left(m_{t}-m_{i}\right)^{2} \div\left(m_{t}+m_{i}\right)^{2}=(16 m-4 m)^{2} \div$
$(16 m+4 m)^{2}=0.36 / \frac{9}{25}$ [u.e. once only] (1)
(d) (i) $\quad m_{\text {t }} \quad 12 m \quad 24 m \quad 48 m \quad 120 m$
$\begin{array}{lllll}k & 0.25 & 0.51 & 0.72 & 0.88\end{array}$
[-1 each wrong]
Table (1) (1)
Graph: [Can be sketch]

Axes labelled (1)
Curve (1)
(ii) $\quad \Delta k$ becomes smaller for given Δm_{t} at high m_{i} OWTTE (1) (1)
[Gradient becomes smaller $\Rightarrow 1 / 2$]
(e) Quality of written communication (1)

Elastic:	k.e. conserved (1)
	uses ions/ α-particles (1)

Inelastic k.e. not conserved/mass-energy conserved (1) uses electrons (1) new particles/mass/matter/appear (after) (1)
Compare: energy greater inelastic (GeV) than elastic
(MeV) (1)
(f) (i) $\mathrm{T}=1 / 2 \mathrm{mv}{ }^{2} \Rightarrow \sqrt{\frac{2 T}{m}}$ (1)
$\lambda=h / m v \quad$ OR $\lambda=h / p$ and $p=\mathrm{mv}(\mathbf{1})$
(ii) Series of tubes [not plates] (1)
a.c. between tubes/ \pm alternating in diagrams (1)

Ion spends equal time in each tube (1)
as the tubes get longer/plates get further apart (1)
Mention of vacuum (1)
38. (a) (i) Activity: (the number of) nuclei/atoms/particles (1) decaying per unit time (1)
Unit: bequerel/ $\mathrm{Bq} / \mathrm{s}^{-1}\left[\mathrm{Not} \mathrm{s}^{-1}\right.$ if above $]$ (1)
(ii) $\quad I \propto Q(\mathbf{1})$
$1 / R C$ [dependent on $1^{\text {st }}$ mark] (1)
A and I both involve rate of change/change with time (1)
A of nuclei atoms/particles/decays and I of charge (1)
(iii) EITHER
E - and g - fields/forces (1)
Both involve inverse square laws (1)
$E=k q / r^{2}$ and $g=G m / r^{2} / F=\frac{k q_{1} q_{2}}{r^{2}}+F=\frac{G m_{1} m_{2}}{r^{2}}$
OR
Springs and capacitors (1)
$F=k x$ and $V=Q / C$ OR $E=1 / 2 F x=1 / 2 V Q$ (1)
An action produces a change OR energy stored (1)
OR
Other analogy spelled out in a similar manner, but not radioactive decay and the discharge of a capacitor.
(b) (i) Use of $\lambda t_{1 / 2}=\ln 2 / 0.69 / 0.693$ (1)
with $t_{1 / 2}=18 \times 365 \times 24 \times 60 \times 60(\mathbf{1})$
Use of $P=A \times$ energy per decay OR use of $\lambda N \times$
energy per decay (1)
$\Rightarrow P=22.7$ (W) OR $N=1.76 \times 10^{22}$ (1)
(ii) Use of $e^{-\lambda t}$ (with P, A or N) (1)
$15 \mathrm{~W} \div 20 \mathrm{~W}=0.75$ (1)
$\Rightarrow t=7.6 \mathrm{y} / 2800 \mathrm{a} / 67000 \mathrm{~h} / 2.3$ or $2.4 \times 10^{8} \mathrm{~s}$
39. (a) System A: chemical energy \rightarrow e-m energy/light (1)

System B: mechanical energy \rightarrow e-m energy/light (1)
[not kinetic]
EITHER: intermediate electrical energy (1)
OR: (finally) internal/thermal energy [Not heat]
(b) (i) System A: same power/brightness all the time (1)

System B: poor power/brightness/efficiency going up hill/slowly [Not energy] (1)
(ii) System A: energy in cell/battery runs out/decreases (1) [Not power]
System B: no change with time (1)
(c) (i) Two cells in series (1)

Switch and lamp (1)

(ii) $E=I V t=(0.80 \mathrm{~A})(1.2 \mathrm{~V})(3600 \mathrm{~s}) / Q=I t=2880 \mathrm{C}$ (1)
$=3460 \mathrm{~J} / 3500 \mathrm{~J}$ OR $E=Q V=3460 \mathrm{~J}$ (1)
Two cells $\Rightarrow E=6900 \mathrm{~J} / 6.9 \mathrm{~kJ}$ (1)
(d) (i) Magnetic flux (1)
changing through coil/magnetic field cuts coil (1)
so an e.m.f /voltage/p.d. is induced/produced (1)
(ii) Graph + and - on axes of I against t (1)

Sinusoidal shape (1)
40. (a) (i) Use of $t=s / v$ (1)

Use of $\times 2$ (1)
$=7.9 \times 10^{-8} \mathrm{~s} / 7.895 \times 10^{-8} \mathrm{~s}$ (1)
(ii) Answer above $\div 2 \times 10^{\mathrm{n}}$ (1)
$=0.0395 \mathrm{~cm} / 0.395 \mathrm{~mm} / \approx 0.4 \mathrm{~mm}$ OR $1 / 2$ of this (1)
Probably not/just noticeable [ecf] (1)
(iii) The time base (of the oscilloscope) moves from left to right (1)
(b) (i) Complete radial lines >2 (1)

Symmetrically spaced (1)
[Arrows either way]
No field outside sheath (1)
(ii) (Inside) B-field is circular/clockwise/anticlockwise/ perpendicular E-field (1)
Outside B-field is zero
(c) (i) $C=(7.5 \mathrm{~m})\left(120 \mathrm{pF} \mathrm{m}^{-1}\right)$
$=900 \mathrm{pF} / 9 \times 10^{-10} \mathrm{~F} / 0.90 \mathrm{nF}$ [cao] (1)
(ii) Use of $\mathrm{Hz} \mathrm{as} \mathrm{s}^{-1}$ (1)

EITHER
Use of F as C^{-1} (1)
Unit of $X=1 / \mathrm{C} \mathrm{s}^{-1} \mathrm{~V}^{-1}$ use of $\mathrm{C} \mathrm{s}^{-1}$ as A (1)
OR
$R C$ has unit $\mathrm{s} / \mathrm{F} \Omega=\mathrm{s}(\mathbf{1})$
$\therefore \mathrm{s} \div \mathrm{F}=\Omega$ (1)
41. (a) (i) $E=F / q$ Force divided by charge (1)
[must define F and q]
Small / point (test) charge OR E parallel to F (1)
(ii) A graph with straight line through origin (1) one increases by factor N , other increases by factor N OR $y=m x \quad y=k x / I=k E$ where m, k is a constant Charges produced/separated by E-field (1)
(b) (i) (Produced) when two different materials / insulators rub together / a cloth rubs a polythene rod / other (1) explicit example / thundercloud [not lightning] / belt of V der G
(ii) (Used to) check for E-field under power lines/ (build up) of atmospheric charges (1)
(c) (i) Use of $E=V / d$ (1)
$V=E d=\left(240 \mathrm{~N} \mathrm{C}^{-1}\right)\left(60 \times 10^{3} \mathrm{~m}\right)(\mathbf{1})$
$=1.4(4) \times 10^{7} \mathrm{~V} / 14 \mathrm{MV}(\mathbf{1})$
Assume that field is uniform / constant / parallel field lines (1)
(ii) $\quad q=C V \Rightarrow C=q / V$ (1)
$\therefore C=1.1 \times 10^{6} \mathrm{C} \div 14.4 / 14 \times 10^{6} \mathrm{~V}$ e.c.f. (1)
$[\Rightarrow 77 \mathrm{mF} / 79 \mathrm{mF}$]
(d) (i) Positive charge collects in ionosphere (1)

Negative charge collects on Earth / surface / ground (1)
[Because the atmosphere acts as a giant capacitor
$\Rightarrow 1$ out of 2 - consolation mark]
(ii) Ionosphere and Earth's surface labelled (1)
[could be concentric circles/parallel lines]
Field lines reaching Earth's surface (1)
Arrows towards Earth's surface (1)
(e) (i) Attempt to draw plates one above the other (1)

Holes not overlapping at all (1)
(ii) Aware that $q=\varepsilon_{0} E A$ is relevant (1)
$I=q / t \Delta q \div \Delta t /$ rate of flow of charge (1)
For $I \propto E$, there must be no other variable - so speed constant (1)
(iii) Curve: period (shown as) 0.01 (s) (1)

$$
\text { symmetric }+ \text { and - (1) }
$$

(f)

Either
Unit for E : $\mathrm{N} \mathrm{C}^{-1}$
Unit for $\varepsilon_{0}: \mathrm{F} \mathrm{m}^{-1} \Rightarrow \mathrm{CV}^{-1}$
m^{-1}
Unit: $\mathrm{V}=\mathrm{J} \mathrm{C}^{-1}$ or $\mathrm{J}=\mathrm{N} \mathrm{m}$
[or look for $\varepsilon_{0} \equiv \mathrm{~kg}^{-1} \mathrm{~m}^{-3} \mathrm{~s}^{4} \mathrm{~A}^{2} \Rightarrow 2 / 3 ; E \equiv \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-3} \mathrm{~A}^{-1} \Rightarrow 2 / 3$;
if both $3 / 3$]
(g) Resistor/R in series with electrostatic mill (1)

Voltmeter / oscilloscope across R (1)
(Measure) I as (peak) V / R [not $V=I R]$ (1)
$R \geq 10 \mathrm{k} \Omega$ (1)
R in $\mathrm{k} \Omega / \mathrm{M} \Omega \rightarrow V$ in $\mu \mathrm{V} / \mathrm{mV}$ (1) \quad Max 4
[battery in circuit, first two marks only]
42. (a) (i) QOWC (1)

Link track to bubbles (1)
Which reflects light / are illuminated (1)
(produced as) the electron / it ionises liquid / particles / (1)
$\mathrm{H}_{2} /$ air
(ii) Mention of B-field $/ F=B q v / F=B e v /$ FLHR (1)
B is perpendicular to $v /$ direction of motion / in or out (1)
of page
Electron loses energy/slows down (1)
Colliding with / interacting with / ionising liquid particles / $\mathrm{H}_{2} \mathbf{(1)}$
(b) (i) \& (ii)

	$r / \mathrm{m}^{c \mid}$	r / mm	$p / \mathrm{kg} \mathrm{m} \mathrm{s}^{-1}$	m / kg
P	$62-67 \times 10^{-3}$	$62-67$	$1.2-1.3 \times 10^{-20}$	$4.0-4.3 \times 10^{-29}$
Q	$43-48 \times 10^{-3}$	$43-48$	$0.83-0.92 \times 10^{-20}$	$2.8-3.1 \times 10^{-29}$
R	$28-33 \times 10^{-3}$	$28-33$	$0.54-0.63 \times 10^{-20}$	$1.8-2.1 \times 10^{-29}$

Values for r in range above [ignore 10^{n} and units] (1)
$p=\operatorname{Ber} \Rightarrow$ any one correct p [ignore 10^{n} but must have (1) unit] [ecf] (1)
All p s correct numerically [no ue] (1)
$p=m v \Rightarrow m=p / v(\mathbf{1})$
Any one correct m [ignore 10^{n} but must have unit]

EITHER

Comment [e.c.f.]: any reference to $9 \times 10^{-31} \mathrm{~kg} /$ rest (1) mass (of electron) / electron mass
Because electron is moving close to / at the speed of
light
OR
(effective) mass (of electrons) is decreasing (1)
reference to $E=m c^{2} / \Delta E=c^{2} \Delta m /$ mass-energy (1)
conservation
43. (a) (i) Lead shot loses g.p.e. (which becomes k.e.) (1)
(which becomes/lost to/transfers to) internal (1) energy/heat
(ii) Use of $60 \mathrm{mg} \Delta h$ [allow between 0.70 m and 0.80 m] (1)

Use of $m c \Delta \theta / m c \Delta T \mathbf{(1)}$
$=3.6 \mathrm{~K}[\Rightarrow 3.2 \mathrm{~K}] / 3.6^{\circ} \mathrm{C}(\mathbf{1})$
(iii) Expect ΔT to be less (1)

Any 2 of: Tube/plastic warms up; cork/air warms up; because lead falls $<80 \mathrm{~cm}$; energy lost to
surroundings/tube/cork/air ; poor thermal contact with thermocouple (1) (1)
(iv) As m cancels / mass does not matter (1)
but as c is higher (1)
ΔT will be lower (1)
(b) (i)

Either	Or
$I=(1.50 \mathrm{~V} \div 47025 \Omega)$	
$V_{25}=\left(3.19 \times 10^{-4} \mathrm{~A}\right)(25.0 \Omega)$	$\frac{V_{25}}{1.50 \mathrm{~V}}=\frac{25.0 \Omega}{47025 \Omega}$

Correct method [ignore no k/no 25Ω] (1)
Using k and 25Ω in correct method (1)
$=0.797$ or 0.798 or $0.799 \times 10^{-3} \mathrm{~V}$ [n.b. 3 s.f.] (1)
Assume resistance of (micro)ammeter negligible [not (1) resistance cell / wires negligible]
(ii) $0.797 \mathrm{mV} / 0.799 \mathrm{mV}$ [e.c.f. value from (i)] (1)
(iii) Advantage:

Low heat capacity/low energy needed to warm up/ can detect small $\Delta T \mathrm{~s}$ / more sensitive
OR can be a transducer sensor for datalogging
OR no parallax problem with thermocouple (1)
44. (a) (i) Its chemical composition / surface temperature (1) (not velocity)
(ii) Use of $\Delta \lambda / \lambda=v / c$ [some substitution or rearrange] (1) see $\lambda=440$ or 400 (1) $=1.36 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1}$ (1)
[if bald answer: $1.43 \times 10^{7} \quad$ (1) $\mathbf{x x} ; 1.4 \times 10^{7} \quad$ (1) $\mathbf{x x}$; $1.50 \times 10^{7} \quad$ (1) (1)x; $1.5 \times 10^{7} \mathbf{(1) (1) x]}$
towards the Earth / us (1)
(b) (i) Electrons (are removed) from $\mathrm{P} /$ photoelectric effect (1) Current is from P to capacitor / left to right / opposite (1) to emitted e^{-}
(ii) $\mathrm{P} /$ plate becomes positively charge/voltage of P rises (1) until electrons can no longer escape/don't have k.e. to (1) escape
(iii) Use of $Q=C V=\left[\left(22 \times 10^{-12} \mathrm{~F}\right)(0.58 \mathrm{~V})\right]$ (1)
[Ignore 10^{n} until the final answer]
$=1.28 \times 10^{-11} \mathrm{C} / 1.3 \times 10^{-11} \mathrm{C} / 12.8 \mathrm{pC}$ [no ue] (1)
Their $Q \div 1.6 \times 10^{-19} \mathrm{C}$ (1)
$\Rightarrow N=\left(1.28 \times 10^{-11} \mathrm{C}\right) \div\left(1.6 \times 10^{-19} \mathrm{C}\right)$
$=8.0 \times 10^{7} / 80$ million [79-81 million] (1)
$\left[2.4 \times 10^{8}\right.$ electrons $\Rightarrow 2 / 4$ from $\left.q=C \div V\right]$
(c) Photocell in envelope with two electrodes (1)

Variable applied power supply / potential divider[not rheostat] (1)
Emitter as positive [emitter labelled or light on it] (1)
(micro)ammeter in series [only if a power supply included] (1)
Voltmeter across photocell/power supply (1)
[no power supply - max 2/4]
45. (a) Graph

Line from origin curving towards (horizontal) (1)
becoming horizontal and terminal velocity marked (1)
(i) Fluid/liquid/gas [do not accept air] (1)

Resistive/drag forces for (movement) through it (1)
(ii) Charge comes in multiples of a basic charge/e (1)
(b) (i) Use of $4 / 3 \pi r^{3} \rho g$ (1)

Correct answer [$W=1.86 / 1.9 \times 10^{-14}(\mathrm{~N})$] to at least $2 \mathrm{sf}(\mathbf{1})$
[Watch out for 10^{-5} followed by 'right' answer - loses second mark] [Do not credit bald answer] [no ue]
(ii) Use of $4 / 3 \pi \mathrm{r}^{3} \rho^{\prime} g$ as buoyant force [could be implied] (1)

Recognition of $\rho^{\prime} \div \rho O R U=2.4 \times 10^{-17} \mathrm{~N}$ (1)
Hence $U / W=0.13(\%)$ [no ue]
[allow use of 2×10^{-14} giving 0.12%]
(iii) $4 / 37 \pi r^{3}\left(\rho-\rho^{\prime}\right) \mathrm{g}=6 \pi r \eta v$ (1)

Hence $r=\sqrt{\frac{9 \eta v}{2 g\left(\rho-\rho^{\prime}\right)}}$ (1)
[accept any equivalent of $9 / 2$ e.g. 18/4; accept substitution into $\left(\rho-\rho^{\prime}\right)$]
(c) (i) Sketch: ≥ 3 vertical lines (1)
[ignore curved lines at edges and central gap]
Arrows down/consistent with \pm (1)
(ii) Rearrangement of $E=V / d \Rightarrow V=E d$ (1)
$\Rightarrow V=780 \mathrm{~V}$ (1)
(iii) E.m.f. $=2 \times 780 \mathrm{~V} / 1560 \mathrm{~V}$ [ecf their $V]$ (1)

Assume: (power) supply has zero resistance or no internal (1) resistance or voltmeter has infinite resistance
(d) >2 sets of values correctly read from graph
[eg (7.4, 5) (8.5 or 8.6, 4) (10.2, 3) (13.8-14.0, 2)
$\operatorname{eg}(8,4.4)(10,3.1)(12,2.3-2.4)(14,2.0)(7,5.4)]$
Range of at least $2 \mathrm{~N}(\mathbf{1})$
Correct method [e.g. multiplied together / calculate k and use to compare predicted to actual value] [ignore 10^{n} error] (1

Hence conclusion: not proportional (1)
[consequent mark, no ecf from using close values or wrong method]
(e) [Accept symbols/words/formulae throughout part (e)]
(i)

(ii)

Identify weight down AND buoyancy (force) up on (1)
both diagrams [do not accept gravity]
Identify electric (force) up on (i) [Allow electric field] (1)
Identify viscous (force) up on (ii) (1)
[Accept 2 labels on 1 up arrow]
(i) $\quad W=B+F_{\mathrm{e}}(\mathbf{1})$
[Accept any correct rearrangement]
(ii) $\quad W=B+V(\mathbf{1})$
[Accept any correct rearrangement]
(f) Mention of ionising/ionisation (1)

Comment on a relevant property of α and γ (1)
(g) Diagram: Downward drift [curves/wiggles OK] (1)
[not straight down] (1)
Non-equal straight lines (1)
At random angles (1)
Explanation: Droplet is bombarded (1)
by air molecules
5
[$1 / 2$ for stating Brownian motion without further detail]
46. (a) Quality of written communication (1)

Protons drift/move uniformly inside tubes (1)
Accelerate between the tubes/in the gaps (1)
Alternating p.d. reverses while p is in tube (1)
The tubes must get longer as p speeds up (1)
For time inside tube to be constant or to synchronise movement with the pd (1)

Max 5
(b) (i) Multiply by 419 or 420 (1)

Multiply by 1.6×10^{-19} (1)
Correct answer to at least 2 sf (1)
[5.36/5.38/5.4 $\left.\times 10^{-11}(\mathrm{~J})\right]$ [no ue]
$\Delta m=$ energy $\div\left(9.0 \times 10^{16} \mathrm{~m}^{2} \mathrm{~s}^{-2}\right)(\mathbf{1})$
[ecf their energy or 5×10^{-11}] (1)
$\Delta m \div 1.01 \times 1.66 \times 10^{-27} \mathrm{~kg}$ [ecf their Δm] (1)
Correct answer (1)
[0.36 or 36%] [Use of 5×10^{-11} gives 33%] (1)
[Accept routes via Δm in u and m_{p} in J]
(ii) Use of $1 / f(\mathbf{1})$
\therefore time down linac $=420 \div 3.9 \times 10^{8} \mathrm{~s}^{-1}$

$$
\text { or } 210 \div 3.9 \times 10^{8} \mathrm{~s}^{-1}
$$

$\left[t=1.07 / 1.08 / 1.1 \times 10^{-6}(\mathrm{~s})\right.$ or $\left.0.54 \times 10^{-6}(\mathrm{~s})\right]$
(c) (i) Fixed target:

Large(r) number of /more collisions or more likely to get collisions
[not easier to get collisions] (1)
Other particle beams produced (1)
(ii) Colliding beams:

More energy available for new particles (1)
$p=0$ so all energy available (1)
Max 2
47. (a) Mention of natural frequency (of water molecules) (1)

At f_{0} there is a large/increased amplitude (1)
and hence max energy transfer / max power transfer / max
efficiency / max heating (1)
3
(b) $\quad(1.2 \mathrm{~kg})\left(3200 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}\right)(75 \mathrm{~K})$ seen (1)
$\Rightarrow 288 \mathrm{~kJ}$
+600 s to give a power in $\mathrm{W}[\Rightarrow 480 \mathrm{~W}]$ (1)
Efficiency 480 W e.c.f $\div 800 \mathrm{~W}[=60 \%]$ (1)
There will be heat/energy/power losses from the meat/to the (1)
surroundings or water evaporation needs LHV or water
evaporation leaves fewer molecules to vibrate
(c) (i) See c $=3 \times 10^{8}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ used in $c=f \lambda$ (1)
$[\Rightarrow \lambda=0.12 \mathrm{~m} / 12 \mathrm{~cm} / 120 \mathrm{~mm}$]
(ii) Measure $\mathrm{SQ}[34 \mathrm{~mm}], \mathrm{QP}[34 \mathrm{~mm}]$ and $\mathrm{SP}[32 \mathrm{~mm}]$ and multiply readings by 5 [$170 \mathrm{~mm}, 170 \mathrm{~mm}, 160 \mathrm{~mm}$] (1) [No tolerance on measurements, no ue]
Add SQ and QP [ecf their values] (1)
Mention of path difference or attempt to find path difference (1)
e.g. (SQ+QP) - SP

Conversion of any length to wavelengths (1)
Correct discussion of superposition/phase difference (1) relevant to their path difference
[Allow maximum if mention π phase shift on reflection]
(iii) Mention of nodes/antinodes (1)
[not constructive/destructive interference]
Energy at antinodes/no energy at nodes (1)
[Accept heating at antinodes]
Rotate meat (plate)/reflect waves from (metal) (1) paddle/move meat several times
48. (a) Push end of slinky in suddenly/quickly (1)

Time how long to reach end (1)
Measure length of slinky and use
$v=$ defined length/defined time (1)
Reliability: repeat and average/use very short pulse (1)
(i) $\left.\begin{array}{l}\mathrm{LHS}: \mathrm{m} \mathrm{s}^{-1} \\ \mathrm{RHS}: l \text { is } \mathrm{m} \text { and } m \text { is } \mathrm{kg}\end{array}\right\}$
k is $\mathrm{N} \mathrm{m}^{-1}$
N is $\mathrm{kg} \mathrm{m} \mathrm{s}^{-2}$
[k is $\mathrm{kg} \mathrm{s}^{-2}$ is last 2 marking points]
(ii) k is double (that of a spring) (1)
(c) (i) Rearrangement of $B=\mu_{0} n I \Rightarrow n=B / \mu_{0} I$ (1)
$\therefore n=\left(0.34 \times 10^{-3} \mathrm{~N} \mathrm{~A}^{-1} \mathrm{~m}^{-1}\right) \div\left(4 \pi \times 10^{-7} \mathrm{~N} \mathrm{~A}^{-2}\right)(5 \mathrm{~A})(\mathbf{1})$
$=54 \mathrm{~m}^{-1}$ (1)
(ii) Mention of magnetic flux/flux $/ \phi$ (1)
[Do not accept magnetic flux density]
Increasing/changing ϕ (as pulse reaches coil) (1)
[Accept decreasing]
Because ϕ or B depends on n (1)
[can be symbols or words]
Reference to Faraday /rate of change of ϕ or B (1)
Max 4
Producing induced e.m.f./voltage in coil [not current] (1)

