1. No mark scheme available
2. The list gives some quantities and units. Underline those which are base quantities of the International (SI) System of units.

$$
\text { coulomb force length mole newton } \underline{\text { temperature interval }}
$$

(2 marks)
Define the volt.
Volt $=$ Joule/Coulomb or Watt/Ampere
(2 marks)
Use your definition to express the volt in terms of base units.

$$
\begin{aligned}
\text { Volt } & =\mathrm{J} / \mathrm{C} \\
& =\mathrm{kg} \mathrm{~m}^{2} \quad \mathrm{~s}^{-2 / A ~ s} \\
& =\mathrm{kg} \mathrm{~m}^{2} \mathrm{~s}^{-3} \mathrm{~A}^{-1}
\end{aligned}
$$

Explain the difference between scalar and vector quantities
Vector has magnitude and direction
Scalar has magnitude only

Is potential difference a scalar or vector quantity?

Scalar

3. A catapult fires an 80 g stone horizontally. The graph shows how the force on the stone varies with distance through which the stone is being accelerated horizontally from rest.

Use the graph to estimate the work done on the stone by the catapult.

$$
\begin{aligned}
\text { Work done } & =\text { Area under curve } \\
& =240 \times(10 \times 0.01)
\end{aligned}
$$

$$
\text { Work done = } 24 \mathrm{~J}
$$

Calculate the speed with which the stone leaves the catapult.

$$
\begin{aligned}
& 1 / 2 \times 0.08 \times v^{2}=24 \\
& v=\sqrt{600} \\
& \text { Speed }=24.5 \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}
$$

4. Define capacitance

Capacitance $=$ Charge $/$ Potential difference .

An uncharged capacitor of $200 \mu \mathrm{~F}$ is connected in series with a $470 \mathrm{k} \Omega$ resistor, a 1.50 V cell and a switch. Draw a circuit diagram of this arrangement.

Calculate the maximum current that flows.
Current $=1.5 \mathrm{~V} / 470 \mathrm{k} \Omega$
Current $=3.2 \mu \mathrm{~A}$
(2 marks)
Sketch a graph of voltage against charge for your capacitor as it charges. Indicate on the graph the energy stored when the capacitor is fully charged.

Calculate the energy stored in the fully-charged capacitor.
$1 / 2 C V 2=1 / 2(200 \mu \mathrm{~F})(1.5 \mathrm{~V})^{2}$
Energy $=2.25 \mu \mathrm{~J}$
[Total 11 marks]
5. Derive a formula for the equivalent capacitance of two capacitors in series

Starting with $V=V_{1}+V_{2}$
(1)

Justified by diagrams or otherwise

$$
\begin{align*}
& Q / C=Q / C_{1}+Q / C_{2} \tag{1}\\
& 1 / C=1 / C_{1}+1 / C_{1}
\end{align*}
$$

(No marks for unsupported later stages only)
(4 marks)
A $200 \mu \mathrm{~F}$ capacitor is connected in series with a $1000 \mu \mathrm{~F}$ capacitor and a battery of e.m.f. 9 V . Calculate
(i) the total capacitance

$$
\begin{equation*}
\frac{1}{C_{\text {Total }}}=\frac{1}{200 \mu F}+\frac{1}{1000 \mu F} \tag{1}
\end{equation*}
$$

Capacitance $=167 \mu \mathrm{~F}$
(ii) the charge that flows from the battery

$$
\begin{align*}
& Q=C V=(167 \times 10-6 \mu \mathrm{~F})(9 \mathrm{~V}) \tag{1}\\
& \text { Charge }=1.5 \mathrm{mC} \tag{1}
\end{align*}
$$

(iii) the final potential difference across each capacitor

$$
\begin{align*}
& V_{1}=Q / C_{1}=(1.5 \mathrm{mC}) / 1000 \mu \mathrm{~F}=1.5 \mathrm{~V} \tag{2}\\
& V_{2}=\mathrm{Q} / C_{2}=(1.5 \mathrm{mC}) / 200 \mu \mathrm{~F}=7.5 \mathrm{~V} \tag{1}\\
& \text { P.d. across } 1000 \mu \mathrm{~F}=1.5 \mathrm{~V} \\
& \text { P.d. across } 200 \mu \mathrm{~F}=7.5 \mathrm{~V} \\
& \text { Either correct (2) Both correct (3) }
\end{align*}
$$

6. A toroid is a conducting wire wound in the shape of a torus (a doughnut). A toroid could be made by bending a slinky spring into a torus. Figure 1 shows such a toroid. Figure 2 shows a plan view of this toroid with one magnetic field line added.

Figure 1

Figure 2

Theory suggests that for a toroid of N turns, the magnetic flux density B within the coils of the toroid at a distance r from the centre C of the toroid is given by

$$
B=\frac{\mu_{o} N I}{2 \pi r}
$$

Describe how you would verify this relationship using a precalibrated Hall probe.
Appreciate that orientation of Hall probe matters
(1)

Vary I or r or N while keeping other variable(s) constant and measure B (1)
repeat and average (1)
at different points round the toroid
Plot $B / /$ or $B / 1 / r$ or B / N to give straight line through origin
Any 4 points
Choose another variable [Line 2 above]
Plot appropriate graph [Line 5 above]
(6 marks)
For distances $r<r_{\mathrm{o}}$, suggest how B might vary with r. Give a reason for your answer.

PLEASE SEE EXAMINERS' REPORT

7. An induction microphone converts sound waves into electrical signals which can be amplified.

Diaphragm

Describe the stages by which the sound waves are converted into electrical signals.
State whether the signals are a.c. or d.c.
Some reference to the movement in the sound wave eg air molecules
oscillate/compressions and rarefactions (1)
diaphragm vibrates/equivalent (1)
coil moves (1)
cuts field lines/change in flux linkage (1)
induction occurs (1)

| a.c. signals (1) |
| :--- | :--- |

If the alternating output from a signal generator were fed into the microphone, describe and explain what would happen to the diaphragm.
diaphragm moves $\leftrightarrow \quad$ (1)
changing field in coil or
current in a conductor in a magnetic field
interacts with magnet's field or
experiences a force at right angles/left hand rule/ equivalent
(1)
(3 marks)
[Total 9 marks]

(c)
$63=216$
This is approximately 250
so volumes are in this ratio
Or
volume of sphere $=4 \pi r 3 / 3$
Multiply by 250
Equals volume of sphere of radius $6 r$ approximately
Approximate as there are spaces between the spheres/
spheres do not pack perfectly spheres do not pack perfectly (1)
(d)

Nuclear matter
Exists as spheres
or Attractive forces hold nucleons together

Has density
or Density (almost) constant
or Volume \propto nucleon number
Water drops
Exists as spheres
Attractive forces hold molecules together

Has density
Density constant
Volume \propto mass
Excess energy is shared
Excess energy is shared
or Has specific heat
or Exhibit thermal agitation
Nucleons can be emitted
Emitted particle carries only small part of energy Has specific heat Exhibit thermal agitation

Molecules can evaporate (1)
Emitted molecule carries only small part of energy (1)
(Max 3 marks)
(e)
$F=k \frac{Q_{1} Q_{2}}{r^{2}}$ or $\boldsymbol{F}=\frac{1}{4 \pi \in_{o}} \frac{Q_{1} Q_{2}}{r^{2}}$
$F=\quad\left[\left(55 \times 1.6 \times 10^{-19} \mathrm{C}\right) \times\left(37 \times 1.6 \times 10^{-9} \mathrm{C}\right)\right] \times$ for both Q

$$
\begin{equation*}
\left[\left(9.0 \times 10^{9} \mathrm{~m} \mathrm{~F}-1\right) \div(3.0 \times 10-14 \mathrm{~m})^{2}\right] \tag{1}
\end{equation*}
$$

$F=521 \mathrm{~N} \quad$ (Allow 520 N) (1)
(Maximum 2/4 for adding Q_{1} and Q_{2})
The e.p.e. is very high
(f)

more than one path straight
(1)
one path bent correctly (or bent $>90^{\circ}$ if no nuclei shown) (1)
Nuclei shown and good drawing, e.g. lines straight before and after deflection or a degree of symmetry (1)

Electrons are attracted to nucleus not repelled by it
(1)

Electrons deflected only a bit/can go through nucleus
(2 marks)
(g) $\lambda=h / p=\frac{6.6 \times 10^{-34} \mathrm{~J} \mathrm{~s}}{2.0 \times 10^{-18} \mathrm{~N} \mathrm{~s}}$
$=3.3 \times 10-16 \mathrm{~m}$ (Unit)

Circles

Fuzzy Circles

Radial intensity curve (1)

Intensity labelled
(1)
(1)
9. (a) (i) For $2210 \mu F$ capacitor: $V=Q / C=\frac{50 \times 10^{-6} \mathrm{C}}{22 \times 10^{-6} \mathrm{~F}}$
$=\underline{2.27 \mathrm{~V}}$
For $47 \mu \mathrm{~F}$ capacitor: $V=\frac{50 \times 10^{-6} \mathrm{C}}{47 \times 10^{-6} \mathrm{~F}}=1.06 \mathrm{~V}$
$\therefore V_{A B}=(1.06+2.27) V(=1.33 \mathrm{~V})$ (e.c.f.)
or
Allow calculation via series capacitors
i.e. $1 / C=1 / C_{1}+1 / C_{2} \Rightarrow C=15.0 \mu \mathrm{~F}$ hence 3.34 V

Go on to split this and get 2.27 V/1.06 V
(ii) $\quad \boldsymbol{C}=\frac{Q}{V}=\frac{50 \times 10^{-6} \mathrm{C}}{3.3 \mathrm{~V}}=15 \times 10^{-6} F$
(accept 15.15/15.12)
(iii) $C=22 \mu F+47 \mu F=\underline{69 \mu F}$
(b)
(i) Larger C: use more plates
use larger plates
more plates closer more plates closer
fill space with insulator/dielectric medium of $\mu_{r}>1$
(ii) As area of overlap \downarrow, capacitance $C \downarrow$ (1) $Q=C V$ and Q is fixed (1)
$C \downarrow$ means $V \uparrow$
(1)
(c)

Coustaul curvent

Workable labelled circuit diagram
(2)
(if workable but incompletely labelled, 1 mark only)
Explanation of usage
How Q established (2)

How V established / measured
(Max 5 marks)
[Total 16 marks]
10. (a)
(i) $P=\frac{m g h}{t} \quad$ (Allow $\left.P=F v\right) 54.9 \mathrm{~N} \times 2.31 \times 10-6 \mathrm{~m} \mathrm{~s}^{-1}$
$=\frac{5.6 \mathrm{~kg} \times 9.8 \mathrm{~N} \mathrm{~kg}^{-1} \times 1.4 \mathrm{~m}}{7 \times 24 \times 3600 \mathrm{~s}}$
$=1.3 \times 10^{-4} \mathrm{~W}$
If only $\mathbf{m g h}$ calculated (77 J), max (1)
(i) Use of $\boldsymbol{m c} \boldsymbol{\Delta} \boldsymbol{\theta}$

A valid expression for θ or answer $0.038{ }^{\circ} \mathrm{C} / \mathrm{K}$ (0.039 if 10 used)
Assumption: all g.p.e. becomes internal energy/ all heat in the cylinder / no heat loss / no air friction
(b)
(i) Mention of Earth's magnetic field
[Look for back credit from part (c)] Pendulum cuts this field/flux
So e.m.f./p.d. is induced (not current)
(3 marks)
(ii)

Any repetitive graph
Sinusoidal in shape
(1)

Time scale correct (i.e. period 2 s)
(c) Statement that energy conservation is violated/ perpetual motion machines are impossible/ drawing power would damp oscillation (2)
(Allow not practicable to connect to bottom of pendulum for 1 mark only)
Discussion: induced p.d./e.m.f. could produce a current
which would dissipate/use energy
(1)

Switches could attract steel at correct part of swing
(Max 4 marks)
[Total 16 marks]
11. With the aid of an example, explain the statement "The magnitude of a physical quantity is written as the product of a number and a unit".

Both number and unit identified in an example
followed by the idea of multiplication

Explain why an equation must be homogeneous with respect to the units if it is to be correct.
If the units on one side differ from those on the other, then the two sides of the equation relate to different kinds of physical quantity. They cannot be equal [or similar positive statements]

Write down an equation which is homogeneous, but still incorrect.
Any incorrect but homogeneous algebraic or word equation :
$\mathbf{2 m g h}=1 / 2 \mathrm{mv}^{2}, 2 \mathrm{~kg}=\mathbf{3} \mathrm{kg}$, pressure =stress/strain (2 or 0)
12. Complete the circuit below to show the capacitors connected in parallel.

Complete the circuit below to show the capacitors connected in series.

Use the information in the diagrams to complete the following table.

Capacitors in parallel	Charge on C_{1}	$18 \mu \mathbf{C}$
	Energy stored in C_{1} when fully charge	$54 \mu \mathbf{J}$
	Charge on C_{2}	$9 \mu \mathbf{C}$
	Work done by power supply in charging both capacitors	$27 \mu \mathbf{J}$ or $54 \mu \mathbf{J}$

13. State Coulomb's law for the electric force between two charged particles in free space.

Force is proportional to the product of the charges and inversely proportional to the distance between them squared
(1) (1)
(OR F $=\frac{k Q_{1} Q_{2}}{r^{2}}$ with symbols defined
(1) (1))
(2 marks)

What are the base units of ϵ_{o} (the permittivity of free space)?

$$
\begin{equation*}
\in_{o} \rightarrow \mathbf{A}^{\mathbf{2}} \quad \mathbf{s}^{\mathbf{4}} \mathbf{k g ~ - 1}^{\mathbf{- 1}} \mathbf{m}^{\mathbf{- 3}} \tag{1}
\end{equation*}
$$

[Compensation marks, Maximum 1/2: $C^{2}=A^{2} s^{2}$
$\mu_{0}=k g \mathrm{~m} \mathrm{~s}^{-2} \mathrm{~A}^{-2}$
Farad $\mathrm{m}^{-1}=\mathrm{As} \mathrm{m} \mathrm{m}^{-1} / \mathrm{V}$
Force $\times r^{2}=\mathrm{kg} \mathrm{m}^{3} \mathrm{~s}^{-2}$]
[Total 4 marks]
14. (a) Explain how the distance from an observer to a lightning flash may be estimated. Illustrate this for the case where the distance is 1.5 km .

Light travels very fast/instantaneously/at $3 \times 10^{8} \mathbf{~ m} / \mathrm{s}$
To travel 1.5 km, sound takes 4.4 s
(1)

Measuring time enables distance to be found
(b) Explain the meaning of the phrase sheet lightning (paragraph 2).

Use the passage to explain how thunder is produced.
Sheet lightning: flash/ stroke/discharge
within a cloud/from cloud to cloud (1)
Thunder: air heated (1)
rapid expansion
shock wave
(1)
(c) The diagram represents a storm cloud over a building with a high clock tower.

Copy the diagram. Explain, with the aid of additions to your diagram, what is meant by a negative leader(paragraph 3).

$$
\begin{align*}
& \text { Charge -ve on cloud } \\
& \text { Charge + ve on tower (1) } \\
& \text { Jagged line from cloud to tower (1) } \\
& \text { Negative leader is column of charged ions } \\
& \text { Negative leader marked on diagram } \tag{1}
\end{align*}
$$

(Max 4 marks)
(d) Describe the process by which a lightning stroke produces visible light.

Explain why, when you see a lightning flash, it may seem to flicker.
Electrical discharge in air
(1)
ionises/excites electrons/molecules
which emit light/photons (1)
When they return to ground state
Flicker: a whole series of/several strokes
in a short time/rapidly (1)
(Max 5 marks)
(e) Suppose lightning strikes from a cloud to the Earth along a channel 400 m long.

Calculate
(i) a typical potential difference between cloud and Earth,

Either Or

$$
\begin{array}{ll}
P=4 \times 10^{10} \mathbf{W} & P=I V \Rightarrow \frac{P}{l}=I \frac{V}{l} \\
P=I V \rightarrow V=P / I & E=\frac{V}{l}=\frac{P / l}{I} \tag{1}\\
\Rightarrow V=2 \times 10^{6} \mathrm{~V} & =5000 \mathrm{~V} \mathrm{~m}^{-1}
\end{array}
$$

(ii) the average electric field strength along such a lightning channel.

$$
\begin{aligned}
& \mathrm{E}=\frac{V}{d} \quad E=\mathrm{VI} \\
& =5000 \mathrm{~V} \mathrm{~m}^{-1} \quad=2 \times 10^{6} \mathrm{~V}
\end{aligned}
$$

(f) Describe how you would attempt to demonstrate in the laboratory that the electric field strength needed to produce a spark in air is about $3000 \mathrm{~V} \mathrm{~mm}^{-1}\left(3 \times 10^{6} \mathrm{~V} \mathrm{~m}^{-1}\right)$. Suggest why this value differs from that which you calculated in (e).
e.h.t/Van der Graaf
(1)
with voltmeter
(1)

Two metal terminals/spheres/plates
Comment on atmospheric conditions
(g) Estimate the pressure of the air within a lightning channel immediately after a lightning flash. Take the atmospheric pressure to be 100 kPa . State any assumptions you make.

Air temperature, any value in kelvin

$$
\begin{equation*}
\frac{p}{T}=\mathbf{c o n s t a n t} \tag{1}
\end{equation*}
$$

Assume V constant
$\Rightarrow p=$ around 10000 kPa
15. A thin copper wire $\mathrm{PQ}, 0.80 \mathrm{~m}$ long, is fixed at its ends. It is connected as shown to a variable
frequency alternating current supply and set perpendicular to the Earth's magnetic field.

(a) When there is a current from P to Q the wire experiences a force. Draw a diagram showing the resultant magnetic field lines near the wire as viewed from the West. (You should represent the wire PQ as \otimes.)

Explain what is meant by a neutral point.
Circular field round wire
(1)

Clockwise
Catapult field
(1)

Neutral point: two fields cancel/resultant field zero (1)
(b) The wire PQ experiences a maximum force of $0.10 \times 10^{-3} \mathrm{~N}$ at a place where the Earth's magnetic field is $50 \times 10^{-6} \mathrm{~T}$. Calculate the maximum value of the current and its r.m.s. value.

$$
\begin{align*}
& F=B I l \Rightarrow I=F / B l \tag{1}\\
& \Rightarrow I=2.5 \mathrm{~A} \\
& \therefore I_{\mathrm{rms}}=I / \sqrt{ } 2=1.77 \mathrm{~A} \tag{1}
\end{align*}
$$

(c) A strong U-shaped (horseshoe) magnet is now placed so that the mid-point of the wire PQ lies between its poles. The frequency of the a.c. supply is varied from a low value up to 50 Hz , keeping the current constant in amplitude. The wire PQ is seen to vibrate slightly at all frequencies and to vibrate violently at 40 Hz .
(i) Explain carefully why the wire vibrates and why the amplitude of the vibrations varies as the frequency changes.

Magnetic force/BII varies
 (1)

forcing wire to vibrate
(1)

At the natural frequency
(1)

the amplitude is high/there is resonance (1)

(Max 3 marks)
(ii) Calculate the speed of transverse mechanical waves along the wire PQ.
$P Q=\lambda / 2 \Rightarrow \lambda=1.60 \mathrm{~m}$
Use of $c=f \lambda$
$\Rightarrow c=64 \mathrm{~m} / \mathrm{s}$
(iii) Describe the effect on the wire of gradually increasing the frequency of the a.c. supply up to 150 Hz .
Wire vibrates slightly at all frequencies (1)
Resonance/max amplitude at $120 \mathrm{~Hz} /$ at 80 Hz and at 120 Hz
(1)
16. The circuit shown is used to charge a capacitor.

The graph shows the charge stored on the capacitor whilst it is being charged.

On the same axes, sketch as accurately as you can a graph of current against time. Label the current axis with an appropriate scale.

Label current axis
 (1)

Current at $t=0$ within range $30-45 \mu \mathrm{~A}$
Current graph right shape
Exponential decay (1)
(4 marks)

The power supply is 3 V . Calculate the resistance of the charging circuit.

$$
\begin{align*}
\text { Resistance } & =3 \mathrm{~V} / 40 \mu \mathrm{~A} \tag{1}\\
& =75 \mathrm{k} \Omega \tag{1}\\
\text { Resistance } & =\text { Allow } 66 \mathrm{k} \Omega \rightarrow 100 \mathrm{k} \Omega
\end{align*}
$$

17. Using the usual symbols write down an equation for
(i) Newton's law of gravitation

$$
\begin{equation*}
F=G \frac{M_{1} M_{2}}{R^{2}} \tag{1}
\end{equation*}
$$

(ii) Coulomb's law

$$
\begin{equation*}
F=K \frac{Q_{1} Q_{2}}{R^{2}} \tag{1}
\end{equation*}
$$

(2 marks)
State one difference and one similarity between gravitational and electric fields.
Difference
Gravitational fields are attractive but electric fields can be attractive or repulsive (1)

Similarity
Both have an \propto range (1)

A speck of dust has a mass of $1.0 \times 10^{-18} \mathrm{~kg}$ and carries a charge equal to that of one electron.
Near to the Earth's surface it experiences a uniform downward electric field of strength $100 \mathrm{~N} \mathrm{C}^{-1}$ and a uniform gravitational field of strength $9.8 \mathrm{~N} \mathrm{~kg}^{-1}$.
Draw a free-body force diagram for the speck of dust. Label the forces clearly.

Calculate the magnitude and direction of the resultant force on the speck of dust.

| Electric force | $=100 \mathrm{~N} \mathrm{C-1} \times 1.6 \times 10-19 \mathrm{C}$ |
| :--- | :--- | :--- |
| | $=1.6 \times 10-17 \mathrm{~N}$ |
| Weight | $=9.8 \times 10-18 \mathrm{~N}$ |
| Net force is upward | (1) |
| Force $=6.2 \times 10-18 \mathrm{~N}$ | (1) |

18. The permittivity of free space ϵ_{o} has units $\mathrm{F} \mathrm{m}^{-1}$. The permeability of free space μ_{o} has units NA^{-2}

Show that the units of $\frac{1}{\sqrt{\epsilon_{0} \mu_{\mathrm{o}}}}$ are $\mathrm{m} \mathrm{s}^{-1}$
Any two:

$$
\begin{align*}
& \mathrm{N}=\mathrm{kg} \mathrm{~m} \mathrm{~s} \mathrm{~s}^{-2} \\
& \mathrm{~F}=\mathrm{C} / \mathrm{V} \\
& \mathrm{~V}=\mathrm{J} / \mathrm{C} \\
& \mathrm{Q}=\mathrm{As} \tag{1}
\end{align*}
$$

Unambiguous manipulation to correct answer

Calculate the magnitude of $\frac{1}{\sqrt{\epsilon_{0} \mu_{\mathrm{o}}}}$.

$$
\begin{aligned}
& \sqrt{\frac{1}{8.85 \times 10^{-12} \mathrm{~F} \mathrm{~m}^{-1} \times 4 \mathrm{~m} \times 10^{-7} \mathrm{~N} \mathrm{~A}^{-2}}} \\
& \text { Magnitude }=3.0 \times 10^{8}
\end{aligned}
$$

Comment on your answers.
This is the speed of light (1)
19. A child sleeps at an average distance of 30 cm from household wiring. The mains supply is 240 V r.m.s. Calculate the maximum possible magnetic flux density in the region of the child when the wire is transmitting 3.5 kW of power.

$$
P=I V \quad \text { (1) }
$$

$I=21.2 \mathrm{~A}$ (1)
Use of $B=\frac{4 \pi \times 10^{7} \mathrm{~N} \mathrm{~A}^{-2} \times 21.2 \mathrm{~A}}{2 \pi \times 0.3}$
Magnetic flux density $=1.5 \times 10-5 \mathrm{~T}$

Why might the magnetic field due to the current in the wire pose more of a health risk to the child than the Earth's magnetic field, given that they are of similar magnitudes?

Earth's field is constant; wire's field is alternating (1)
Alternating magnetic field can induce an e.m.f.
20. (a) Explain the meaning of the following terms as used in the passage:
(i) to ground (paragraph 1),

To the Earth's surface
(ii) leakage current (paragraph 3),

Current produced by fair weather field (1) Current in opposite/reverse direction to lightning
(iii) horizontally polarised (paragraph 5).

Waves oscillating in one plane
B or E-field horizontal (1)
(b) What is the electric field strength at the Earth's surface?

$$
100 \mathrm{~V} \mathrm{~m}^{-1} \text { OR } 100 \mathrm{~N} \mathrm{C}^{-1}
$$

Calculate the average electric field strength between the Earth's surface and the conducting ionospheric layer.

$$
\begin{equation*}
E_{\mathrm{av}}=\frac{300 \times 10^{3} \mathrm{~V}}{60 \times 10^{3} \mathrm{~m}}=5 \mathrm{~V} \mathrm{~m}^{-1} \tag{2}
\end{equation*}
$$

Sketch a graph to show the variation of the Earth's fair-weather electric field with distance above the Earth's surface to a height of 60 km .

Graph:

Axes E in $\mathrm{V} \mathrm{m}^{-1}$ and h in km (1)
Scales marked \quad N.B. Error carried forward $100 \mathrm{~V} \mathrm{~m}^{-1}$
Sloping line
Getting less steep with h
Passing through 60,5 or 0,100
(Max 4 marks)
(c) The power associated with a lightning stroke is extremely large. Explain why there is no scope for tapping into thunderstorms as an energy' source (paragraph 3).
Idea of storms spread out in space
Low average current per storm e.g. only 1 A
Idea of storms spread out in time
Strike lasts for a very short time
(1)
(Max 3 marks)
(d) Show that a total charge of $5 \times 10^{5} \mathrm{C}$ spread uniformly over the Earth will produce an electric field of just over $100 \mathrm{~V} \mathrm{~m}^{-1}$ at the Earth's surface. Take the radius of the Earth to be 6400 km .

$$
\begin{align*}
& E=\frac{1}{4 \pi \in_{o}} \frac{Q}{r^{2}} \text { OR } k \frac{Q}{r^{2}} \\
& =\frac{1}{4 \pi\left(8.9 \times 10^{-12} \mathrm{~F} \mathrm{~m}^{-1}\right)} \times \frac{5 \times 10^{5} \mathrm{C}}{\left(6.4 \times 10^{6} \mathrm{~m}\right)^{2}} \tag{1}\\
& =109 \mathrm{~V} \mathrm{~m} \mathbf{~ m}^{-1}[\text { Accept } 110] \text { [No unit required] } \tag{1}
\end{align*}
$$

Draw a diagram to show the direction of this fair-weather field.
Uniformly spaced radial lines
(1)
with downward arrows (1)

Suggest a problem which might arise if the charge on the Earth were very much larger.

More thunderstorms/lightning strikes or could upset electrical/electronic equipment
(e) The diagram shows a lightning stroke close to the surface of the Earth.

Copy the diagram and add rays to it to illustrate the propagation of radio waves in the VLF band.
Straight lines
(1)
Reflecting
(1)
> 1 bounce
(1)

On a second copy of the diagram add wavefronts to illustrate the propagation of radio waves in the ELF band.

Equally spaced wavefronts

to Earth's surface (1)
Curved/diffracting (1)
Explain with the aid of a diagram the meaning of the term radio horizon used in paragraph 4 with reference to VHF radio waves.

Waves/ray from above
Earth's surface \Rightarrow horizon idea
[No diagram, no credit]
(f) List the frequency ranges of VHF, VLF and ELF radio waves.

VHF 30-300 MHZ
VLF 10 - 16 kHz
ELF About 1 kHz
All correct

Calculate the wavelength of
(i) a typical VHF signal, $\lambda=c / f \quad$ (1)
$\lambda=\frac{3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}}{30 \text { to } 300 \times 10^{6} \mathrm{~Hz}}$
$=10 \mathrm{~m}$ to 1 m (1)
(ii) an ELF signal.

Same calculation, cao $\mathbf{3 \times 1 0 5} \mathbf{m}$
(1)
(Max 4 marks)
[Total 32 marks]
21. For each of the four concepts listed in the left hand column, place a tick by the correct example of that concept in the appropriate box.

A base quantity	mole	length	\checkmark	kilogram	
A base unit	coulomb	ampere	\checkmark	volt	
A scalar quantity	torque	velocity		kinetic energy	\checkmark
A vector quantity	mass	weight	\checkmark	density	

[Total 4 marks]
22. A $100 \mu \mathrm{~F}$ capacitor is connected to a 12 V supply. Calculate the charge stored.

Charge stored $Q=C V$

$$
\begin{align*}
& =\left(100 \times 10^{-6} \mathrm{~F}\right)(12 \mathrm{~V}) \\
& =1200 \mu \mathrm{C} \tag{1}
\end{align*}
$$

Show on the diagram the arrangement and magnitude of charge on the capacitor.

(2)

This $100 \mu \mathrm{~F}$ charged capacitor is disconnected from the battery and is then connected across a $300 \mu \mathrm{~F}$ uncharged capacitor. What happens to the charge initially stored on the $100 \mu \mathrm{~F}$ capacitor?

The charge is shared by the two capacitors.

Calculate the new voltage across the pair of capacitors.
Equivalent capacitance $C=100 \mu \mathrm{~F}+\mathbf{3 0 0} \mu \mathrm{F}=\mathbf{4 0 0} \mu \mathrm{F}$
New voltage $=\frac{\mathrm{Q}}{\mathrm{C}}=\frac{1200 \times 10^{-6} \mathrm{C}}{400 \times 10^{-6} \mathrm{~F}}$
(1)

Voltage $=3.0 \mathrm{~V}$
(1)
(4 marks)
[Total 7 marks]
23. Two identical table tennis balls, A and B , each of mass 1.5 g are attached to non-conducting threads. The balls are charged to the same positive value. When the threads are fastened to a point P the balls hang as shown in the diagram. The distance from P to the centre of A or B is 10.0 cm .

Draw a labelled free-body force diagram for ball A.

Calculate the tension in one of the threads.

$$
\begin{align*}
& \mathrm{T} \cos 50=m g \\
& =\left(1.5 \times 10^{-3} \mathrm{~kg}\right)\left(9.81 \mathrm{~N} \mathrm{~kg}^{-1}\right) \tag{1}
\end{align*}
$$

$$
\begin{equation*}
\text { Tension }=2.3 \times 10^{-2} \mathrm{~N} \tag{1}
\end{equation*}
$$

Show that the electrostatic force between the two balls is $1.8 \times 10^{-2} \mathrm{~N}$.

$$
F_{E}=\left(2.3 \times 10^{-2} \mathrm{~N}\right) \sin 50=1.8 \times 10^{-2} \mathrm{~N}
$$

Calculate the charge on each ball.

$$
\begin{align*}
& F_{\mathrm{E}}=k \frac{q_{1} q_{2}}{d^{2}} \tag{1}\\
& 1.8 \times 10-2 \mathrm{~N}=\frac{q^{2}}{4 \pi \pi_{0} \times\left(1.53 \times 10^{-2} \mathrm{~m}\right)^{2}} \tag{1}
\end{align*}
$$

Charge $=2.1 \times 10-7 \mathrm{C}$

How does the gravitational force between the two balls compare with the electrostatic force given opposite?

It is very much smaller than the electrostatic force or a correctly calculated value. (1)
Gravitational force is attractive. (1)
(2 marks)
[Total 12 marks]
24. The diagram (not to scale) shows a satellite of mass m, in circular orbit at speed v_{s} around the Earth, mass M_{E}. The satellite is at a height h above the Earth's surface and the radius of the Earth is R_{E}.

Using the symbols above write down an expression for the centripetal force needed to maintain the satellite in this orbit.

$$
\begin{equation*}
F=\frac{m_{\mathrm{s}} v_{\mathrm{s}}^{2}}{R_{\mathrm{E}}+h} \tag{2}
\end{equation*}
$$

Write down an expression for the gravitational field strength in the region of the satellite.

$$
\begin{equation*}
\boldsymbol{g}=\frac{G M_{\mathrm{E}}}{\left(R_{\mathrm{E}}+h\right)^{2}} \tag{2}
\end{equation*}
$$

State an appropriate unit for this quantity.

$$
\mathrm{N} \mathrm{~kg}^{-1}
$$

Use your two expressions to show that the greater the height of the satellite above the Earth, the smaller will be its orbital speed.

$$
\begin{align*}
& \frac{m_{\mathrm{s}} v_{\mathrm{s}}^{2}}{R_{\mathrm{E}}+h}=\frac{G M_{\mathrm{E}} m_{\mathrm{s}}}{\left(R_{\mathrm{E}}+h\right)^{2}} \\
& \boldsymbol{v}_{\mathrm{s}}^{2}=\frac{\mathbf{G} M_{\mathrm{E}}}{\boldsymbol{R}_{\mathrm{E}}+\boldsymbol{h}} \tag{1}
\end{align*}
$$

Greater h P smaller v_{s} since G, M_{E} constant
(3 marks)
Explain why, if a satellite slows down in its orbit, it nevertheless gradually spirals in towards the Earth's surface.

$$
\begin{equation*}
\text { As it slows } \frac{G M_{\mathrm{E}} m_{\mathrm{s}}}{\left(R_{\mathrm{E}}+h\right)^{2}}>\frac{m_{\mathrm{s}} v_{\mathrm{s}}^{2}}{R_{\mathrm{E}}+h} \tag{1}
\end{equation*}
$$

The "spare" gravitational force not needed to provide the centripetal acceleration pulls the satellite nearer to the Earth
(1)
(2 marks)
[Total 10 marks]
25. The magnitude of the force on a current-carrying conductor in a magnetic field is directly proportional to the magnitude of the current in the conductor. With the aid of a diagram describe how you could demonstrate this in a school laboratory.

A diagram with a wire perpendicular to a magnetic field with the means to measure the force on the wire. (1)

Method of providing and measuring d.c. (1)
Method of varying and measuring force with details.
For various values of current, measure F.
Plot F against I- straight line through origin.
MAX 3

At a certain point on the Earth's surface the horizontal component of the Earth's magnetic field is $1.8 \times 10^{-5} \mathrm{~T}$. A straight piece of conducting wire 2.0 m long, of mass 1.5 g lies on a horizontal wooden bench in an East-West direction. When a very large current flows momentarily in the wire it is just sufficient to cause the wire to lift up off the surface of the bench.

State the direction of the current in the wire.

Calculate the current.

$$
\begin{equation*}
F=B I I \tag{1}
\end{equation*}
$$

$\left(1.5 \times 10^{-3} \mathrm{~kg}\right)\left(9.81 \mathrm{~N} \mathrm{~kg}^{-1}\right)=\left(1.8 \times 10^{-5} \mathrm{~T}\right) \times I \times(2.0 \mathrm{~m})$
Current $=410 \mathrm{~A}$
What other noticeable effect will this current produce?

Wire melts
 (1)

(4 marks)
[Total 8 marks]
26. Apparatus to demonstrate electromagnetic levitation is shown in the diagram.

When there is an alternating current in the 400-turn coil the aluminium ring rises to a few centimetres above the coil. Changes in the size of the alternating current make the ring rise to different heights.
(a) (i) Explain why. when there is a varying current in the coil, there is an induced current in the aluminium ring. Suggest why the ring then experiences an upward force.
Current in coil produces a magnetic field (1)
the field varies
(1)
(magnetic) flux through ring changes / field lines are cut by ring
so induced e.m.f. in ring
the current feels a BIl force / motor effect /
Fleming / left hand rule (1)
because of opposing B-fields / Lenz's law opposing (1)
(Max 5 marks)
(ii) In one experiment the power transfer to the aluminium ring is 1.6 W . The induced current is then 140 A . Calculate the resistance of the aluminium ring.

The dimensions of the aluminium ring are given on the diagram below. Use your value for its resistance to find a value for the resistivity of aluminium.

Average radius

$P=\left\|^{\mathbf{2}} R \Rightarrow R=P /\right\|^{2}$
$=1.6 \mathrm{~W} \div(140 \mathrm{~A})^{2}$
$=8.2 \times 10^{-5} \Omega$
$R=\rho I / A$
A calculated as $\left(2.0 \times 10^{-3} \mathrm{~m}\right)\left(15 \times 10^{-3} \mathrm{~m}\right)$
OR
I calculated as $2 \pi\left(12 \times 10^{-3} \mathrm{~m}\right)$
$\Rightarrow \rho=3.3 \times 10-8 \Omega \mathrm{~m}$
(Max 5 marks)
(b) The aluminium ring becomes hot if the alternating current is left on for a few minutes. In order to try to measure its temperature it is removed from the steel rod and then dropped into a small plastic cup containing cold water.
(i) State what measurements you would take and what physical properties of water and aluminium you would need to look up in order to calculate the initial temperature of the hot aluminium ring.

Measure:

Mass of ring and mass of water
 (1)
 Initial and final temperature of water / $\Delta \theta$ water

Look up s.h.c. of aluminium and water
(ii) Explain whether experimental errors would make your value for the initial temperature of the aluminium ring too big or too small.
General reference to heat / energy losses
(1)

Detail of where / when losses occur (1)
Calculated temperature too small (1)
27.

Calculate the maximum energy stored in the $3 \mu \mathbf{F}$ capacitor in the circuit above
(i) with the switch S closed,

$$
\mathrm{W}=\frac{1}{2} \mathrm{cv}^{2}=\frac{1}{2}\left(3 \times 10^{-6} \mu \mathrm{~F}\right)(6.0 \mathrm{~V})^{2}(1)
$$

Maximum energy $=54 \mu \mathrm{~J}$
(ii) with the switch S open.

$$
\begin{align*}
& C^{\prime}=\left\{\frac{1}{3}+\frac{1}{2}\right\}^{-1} \\
& \quad=6 / 5 \mu \mathrm{~F} \tag{1}\\
& Q=7.2 \mu \mathrm{C} \\
& \mathrm{~W}=\left(7.2 \times 10^{-6}\right) / 2 \times 3 \times 10^{-6} \tag{1}\\
& \text { Maximum energy }=8.6 \mu \mathrm{~J}
\end{align*}
$$

28. Explain what is meant by a neutral point in field.

Where two (or more) fields

The diagram shows two similar solenoids A and B. Solenoid A has twice the number of turns per metre. Solenoid A carries four times the current as B.

A
Cle,
On ONE Solenoid: Field lines through centre parallel
One complete loop each side

Correct polarity

for other solenoid: opposite polarity and different number of field lines

Draw the magnetic field lines in, around and between the two solenoids.

If the distance between the centres of A and B is 1 m , estimate the position of the neutral point. Ignore the effect of the Earth's magnetic field.

Flux density $A=8 \times$ flux density B

Neutral point 0.89 m from $\mathrm{A} / 0.11 \mathrm{~m} B$
(0.875 m / 0.125 m)
29. A light aluminium washer rests on the end of a solenoid as shown in the diagram.

A large direct current is switched on in the solenoid. Explain why the washer jumps and immediately falls back.

B field produced by solenoid
(1)

Flux lines CUT washer (1)
Induced current/e.m.f. in washer
B field of solenoid opposite to B field washer
Repulsive force lifts washer
(1)

Steady current so no changing of flux/no induction
OR explain by force on current carrying conductor in B field (LH rule)
30. Classify each of the terms in the left-hand column by placing a tick in the relevant box.
31. The diagram shows a positively charged oil drop held at rest between two parallel conducting plates A and B.

The oil drop has a mass $9.79 \times 10^{-15} \mathrm{~kg}$. The potential difference between the plates is 5000 V and plate B is at a potential of 0 V . Is plate A positive or negative?

Negative (1)

Draw a labelled free-body force diagram which shows the forces acting on the oil drop. (You may ignore upthrust).

(2)

Calculate the electric field strength between the plates.

$$
\begin{align*}
& E=\frac{5000 \mathrm{~V}}{2.50 \times 10^{-2} m} \tag{1}\\
& \text { Electric field strength }=2 \times 10^{5} \mathrm{~V} \mathrm{~m}^{-1}\left[O R \mathrm{~N} \mathrm{c}^{-1}\right] \tag{1}
\end{align*}
$$

Calculate the magnitude of the charge Q on the oil drop.
$\mathbf{M g}=\mathbf{q E}$: use of equation
Charge $=4.8 \times 10-19 \mathrm{C}$
How many electrons would have to be removed from a neutral oil drop for it to acquire this charge?

3 (1)
32. Two long parallel wires R and S carry steady currents I_{1} and I_{2} respectively in the same direction. The diagram is a plan view of this arrangement. The directions of the currents are out of the page.

In the region enclosed by the dotted lines, draw the magnetic field pattern due to the current in wire R alone.

See above (2 marks)
The current I_{1} is 4 A and I_{2} is 2 A . Mark on the diagram a point N where the magnetic flux density due to the currents in the wires is zero.

See above (2 marks)
Show on the diagram the direction of the magnetic field at P .
See above (1 mark)

Calculate the magnitude of the magnetic flux density at P due to the currents in the wires.
Use of $B=\frac{\mu_{0} I}{2 \pi r}$ with $\frac{1}{r}=\frac{2 A}{0.03 m}$ OR $\frac{4 A}{0.12 m}$
Two substitutes involving $x \quad \frac{4}{12}$ and $\times \frac{2}{3}$ added

Flux density $=2 \times 10^{-5} \mathrm{~T}$
33. What is meant by the term electromagnetic induction?

The generation of a pd/voltage/emf
by a moving conductor relative to a magnetic field
[Last two points could be interchanged]

Describe an experiment you could perform in a school laboratory to demonstrate Faraday's law of electromagnetic induction.

A suitable experiment (eg. two coils, one with a.c., magnet and solenoid) (1)

How change of flux linkage is produced
Measurement of induced current or voltage with appropriate device in correct place (1)

How to change the rate of flux cutting
What is observed

An aircraft has a wing span of 54 m . It is flying horizontally at $860 \mathrm{~km} \mathrm{~h}^{-1}$ in a region where the vertical component of the Earth's magnetic field is $6.0 \times 10^{-5} \mathrm{~T}$. Calculate the potential difference induced between one wing tip and the other.

Use of $\mathcal{E}=$ Blv [No mark]

$\mathcal{E}=6 \times 10^{-5} \mathrm{~T} \times 54 \mathrm{~m} \times \frac{860 \times 10^{3} \mathrm{~m}}{60 \times 60 \mathrm{~s}}$
Potential difference $=0.77$ V
What extra information is necessary to establish which wing is positive and which negative?

Direction of field / N or S hemisphere (1)

(3 marks)
[Total 11 marks]
34. (a) (i) Ion pair:

Charged particles
Positive and negative
(ii) Space charge:

Region/area containing positively charged
massive/slow-moving particles/ions
(iii) Dead time:

Period/time when GM tube is insensitive to arrival of further particles

Avalanche:
Electrons accelerate/gain energy
causing ionisation
idea of a cascade, e.g. chain reaction
(b) $\Delta p=(101-11) \times 10^{3} \mathrm{~Pa}$

Use of $F=A p$ OR $A \Delta p$
$=\pi\left(12 \times 10^{-3} \mathrm{~m}\right)^{2}\left(90 \times 10^{3} \mathrm{~Pa}\right)$
$=41 \mathrm{~N}$

Difficulty:
α-particles easily stopped/have short range/are least penetrating
so thin end windows needed
but forces/pressures are high
(c) (i) Thickness of mica $=\left(2 \times 10^{-2} \mathrm{~kg} \mathrm{~m}^{-2}\right) \div\left(2800 \mathrm{~kg} \mathrm{~m}^{-3}\right)$

$$
=7.14 \times 10^{-6} \mathrm{~m}
$$

Therefore number of molecules
$=7.14 \times 10^{-6} \mathrm{~m} \div 8.4 \times 10^{-9} \mathrm{~m}$
$=850$
(ii) $\quad \alpha$ ionises more densely than β
as it has twice the charge/is slower than β
Therefore β penetrates more/gets through thicker windows than α
(d) Radial lins/parallel lines

Calculation:

$$
\begin{align*}
& F=\mathrm{q} E \tag{1}\\
& =1.92 \times 10^{-14 \mathrm{~N}} \\
& m a=F \\
& \quad a=2.1 \times 1016 \mathrm{~m} \mathrm{~s}^{-2} \tag{1}
\end{align*}
$$

(e) (i) $\ln \left(r_{\mathrm{a}} / r_{\mathrm{c}}\right)$ no units $/ r_{\mathrm{a}} \div r_{\mathrm{c}}$ no units $/ \ln$ is number
(1)
$\varepsilon_{0} l$ has unit $\mathrm{F} \mathrm{m}^{-1} \times \mathrm{m}$
(1)
$=\mathrm{F}$ which is unit of capacitance
(1)
(4 marks)
(3 marks)
(ii) Time constant $=R C$

$$
\begin{align*}
& =\left(1 \times 10^{5} \Omega\right)\left(10 \times 10^{-12} \mathrm{~F}\right) \tag{1}\\
& =1 \times 10^{6} \mathrm{~s}
\end{align*}
$$

35. Define the term capacitance.

Capacitance $=$ Charge / Voltage (1)
(Allow C=Q / V if symbols are defined) (1)
The sockets of modern telephones have six pins. A power supply of 50 V in series with a resistance of about 1000 ? is connected to pins 2 and 5.

A capacitor of 2 ?F is connected between pins 2 and 3. In one installation, a bell of resistance 1000 ? is connected to pins 3 and 5 .

Explain why there is a pulse of current through the bell when the circuit is first connected, but not after the bell has been connected for some time.

Current flows in the bell when the capacitor is charging (1)
but not when the capacitor is fully charged (1)
On the circuit diagram above, label the values of the voltages across the capacitor and across the bell when the circuit has been connected for some time.

To dial a number, e.g 7, switch S must be closed that number of times.

Explain why the bell sounds softly (tinkles) when the switch is closed and then opened again.
The capacitor discharges (1)
The discharge current flows in the bell (1)
To avoid this tinkling, an "anti-tinkling switch is connected to short-circuit the bell during dialling. Draw this switch on the diagram.

Suitably placed switch (1)

Explain the operation of the anti-tinkling switch.
Action of switch correctly explained (i.e. why no current flows in the bell)
[Total 10 marks]
36. Draw diagrams to represent
(i) the gravitational field near the surface of the Earth,

Direction
Lines: at least 3 parallel perpendicular equally spaced
(ii) the electric field in the region of an isolated negative. point charge.

Direction
Lines: at least 3 radial equally spaced

How does the electric field strength E vary with distance r from the point charge?

$$
E \propto \frac{1}{r^{2}}
$$

Give an example of a region in which you would expect to find a uniform electric field.

> Between charged parallel plates (1).
(1 mark)
[Total 6 marks]
37. State Lenz's law of electromagnetic induction

Direction of induced emf is such as to oppose the charge producing it (2)

An exhibit at a science centre consists of three apparently identical vertical tubes, $\mathrm{T}_{1}, \mathrm{~T}_{2}$ and T_{3}, each about 2 m long. With the tubes are three apparently identical small cylinders, one to each tube.

When the cylinders are dropped down the tubes those in $\sim \mathrm{T}$, and $\sim \mathrm{T} 2$ reach the bottom in less than I second, while that in ~ 3 takes a few seconds.

Explain why the cylinder in T_{3} takes longer to reach the bottom of the tube than the cylinder in T_{1}

```
In T3 magnetic flux cuts copper tube (1)
induction occurs (1)
current in copper tube (1)
creates magnetic field (1)
opposite to magnet's which repels slows magnet
T
```

Explain why the cylinder in T_{2} takes the same time to reach the bottom as the cylinder in T_{1}
In $\mathbf{T}_{\mathbf{2}}$ falling cylinder unmagnetised so no flux cut or no induction (1)
Both T_{1} and T_{2} have only force of gravity acting on them (1)
38. (a) Upward/electrical force equals/balances weight (1)

$$
E Q=m g(\mathbf{1})
$$

$$
\begin{equation*}
E=\frac{V}{d}=\frac{500 \mathrm{~V}}{5.8 \times 10^{-3} \mathrm{~m}} \tag{1}
\end{equation*}
$$

$=8.62 \times 10-4 \frac{\mathrm{~V}}{\mathrm{~m}} / \frac{\mathrm{N}}{\mathrm{C}}$
$=m g=\left(1.4 \times 10^{-14} \mathrm{~kg}\right)\left(9.8 \mathrm{~N} \mathrm{~kg}^{-1}\right)(\mathbf{1})$
$=1.37 \times 10^{-13} \mathrm{~N}$
$\Rightarrow Q=\frac{1.37 \times 10^{-13} \mathrm{~N}}{8.62 \times 10^{4} \mathrm{NC}^{-1}}=1.59 \times 10^{-18} \mathrm{C}$ (1)
Horizontal: so that two forces/ $E Q$ and $m g$ are parallel (1)
(b) $\quad \beta$ source emits electrons (1)
which ionise air (molecules) (1)
Positive ions are attracted to sphere (1)
Free-body diagram showing upward drag/resistive force (1)
(c) Quantised: charge comes in lumps/discrete amounts/packets (1)

Other: energy/electro-magnetic wave (energy)/light (1)
Situation: photoelectric effect/spectra/energy levels (1)
Description of how the situation chosen shows quantisation (1)
(d) Spheres are being hit/bombarded
(1)
by air molecules/particles (1)
which are in random motion (1)
[Max 1 for simply Brownian motion]
Lower temperature: air molecules' speed/kinetic energy is reduced (1)
39. (a) (i) Energy (per s) $=\mathrm{NeV}$ (1)
(ii) Use of $E=P t(1)$
$\Rightarrow E=(2.4 \mathrm{~W})(20 \mathrm{~s})=48 \mathrm{~J}$
Use of $\Delta Q=m c \Delta t(\mathbf{1})$
$\Rightarrow m=0.77 \times 10^{-3} \mathrm{~kg}(\mathbf{1})$
Assume:
All energy transferred to heat/no energy transferred to light (1)
No heat conducted away from spot/only spot heated (1)
(b) Either

Direct electrical method:
Measure $I v t$ (1)
Measure $m \Delta \theta$ for suitable lump of glass (1)
Sketch/description of apparatus (1)
Or
Method of mextures:
Measure temperature of hot glass (1)
Measure $m_{\mathrm{w}} c_{\mathrm{w}} \Delta_{\mathrm{w}}$ and measure $m_{\mathrm{g}} \Delta \theta_{\mathrm{g}}$ (1)
Sketch/description of apparatus (1)
Difficulty:
Glass poor conductor linked to experiment (1)
Difficult to prevent heat loss linked to experiment (1)
40. Joule: $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2} \quad$ (1)

Coulomb: Derived unit (1)
Time: Scalar quantity (1)
Volt: $\quad \mathrm{W} \times \mathrm{A}^{-1}$
41. Calculation of energy:

$$
\begin{align*}
& W=1 / 2 C V^{2} \\
& =1 / 2(3 \times 10-6 \mathrm{~F})(6 \mathrm{~V})^{2} \tag{1}\\
& \text { Energy }=54 \mu \mathrm{~J}
\end{align*}
$$

Calculation of Total energy:
$Q=C V=\left(3 \times 10^{-6} \mathrm{~F}\right)(6 \mathrm{~V})=18 \mu \mathrm{C}$
$C=C_{1}+C_{2}=8 \mu \mathrm{~F} \quad$ (1)
$W=Q^{2 / 2 C}=(18 \mu \mathrm{C})^{2} / 2(8 \mu \mathrm{~F})$
Total energy $=20 \mu \mathrm{~J}$
[Correct alternative strategies allowed]
Statement:
Heating of resistor (or wires) (1)
42. Total magnetic flux through the loop when 30 mm from end of magnet:

Flux $=B \times A$
$=1 \times 10^{-3} \mathrm{~T} \times 16 \times 10^{-4} \mathrm{~m}^{2}$
[Substitution of 1,16 . Ignore $\times 10$ here]
$=1.6 \times 10^{-6} \mathrm{~Wb}$
(1)

Total magnetic flux through the loop when 10 mm from end of magnet:
Flux $=30 \times 10^{-3} \mathrm{~T} \times 16 \times 10^{-4} \mathrm{~m}^{2}$
$=4.8 \times 10^{-5} \mathrm{~Wb} \quad$ [Unit penalty once only] (1)
3
Average speed of movement of the loop:
$E=\Delta \phi / \Delta t$
$\Delta t=\frac{46.4 \times 10^{-6} \mathrm{~Wb}}{15 \times 10^{-6} \mathrm{~V}}$
$=3.1 \mathrm{~s}$
Use of speed $=$ distance \div time $=20 \mathrm{~mm} \div 3.1 \mathrm{~s}$
(1)
$=6.5 \mathrm{~mm} \mathrm{~s}^{-1}$
(1)

Slow down nearer to the magnet (1)

3
[Total 7 marks]
43. Explanation:

The wire, when carrying a current, feels a force when in a magnetic field
(1)

The current is at 90° to the magnetic field
(1)
hence PQ feels an upward force; RS a downward force; they produce a couple which causes rotation (1)
Addition to diagram of an arrow \uparrow
(1)

Three factors which would affect the magnitude of force:
(1) Strength/magnitude of B field
(2) Size of current (1)
(3) Number of turns of coil/length of PQ (1)

7
Explanation of observation:
Flux cut \rightarrow e.m.f. induced (1)
e.m.f. opposite to applied p.d. $\rightarrow V_{\text {TOTAL }}$ less, hence I less $\quad \mathbf{(1)}$
[Total 9 marks]
44. Ohm and farad expressed in terms of SI base units:

$$
\begin{aligned}
& \text { Ohm: volt/ampere allow V/A but not } \mathrm{V} / 1 \text { or } \Omega \rightarrow \mathrm{V} \mathrm{~A}^{-1} \rightarrow \mathrm{~V} \mathrm{C}^{-1} \mathrm{~s} \\
& \quad=\mathrm{kg} \mathrm{~m}^{2} \mathrm{~A}^{-2} \mathrm{~s}^{-3}
\end{aligned}
$$

Farad: coulomb/volt allow C / V but not Q / V or $\mathrm{F} \rightarrow \mathrm{C} \mathrm{V}^{-1}$

$$
\left(=\mathrm{A}^{2} \mathrm{~s}^{4} \mathrm{~kg}^{-1} \mathrm{~m}^{-2}\right)
$$

[Give third mark where they seem to work back correctly from $\mathrm{kg} \mathrm{m}^{2} \mathrm{~A}^{-2} \mathrm{~s}^{-3}$]
Demonstration that ohm \times farad $=$ second \quad or $\mathrm{V} \mathrm{C}^{-1} \mathrm{~s} \times \mathrm{CV}^{-1} \rightarrow \mathrm{~s}$
[No mark if the second comes from multiplying two incorrect expressions]
Calculation of charge at beginning of 10.0 ms discharge period:

$$
\begin{aligned}
& (40000 \mu \mathrm{~F}) \times(12 \mathrm{~V}) \\
& =0.48 \mathrm{C}
\end{aligned}
$$

Calculation of charge at end of the 10.0 ms discharge period:

$$
(40000 \mu \mathrm{~F}) \times(10.5 \mathrm{~V})=0.42 \mathrm{C}
$$

[Allow the third mark if a wrong answer, e.g. 42 C , comes from repeating the same arithmetical error as was made in the earlier calculation.]
[If a wrong equation is used such as $Q=1 / 2 C V^{2}$, the above three marks are lost but the wrong answers can be carried forward into the following current calculation (67.5 A).]

Average current:

$$
\frac{(0.48 C-0.42 C)}{10 \mathrm{~ms}}
$$

[(1) for correct charge/time, (1) for correct time]

$$
=6 \mathrm{~A}
$$

Advantage of reduced discharge time:
Minimal drop or much reduced drop in voltage value Reason - insufficient time for larger voltage drop, or similar
45. Calculation of magnetic flux density:
$B=\left(4 \pi \times 10^{-7} \mathrm{~N} \mathrm{~A}^{-2}\left(\frac{72}{0.45 \mathrm{~m}}\right)(2.5 \mathrm{~A})\right.$ [Allow $\times 10$ error in 45 only]
$5.0 \times 10^{-4} \mathrm{~T}$
Observations on voltmeter:
(a) Movement which implies brief or pulsed then V reads zero
(b) Negative reading with respect to direction above
(c) Alternating reading positive to negative and continuous

5
46. Explanation - Any two from:

Coil carries current at 90° to magnetic field
Force acts at right angles to both or reference to left hand rule
AC means current reverses so force and hence movement \leftrightarrow
[Credit two B fields if leads to catapult field]
Drawing of six magnetic field lines on diagram:
Six radii, all $N \rightarrow S$
Advantage of unusually shaped magnet:
So the current/coil is always perpendicular to field
or
so that each segment of coil is in same strength field \therefore equal forces
[Not uniform field]
Direction of current shown on diagram:
Current shown clockwise on diagram
Force on coil when it carries a current of 20 mA :
$F=B I l$
$=(0.6 \mathrm{~T})\left(20 \times 10^{-3} \mathrm{~A}\right)\left(2 \pi \times 300 \times 20 \times 10^{-3} \mathrm{~m}\right)$
$=0.45 \mathrm{~N}($ or 0.5 N$)$
47. What is meant by "an equation is homogeneous with respect to its units":

Each side/term has the same units
Equation $x=u t+1 / 2 a t^{2}$:

$$
\begin{aligned}
& u t-\quad\left(\mathrm{m} \mathrm{~s}^{-1}\right) \mathrm{s}=\mathrm{m} \\
& a t^{2} / 2\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \mathrm{s}^{2}=\mathrm{m}
\end{aligned}
$$

all 3 terms reduce to m
[Allow dimensions]

Explanation:

Wrong numerical constant/wrong variables
Units same, numbers wrong/
Units same, magnitudes wrong 1
Example $=1 \mathrm{~kg}+2 \mathrm{~kg}=5 \mathrm{~kg}$
48. Slope of graph:

Capacitance
Shaded area of graph:
Energy/work done 2
Energy stored 3.1 J :

$$
C V^{2} / 2
$$

$=100 \times 10^{-6} \times 250^{2} / 2$ [formula + correct substitution]
$(=3.125)=3.1 \mathrm{~J} \quad$ [Must have previous mark]
Power from cell, and minimum time for cell to recharge capacitor:
$\begin{aligned} \text { Cell power } & =1.5 \mathrm{~V} \times 0.20 \mathrm{~A} \\ & =0.30 \mathrm{~W} \text { [allow } 3 / 10 \mathrm{~W} \text { here] } \\ \text { Time } & =3.1 \mathrm{~J} / 0.30 \mathrm{~W} \text { (e.c.f.) } \\ & =10 \mathrm{~s}\end{aligned}$
49. Demonstration that when current of 0.80 A flows, the magnetic flux density at centre is 0.0018 T :
$B=\mu_{0} n I$
Substitution of $\frac{250}{0.14}$
Other substitutions
(0.0018 T)
Magnetic flux density at end of solenoid:
Use of $\phi=B \times A$ with ϕ and A identified correctly
$=9 \times 10^{-4} \mathrm{~T}$
Why flux density at end of solenoid is not equal to that at the centre:
Because lines of force/field lines spread out at the end
or because lines of force not parallel at end
or because flux leakage through sides near end
or diagram:

50. The joule in base units:

$$
\mathrm{kg} \mathrm{~m}^{2} \mathrm{~s}^{-2}[\text { No dimensions }]
$$

Homogeneity of formula:

$$
\begin{array}{ll}
\rho & \mathrm{kg} \mathrm{~m}^{-3} \mathbf{(1)} \\
r & \mathrm{~m}, f=\mathrm{s}^{-1} \mathbf{(1)}
\end{array}
$$

$\left(\right.$ Right hand side units $\left.=\left(\mathrm{kg} \mathrm{m}^{-3}\right)(\mathrm{m})^{5}\left(\mathrm{~s}^{-1}\right)^{2}\right)$ [Correct algebra]

$$
=\mathrm{kg} \mathrm{~m}^{2} \mathrm{~s}^{-2}\left[\text { Only if } 1^{\text {st }} \text { two marks are earned }\right](\mathbf{1})
$$

[Ignore numbers; dimensions OK if clear]
Why formula might be incorrect:
The $1 / 2$ could be wrong (1) 1
51. Estimation of charge delivered:

Charge $=$ area under graph (1)
$=$ a number of squares \times correct calculation for charge of one square i.e. correct attempt at area e.g. single triangle (1)
$=\quad(3.5$ to 4.8$) \times 10^{-3} \mathrm{C}(\mathrm{A} \mathrm{s}, \mu \mathrm{A} \mathrm{s})(\mathbf{1})$
[Limit $=$ triangle from $41 \mu \mathrm{~A} \rightarrow 300 \mathrm{~s}$]
OR

$$
\begin{align*}
\text { Charge } & =\text { average current } \times \text { time (1) } \\
& =(\text { something between } 10 \text { and } 20 \mu \mathrm{~A}) \times 300 \mathrm{~s}(\mathbf{1}) \\
& =(3.5 \text { to } 4.8) \times 10^{-3} \mathrm{C} \mathbf{(1)} \tag{3}
\end{align*}
$$

[But $Q=I t \rightarrow 0 / 3$, e.g. $41 \mu \mathrm{~A} \times 300 \mathrm{~s}$]
Estimation of capacitance
$\begin{aligned} \mathrm{C} & = & \text { calculated charge } 9.0 \mathrm{~V} & \\ & =390 \text { to } 533 \mu \mathrm{~F} & & C=100 \mathrm{~s} / 220 \mathrm{k} . \Omega=450 \mu \mathrm{~F} \text { (1) } 2\end{aligned}$
52. Calculation of the magnitude of the electric field strength:

Correct use of $E=k q / r^{2}$ [all substitutions, any value of q] (1)
$q=92 \times e(\mathbf{1})$
Magnitude $=2.4 \times 10^{21} \mathrm{~N} \mathrm{C}^{-1} \mathrm{OR} \mathrm{V} \mathrm{m}^{-1}(\mathbf{1})$
Direction of electric field:
Away from nucleus/outwards/on diagram (1)

Similarity and difference between electric and gravitational field:
Similarity - Both radial/obey inverse square law/ $\propto 1 / r^{2}(\mathbf{1})$
Difference - Magnitude of g field $\ll E$-field
OR G-field direction towards nucleus, E field away from nucleus
OR G-field attractive only, E field attractive OR repulsive (1) 2
53. Calculation of e.m.f. induced across falling rod:

Correct use of $E=B l v(\mathbf{1})$

$$
v=25 \mathrm{~m} \mathrm{~s}^{-1}(\mathbf{1})
$$

e.m.f. $=7.3-7.4 \times 10^{-4} \mathrm{~V}$ (1)

Explanation of why magnitude of vertical component is not required:
Earth's field is parallel to direction of fall/body falls vertically (1)
Therefore no flux cut (1)
54. (a) Either

Bunch of threads/hair (1)
Connected to top of sphere (1)
Fan out repelling each other (1)
Or
Light conductor on insulating thread [e.o.p. plastic sphere] (1)
Touch to sphere (1)
Hold at side repelled (1)
[May all be on labelled diagram]
(b) Unit of I, w and v as A, m and $\mathrm{m} \mathrm{s}^{-1}$ (1)

As A s = C (1)
unit of X is $\mathrm{C} \mathrm{m}^{-2}$
so X may be the charge density/per unit area (on belt) (1)
(c) (i) Radial lines [be generous] (1)
>4 lines (1)
Arrows inward [to surface only] (1)

(ii) $E=\mathrm{Q} / 4 \pi \varepsilon_{0} r^{2} \rightarrow Q=4 \pi \varepsilon_{0} r^{2} E$ (1)
$\therefore Q=4 \pi\left(8.85 \times 10^{-12} \mathrm{Fm}^{-1}\right)(0.15 \mathrm{~m})^{2}\left(3.6 \times 10^{5} \mathrm{~N} \mathrm{C}^{-1}\right)$
$=0.90 \times 10^{-6} \mathrm{C}$ OR $0.90 \mu \mathrm{C}$ (1)
$V=Q / 4 \pi \varepsilon_{0} r^{2} \quad$ OR $V=E r(1)$
Substitution [allow e.c.f for Q]
$\rightarrow V=54 \times 10^{3} \mathrm{~V}$ OR 54 kV
(d) (i) Leakage current:
(Fast) random movement (1)
(Very) slow drift velocity [down] (1)
On belt:
Uniform velocity [up] (1)
(ii) Axes showing:
V (up) and $120 \mathrm{~s} / 2 \mathrm{~min}$ (along) (1)
V/2 OR origin OR 60 s [i.e. zero on one axis implied] (1)
Exponential curve from (Os, V) not reaching time axis (1) Max 5
55. Correct quantities on diagram:
$\begin{array}{llll}\text { Upper ellipse } & \text { capacitance } & \text { [not energy] } & {\left[\text { Accept capacitance }{ }^{-1}\right]} \\ \text { Lower ellipse } & \text { resistance } & \text { [not power] } & {\left[\text { Accept conductance/resistance }{ }^{-1} \text {] }\right.}\end{array}$

Explanation:
Base quantities/units [Not fundamental]
Not derived from other (physical) quantities
OR other (physical) quantities are derived from them
OR cannot be split up/broken down
56. Relationship between current and charge:

Current is the rate of flow of charge/rate of change of charge OR current is charge per second

OR $I=Q / t$ (with or without d or Δ) but with symbols defined

Explanation:

Since I is constant, $Q o$ on capacitor ($=I t)$ increases at a steady rate OR charge flows at a constant rate

OR

$$
\begin{equation*}
V=Q / C=I t / C \tag{1}
\end{equation*}
$$

and $V=(I / C) \times t$ compared with $y=(\mathrm{m}) \times x$

Determination of current, using graph:

$$
\begin{array}{ll}
\text { Use of } Q=C V & \text { Attempt to get grad } \\
\text { Use of } I=Q / t & \text { Use of } I=C \times \operatorname{grad} \\
=1.1 \mathrm{~mA} & 1.1 \mathrm{~mA}
\end{array}
$$(1)

Explanation:

Decrease [If increase, 0/3]
As capacitor charges, V_{R} decreases
R must decrease because $\mathrm{I}=V_{\mathrm{R}} / R$ OR R must decrease to prevent I
falling

Second graph:
Line added to graph showing:
Any curve getting less steep with time [from origin; no maximum]
And with same initial gradient as original straight line
57. Evenly distributed spray:

The drops repel [i.e. something repels]

Explanation:

Electrons/negative charge move upwards from Earth on to object
as positive/drops induce negative on object
negatives attract positive/drops [not "neutralised"]

Positive builds up on object OR no electrons move upwards from Earth
OR negative can no longer flow
Positive repels approaching drops
58. Calculation of potential difference:

Use of $E=V / d \quad[d$ in m or cm]
$V=90 \mathrm{kV}$
Calculation of maximum kinetic energy:
Use of $\times 1.6 \times 10^{-19}[$ in $E=q V$ e.c.f. value of $V] 1.4 \times 10^{-14}(\mathrm{~J})$
$\left[\right.$ e.c.f. their $\mathrm{V} \times 1.6 \times 10^{-19}$]

Maximum speed of one of these electrons:
Use of k.e. $=1 / 2 m v^{2}$ with $m=\underline{9.1 \times 10^{-31} \mathrm{~kg}}$
[Full e.c.f. their k.e. possible; make sure v is speed term]
$=1.8 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \quad$ [u.e. but only once]
Diagram:

At least 3 radial lines touching object
Direction towards electron

Expression for electric potential V :
$V=\frac{1}{4 \pi \varepsilon_{0}} \times \frac{1.6 \times 10^{-19}}{r} \quad$ OR $\frac{e}{4 \pi \varepsilon_{0}} r \quad$ OR $\frac{1.44 \times 10^{-9}}{r}$
[not k unless defined] $\left[\operatorname{Not} \frac{Q}{4 \pi \varepsilon_{0} r}\right.$ unless Q defined $]$
[With or without "-" sign]
59. Word equation:

Force proportional to product of masses and inversely proportional to (distance / separation) squared
[No force 0/2]
OR
$F=\frac{G \times \text { mass }_{1} \times \text { mass }_{2}}{(\text { distance })^{2}}$
[or (separation) ${ }^{2}$ instead of bottom line]
Calculation of force:
From Newton's law OR idea that force $=$ weight $=m g_{\text {planet }}$
$F=\frac{6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2} \times 6.42 \times 10^{23} \mathrm{~kg} \times 1 \mathrm{~kg}}{\left(3.40 \times 10^{6}\right)^{2} \mathrm{~m}^{2}}$
[Substitution in correct equation only]
OR
$g_{\text {mars }}=\frac{\mathrm{G} \times 6.42 \times 10^{23} \mathrm{~kg}}{\left(3.4 \times 10^{6}\right)^{2} \mathrm{~m}^{2}}$
$=3.7 \mathrm{~N}$
Smaller

Explanation of reasoning:
g is less, but ρ is similar/same [so R is less]
[$2^{\text {nd }}$ mark is consequential on first mark]
60. Direction of current: B to A OR North [Not upwards]

Diagram:

Points to left [anywhere to left]
At (45° this way

Explanation:

Field due to current perpendicular to page at (2)
so sets as Earth's field
because:

- cannot pivot up/down
- too far from wire
- field due to wire negligible

OR only in Earth's field
61. Direction of force, shown on diagram:

Arrow pointing upwards on diagram
(i) Low frequency:

Wire moves up/vibrates/oscillates, then down, then up, etc
[Not "up and down" - needs implication of repetition]
[Won't move + justification OK]
(ii) Increased frequency:

Wire vibrates quicker as frequency increases
At $f=20 \mathrm{~Hz}$
Large amplitude vibrations OR resonance occurs
Standing wave set up OR diagram [consequent on 20 Hz]
Resonance at 40 Hz OR diagram
62. Flux through closed window:

Flux $=20 \times 10^{-6} \mathrm{~T} \times(1.3 \times 0.7) \mathrm{m}^{2}$
[if two equations, must use (1.3×0.7) each time]
B_{H} chosen OR area correct
$=1.8 \times 10^{-5} \mathrm{~Wb} / \mathrm{T} \mathrm{m}^{2}$

Average e.m.f. induced:
$E=\frac{1.8 \times 10^{-5} \mathrm{~Wb}}{0.8 \mathrm{~s}} \quad$ [e.c.f.]
$=2.3 \times 10^{-5} \mathrm{~V}\left[5.6 \times 10^{-5} \mathrm{~V}\right.$ if B_{v} used $]$

Effect on induced e.m.f. of converting window:
Zero induced e.m.f. [Not "very small"]
No change in flux linkage OR no flux cut OR e.m.fs. in opposite sides cancel out $2 / 2$ [Consequential]
63. (a) (i) Centre line with arrow down

More lines on either side

Either showing bulges at edges
(ii) $E=6.0 \mathrm{~V} \div 0.15 \mathrm{~m}$
$=40 \mathrm{~V} \mathrm{~m}^{-1}\left[0.40 \mathrm{~V} \mathrm{~cm}^{-1}\right]$ OR $40 \mathrm{~N} \mathrm{C}^{-1}$
[e.c.f. $\div 0.075 \mathrm{~m} / 7.5 \mathrm{~cm}$]
(iii) Centre line horizontal

Two more lines (accept horizontal)
OR showing correct curvature/perpendicular to field lines

(b) (i) $\quad V_{\mathrm{X}}=3.0 \mathrm{~V} / 3 \mathrm{~V}$
because potential at Y is $3.0 \mathrm{~V} / 3 \mathrm{~V}$
so p.d. across mA is zero OR mA is connected to points at the same potential [an independent mark]
(ii) Either

Any reference to $\mathrm{Y} /$ change the resistors/change one of the resistors/use a rheostat

Or
V for mA move probe over paper
Locate points where mA reads zero, add 3 V to V OR move Y to 0 V
(c) (i) (Use of) $\mathrm{R}=\rho l / \mathrm{A}$

Substitute $l=x$ and $A=x t$
(ii) $\mathrm{R}=\rho / \mathrm{t} \Rightarrow \rho=\mathrm{Rt}$
$\rho=(1000 \Omega)\left(0.14 \times 10^{-3} \mathrm{~m}\right)=0.14 \Omega \mathrm{~m} \quad$ [no e.c.f.]
64. (a) (i) s.h.m.: acceleration \propto displacement $[\operatorname{Not} a \ll x]$
and directed to centre [Not a minus sign]
(ii) Either
hump with v zero at both ends
Or
A and B labelled at axis
(b) (i) ρ as $\mathrm{kg} \mathrm{m}^{-3}$
G as $\mathrm{N} \mathrm{m}^{2} \mathrm{~kg}^{-2}$
[G as $\mathrm{kg}^{-1} \mathrm{~m}^{-3} \mathrm{~s}^{-2}$ marks 2 and 3]
use of $N \equiv \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-2}$ [Accept $1 / \rho G$ has unit s${ }^{2}$ as $1 / 3$]
(1)
(ii) $\quad \rho_{\mathrm{MOON}}=M_{\mathrm{M}} \div V_{\mathrm{M}}$ and $V=\frac{4}{3} \pi r_{M}{ }^{3}$ [May be all numbers]
(1)

Correct substitution in t_{AB} / ρ calculated as $4000 / 4100 \mathrm{~kg} / \mathrm{m}^{3}$
[e.c.f. $\pi r^{3} \rightarrow 1300 / 1400$]
$\Rightarrow t_{\mathrm{AB}}=2980 \mathrm{~s}$ OR 49.7 minutes $/ 50$ minutes
(iii) Longer/shorter tunnel has larger/smaller force/acceleration Reference to component of force (along tunnel)
(Hence) high/low speed reached
Period is independent of amplitude as it is s.h.m.
(c) G : suspend/pivot masses /(small) mass on top pan balance
attract/make swing by large mass(es)/large mass above balance supported by diagram
problem: G forces are very small/ convection currents/ vibrations/ electrostatic forces
65. Velocity is a vector quantity and though its magnitude is constant, its direction changes.
$F=\frac{m_{s} v_{s}}{R_{E}+h}$
$g=\frac{G M_{E}}{\left(R_{E}+h\right)^{2}}$
Nkg^{-1} or $\mathrm{m} \mathrm{s}^{-2}$
Use of expressions:
Equate $m_{s} g$ with F
Rearrange to give expression for v_{s}
$G, M_{\mathrm{E}}, R_{\mathrm{E}}$ constant so large $h \rightarrow$ smaller v_{s}
[Not inversely proportional]
66. Equation: $F=k \frac{Q_{1} Q_{2}}{r^{2}} 2=\left[\right.$ Accept $\left.k=\frac{1}{4 \pi \varepsilon_{0}}\right]$

Electric force $=100 \mathrm{~N} \mathrm{C}^{-1} \times 1.6 \times 10-19 \mathrm{C}$ $1.6 \times 10^{-17} \mathrm{~N}$
Weight $\quad=9.8 \times 10^{-18} \mathrm{~N}$
Force $\quad=6.2 \times 10^{-18} \mathrm{~N}$
Net force is upward 6
67. Correct circuit

Straight line through origin
$\mathrm{Q}_{\mathrm{MAX}}=900 \mu \mathrm{C}$ and sensible scale
$\mathrm{V}_{\mathrm{MAX}}=4.5 \mathrm{~V}$ and sensible scale
Appropriate formula: $1 / 2 C V^{2}$ or $1 / 2 Q V$
$2 \times 10^{-3} \mathrm{~J}$
68. Diagram:
B perpendicular to current: a workable system (1)
d.c. current, variable (1)

Measurable force: e.g. riders or weighing (1)
Vary I; note ammeter (1)
Calculate $m g$ or Δ scale reading $\times g(\mathbf{1})$
Plot F against I-straight line through origin (1)
Max 5
Quality of written communication
$F=B I L$
$\left(1.5 \times 10^{-3} \mathrm{~kg}\right)\left(9.81 \mathrm{~N} \mathrm{~kg}^{-1}\right)=\left(1.8 \times 10^{-5} \mathrm{~T}\right) I(2.0 \mathrm{~m})$
$I=410 \mathrm{~A}$
69. Diagram:

At least 3 circles anticlockwise
Circles getting closer together towards the centre

Point N on diagram outside dotted box but less than half way from box to S
Direction of magnetic field at P as shown above
70. Diagram:

Obviously fewer turns, labelled secondary coil
(Secondary) 132 turns [130]

Induction needs change in flux linkage
$V_{\mathrm{p}} I_{\mathrm{p}}=V_{\mathrm{s}} I_{\mathrm{s}}$
Algebra 2
Resistance heating or eddy current heating or hysteresis losses $\quad 1$
71. Part 1

Correct series arrangement
Correct polarity of capacitor
Capacitor is electrolytic
Lead connected across capacitor
Correct time measured
Repeats
with different currents/non zero start
Value in range 10 s to 20 s and $2 / 3$ s.f. plus units
Part 2
D, x_{R} and x_{V} to the nearest mm
Neatly drawn diagram with filament and spectra
Spectra labelled correctly (violet near filament)
Correct calculation of $\tan \theta$
Sin θ in range 0.18 to 0.21
Black band described or drawn between red and violet
Broad absorption band with narrow red and violet bands
Photons with energy corresponding to energy bands of solution are absorbed
72. (a) Use of horizontal $2^{\text {nd }}$ metre rule

Description of how l was set.
(b) $\quad \Sigma n \mathrm{~T} \geq 20$

Repeat timings
$\mathrm{T} \pm 0.02 \mathrm{~s}$ of Supervisor
(c) $\quad b \pm 0.05 \mathrm{~cm}$ of Supervisor
$d \pm 0.05 \mathrm{~mm}$ of Supervisor
Repeat b and d
Correct uncertainties
Correct calculation of percentages 5
(d) Substitution of SI values into expression for E
Correct calculation of E with unit
(e) Larger \% uncertainty in d
$\%$ uncertainty multiplied by $3 \quad 2$
(f) Micrometer to measure $d \quad \begin{aligned} & \text { Measurements } 10 \text { times more precise }\end{aligned}$
73. (a) (i) Height of the bottom of the sphere above sand General arrangement correct with h shown correctly

Kinetic energy gained = potential energy lost
$1 / 2 m v^{2}=m g h$
$v^{2}=2 g h$
$v=2 g h$
[If candidate uses average velocity of fall $=h / t$ Impact velocity $=2 h / t$, then credit with 1 mark out of 2]
(ii) Air resistance negligible

Use small velocities/heights so that air resistance is minimised.
(iii) Vary v by varying h Measure corresponding d
Plot $\ln (d / m)$ against $\ln \left(v / \mathrm{ms}^{-1}\right)$
Expect straight line of gradient n as intercept $\ln (k)$
(b) Correct \ln values

Suitable scale for graph
Axes or table column labelled, and units
Plots
Line
$\begin{array}{ll}\text { (c) } & \text { Large } \Delta \\ \text { Correct calculation, } 2 / 3 \text { significant figures, no unit } & 2\end{array}$
74. Base units of $G: \mathrm{kg}^{-1} \mathrm{~m}^{3} \mathrm{~s}^{-2}$
(1)

Equation homogeneity:
Correct substitution of units of $G, r^{3}\left(\mathrm{~m}^{3}\right), M(\mathrm{~kg}) \quad 1$
leading to S^{2} and linked to T^{2}
[Allow e.c.f. of their base unit answer into substitution mark]
Use of relationship to find mass of the Earth
Any two from:
Adding $20000+6400$
Converting km to m (1)
h to $s(\times 43$ 200) (1)
2
Answer $M=5.8(4) \times 10^{24} \mathrm{~kg} \quad$ (1) 1
75. Faraday's law of electromagnetic induction

The induced e.m.f.
(1)
in a conductor is equal to/proportional to the rate of change of magnetic flux linkage

OR
$E=(-) \frac{\mathrm{d} \varphi}{\mathrm{d} t} \quad$ or $E \propto \frac{N \Delta \phi}{\Delta t} \quad[$ Accept $\Delta \phi$ or $\mathrm{d} \phi]$
E - $\underline{\text { induced }}$ voltage
$\mathrm{d} \varphi$ - change of magnetic flux
(1)
$\mathrm{d} t$ - time
[All symbols defined]
Conversion of sound waves into electrical signals
Any four from:

- quality of language
(1)
- sound waves make the diaphragm/coil vibrate/oscillate
- coil: change in flux linkage/coil cuts field lines
- induced voltage across coil
- frequency of sound wave is frequency of induced voltage/current/ electrical wave (1)

76. Calculation of charge
$6000 \mathrm{~V} \times 20 \times 10^{-6} \mathrm{~F}$
(1)
$=0.12 \mathrm{C}$

2
Energy stored in capacitor
$\left(\frac{C V^{2}}{2}\right) \frac{20 \times 10^{-6} \mathrm{C} \times(6000 \mathrm{~V})^{2}}{2}$
(1)
$=360 \mathrm{~J}$ (1)
2
Resistance
$\frac{6000 \mathrm{~V}}{40 \mathrm{~A}}=150 \Omega$
(1)

Time to discharge capacitor
Time $=\frac{0.12 \mathrm{C}}{40 \mathrm{~A}} /$ their Q
$=0.0030 \mathrm{~s} / 3.0 \times 10^{-3} \mathrm{~s}$ [e.c.f.]
(1)

Reason
Time is longer because the rate of discharge decreases/ current decreases with time (1)
77. Diagram

Reasonably concentric circles [no breaks] (1)
Circles become more widely spaced [min 3 circles]
(1)

Correct direction/anticlockwise (1)
[One correctly labelled field line is acceptable. Mark lost if contradictory arrows on diagram]
Current in wire
$B=\left(\frac{\mu_{0} I}{2 \pi r}\right)$
$1.4 \times 10^{-5} \mathrm{~T}=\frac{4 \pi \times 10^{-7} \mathrm{NA}^{-2}}{2 \pi} \times \frac{I}{12\left(\times 10^{-2}\right) \mathrm{m}}$
(1)
$I=8.4 \mathrm{~A}$
(1)

2I

Wire Z (1)
Must be labelled and originate on line

Wire Y (1)
$F_{\mathrm{y}}: F_{\mathrm{z}}=1: 1$
\underline{F}_{\searrow} can be reduced by
Reduce $I /$ current in Y OR reduce $2 I /$ current in Z OR reduces currents
Increase separation $/ r$ (1)
Reduce length of wire Y
(1)
78. Free-body force diagram

Tension/pull of thread
(1)
$F /$ push of charged sphere/electric force/electrostatic force
(1)

Weight $/ W /$ pull of Earth [Not $m g$, unless $W=m g$ stated]
(1)

Force equation

$W=T \cos \theta \quad($
(
(1)
$F=T \sin \theta \quad($
Processing mark, e.g. $F=\frac{W}{\cos \theta} \sin \theta$ OR $\tan \theta=\frac{\sin \theta}{\cos \theta}$
OR
F, T, W labelled (1)
both angles labelled (1)

Table

Distance $r=36 \times 10^{-3} \mathrm{~m}$
$F=35.5 / 36$ [No u.e.]
Distance $r=27 \times 10^{-3} \mathrm{~m}$
Using any pair of values (1)

Seeing correct constant for their pair of values
$\rightarrow F=63.1$ [n.o u.e.]
OR
Valid simple ratio calculation using a pair of values
(1)
stating produce $Q_{1} Q$ or $k Q Q_{2}$ constant
(1)
$\rightarrow F=63.1 \quad$ [no u.e.] (1)
Measurements taken quickly because
Leakage/discharge of charge [Allow dissipation or description of process]
(1) 1
79. (a) T_{1} and T_{2} reasonable and T_{2} between $0.4 T_{1}$ and $0.6 T_{1}$ from ($20 T$
$[\geq 10 T(1)] \quad$ (1)
Repeats of both
$\frac{T_{1}}{T_{2}}$ calculated or k s found
Quantitative comparison
(1)

Suitable comment [Not conditional on ratios]
(b) (i) Mass of contents $=330 \mathrm{~g}$ (1)

Hence m found correctly with ≥ 2 s.f. and unit
(1)

Correct calculation of $V+$ unit and ≥ 2 s.f. (2)
(ii) Use of set squares against rule
(2)

D 63.0 mm to 68.0 mm
(1)
$L 113.0 \mathrm{~mm}$ to 117.0 mm
(1)

Repeats of both (1)
Correct substitution [Allow e.c.f.] (1)
Correct calculation with unit and $2 / 3$ s.f. (1) 7

Sample results:
(a) $10 T_{1} / \mathrm{s}=32.95,33.18$
$\therefore T_{1}=3.31 \mathrm{~s}$
$10 T_{2}=16.69,16.67 \mathrm{~s}$
$\therefore T_{2}=1.67 \mathrm{~s}$
$\frac{T_{1}}{T_{2}}=\frac{3.31}{1.67}=1.98$
T and l within 1% which acceptable experimental error
(b) (i) $M=361.3 \mathrm{~g}$
$330 \mathrm{ml}=330 \mathrm{~g}$
$\therefore m=361.3-330$
$=31.3 \mathrm{~g}$
$V=\frac{\text { mass }}{\text { density }}$
$=\frac{31.3}{7.9}$
$=3.96 \mathrm{~cm}^{3}$
(ii) $D=65,65 \mathrm{~mm} \quad \bar{D}=65 \mathrm{~mm}$
$L=115,115 \mathrm{~mm} \quad \bar{L}=115 \mathrm{~mm}$
$t=\frac{3.96}{\pi \times 6.5 \times(11.5+6.5)}$
$=0.011 \mathrm{~cm}$

80. (a) Value $\pm 2 \mathrm{~cm}$ of Supervisor's
[$\pm 3 \mathrm{~cm}-$ (1)] (2)
Repeat readings shown/eye level with wire to find resonance/use of card to observe resonance
Approach resonance from both directions (1)
Correct calculation from sensible Δl_{1}
(1)
[Range, $1 / 2$ range or precision of rule if only one reading]
l_{2} to nearest mm and in range 85.0 cm to 95.0 cm (1)
[Or Supervisor's $l_{1} \times \sqrt{3} \pm 5 \mathrm{~cm}$]
(b) Both k values calculated using either mass or force
(1)
≥ 2 s.f. for both with unit seen at least once (1)
$\%$ difference found with either value or average value as denominator
Sensible comment related to l (1)
Doubling of \% uncertainty in l (1)
(c) Value $0.21 \rightarrow 0.26 \mathrm{~mm} \quad$ [unless alternative wire used]
(1)

Repeat or zero error check
(1)

Correct SI substitution (1)
Correct calculation ≥ 2 s.f. + unit (1)
Value $7500-10000 \mathrm{~kg} \mathrm{~m}^{-3}$
(1)
[when rounded to 2 s.f.]
[
都

Notes

(i) Repeat mark is consequent on a correct diameter value
(ii) In the substitution either k or the average k may be used
(iii) Use of $g=10 \mathrm{~N} / \mathrm{kg} \quad$ (1
(c) $d=0.23,0.23 \mathrm{~mm}$
$\bar{d}=0.23 \mathrm{~mm}$
$\rho=\frac{k}{\pi d^{2} f^{2}}$
$=\frac{3.77}{\pi\left(0.23 \times 10^{-3}\right)^{2} \times 50^{2}}$
$=9070 \mathrm{~kg} \mathrm{~m}^{-3}$
81. (a) LDR connected to ohmmeter
(1)

Light shield around LDR
(1)

Two polaroid filters between light source and LDR
(1)
θ shown
(1)

Measure θ with protractor [shown or stated] (1)
A correct technique showing overlapping filters
(1)

Starting point when maximum (or minimum) LDR resistance
$\theta=90^{\circ} \quad\left[\right.$ or $\left.\theta=0^{\circ}\right] \quad$ (1)
8
(b) $\quad I=k(\cos \theta)^{\mathrm{n}}$
$\ln I=n \ln (\cos \theta)+\ln k$
(1)
$y=m x+c$
(1)
(c) In values and ≥ 2 decimal places

Graph:
Scale
(1)

Axes labelled with unit
(1)

Plots (1)
Line (1)
[Allow reversed negative axis]
[Mark any graph which is plotted using this scheme] 5
(d) $\Delta x \Delta y \geq 64 \mathrm{~cm}^{2}$ [or limits of graph] (1)

Value $1.45 \rightarrow 1.55$ with no unit (1)

Sample results

Starting point when maximum (or minimum) LDR resistance.
$\theta=90^{\circ}$ (or $\theta=0^{\circ}$)
(b) $\quad I=k(\cos \theta)^{\mathrm{n}-}$
$\ln I=n \ln (\cos \theta)+\ln k$
$y=m x+c$
(c)

$\theta /{ }^{\text {o }}$	I / lux	$\operatorname{Cos} \theta$	$\ln (I / \operatorname{lux})$	$\log _{10}$ (I / lux)	$\ln (\cos \theta)$	$\log _{10}$ $(\cos \theta)$
10	481	0.985	6.18	2.68	-0.02	-0.01
20	450	0.940	6.11	2.65	-0.06	-0.03
30	398	0.866	5.99	2.60	-0.14	-0.06
40	330	0.766	5.80	2.52	-0.27	-0.12
50	256	0.643	5.55	2.41	-0.44	-0.19
60	172	0.500	5.15	2.24	-0.69	-0.30
70	98	0.342	4.58	1.99	-1.07	-0.47
80	40	0.174	3.69	1.60	-.75	-0.76

Graph:

(d) $n=\frac{6.22-3.6}{0-(-1.76)}$
$=1.49$
82. (a) (i) T_{1} and T_{2} reasonable and $T_{2}>T_{1}$ from ≥ 10 oscillations
[from ≥ 5 gets (1)]
Both repeated (1)
$T_{2}: 4.0-6.0 \mathrm{~s} \quad$ (1)
Correct use of set squares against rule (2)
D_{1} between $63.0-68.0 \mathrm{~mm}$ and D_{2} between $31.0-35.0 \mathrm{~mm}$ to
nearest mm or better (1)
D_{1} and D_{2} repeated (1)
k s calculated [ignore units] (1)
Quantitative comparison (1)
OR
Comment that results agree/disagree within experimental error [where nominal 10% for experimental error]
(b) Difference method used when filling can
(1)

Volume 335-360 ml with unit
(1)

L: 113 - 117 mm (1)
Correct calculation with unit and $2 / 3$ s.f. [e.c.f.] (1)
Suitable suggestion why V differs from volume stated on can (1)
Suitable suggestion why V^{\prime} differs from V (1)
6

Sample results:

(a)
(i) $\quad 10 T_{1}=32.95,33.18 \mathrm{~s}$

$$
\begin{aligned}
& \therefore T_{1}=3.31 \mathrm{~s} \\
& 5 T_{2}=23.99,23.56 \mathrm{~s} \\
& T_{2}=4.76 \mathrm{~s}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& D_{1}=65.65 \mathrm{~mm} \quad \bar{D}_{1}=65 \mathrm{~mm} \\
& D_{2}=33,33 \mathrm{~mm} \quad \bar{D}_{2}=33 \mathrm{~mm} \\
& k_{1}=T_{1}^{2} D_{1}=3.31^{2} \times 65 \\
& =711 \mathrm{~s}^{2} \mathrm{~mm} \\
& k_{2}=T_{2}^{2} D_{2}=4.76^{2} \times 33 \\
& =746 \mathrm{~s}^{2} \mathrm{~mm} \\
& \% \text { difference }=\frac{35}{729} \times 100 \\
& =4.8 \% \\
& \text { which is acceptable experimental error }
\end{aligned}
$$

(b) Measuring cylinder filled and poured into can.

Filled again and poured into can until full
$V=250+(250-160)=340 \mathrm{ml}$
$L=115,115 \mathrm{~mm}, \bar{L}=115 \mathrm{~mm}$
$V^{\prime}=\pi \times 6.5^{2} \times \frac{11.5}{4}$
$=382 \mathrm{~cm}^{3}$
Contents do not usually completely fill can
Can narrows at top and bottom OR V^{\prime} is external rather than internal volume.
83. (a) Value $\pm 2 \mathrm{~cm}$ of Supervisor's value
[$\pm 3 \mathrm{~cm}-(1)]$
Repeat readings etc (1)
Approach resonance from both directions (1)
Correct calculation from sensible Δl (1)
[Range, $1 / 2$ range or $0.1-1.0 \mathrm{~cm}$ if only one reading]
(b) Value $0.21-0.26 \mathrm{~mm} \quad$ [unless alternative wire used] (1)

Repeat measurements or zero error [dependent mark] (1)
Correct $\%$ from range, $1 / 2$ range or precision [allow 0.005 mm]
(1)
(c) Correct SI substitution

Correct calculation ≥ 2 s.f. + unit [dependent mark] [-1 if $g=10$]
Value: $7500 \rightarrow 10000 \mathrm{~kg} \mathrm{~m}^{-3} \quad$ [no e.c.f.] [when rounded to 2 s.f.]
(1) 3
(d) $2 \times \%$ uncertainty in d and $l \quad$ (1)

Added [Not a dependent mark]
(1)

Calculation of \% difference with 8880 as denominator
(1)

Compared to \% uncertainty (1)

Hence sensible conclusion
(1)

OR
Adds/subtracts their \% uncertainty from their value (1) Checks whether in range (1)
Hence sensible conclusion (1)

Sample results:
(a) $\quad l=71.5,72.0,72.5 \mathrm{~cm}$
$\bar{l}=72.0 \mathrm{~cm}$
Repeat readings shown Or eye level with wire/use of care to observe resonance Approach resonance from both directions

Percentage uncertainty $=\frac{0.5}{72.0} \times 100$
= 0.7%
(b) $d=0.23,0.23 \mathrm{~mm}$
$\bar{d}=0.23 \mathrm{~mm}$
Percentage uncertainty $=\frac{0.01}{0.23} \times 100$
$=4.3 \%$
(c) $\quad \rho=\frac{0.2 \times 9.81}{\pi \times\left(0.23 \times 10^{-3}\right)^{2} \times 50^{2} \times 0.72^{2}}$

$$
=9110 \mathrm{~kg} \mathrm{~m}^{-3}
$$

(d) Percentage uncertainty in density
$=2 \times 4.3+2 \times 0.7$
$=10.0 \%$
Percentage difference
$=\frac{9110-8880}{8880} \times 100 \%$
$=2.6 \%$
Much less than total $\%$ uncertainty \therefore wire could be made from constantan.
84. (a) Light shield around LDR
(1)

LDR connected to ohmmeter
Lamp connected to power supply
[$0 / 2$ if all in series circuit]
d measured to front of LDR (1)
and filament (1)
Appropriate method for measuring d (1)
Precautions (2)
(b) Equation (1)
(c) \ln values as shown and ≥ 2 decimal places

Graph:
Must occupy at least $1 / 2$ grid, in both directions and avoiding $3 \mathrm{~s}, 7 \mathrm{~s}$ etc.
Scale
Axes labelled and units [Must be in $\ln (I / l u x)$ etc]
(1)

Plots [to a precision of 1 mm or better]
(1)

Line [well drawn line of best fit] (1)
[Allow e.c.f. if wrong graph plotted]
(d) $\Delta x \Delta y \geq 64 \mathrm{~cm}^{2} \quad$ [or to limits of axes]
(1)

Value $-2.50 \rightarrow-2.70$ with no unit [must have negative sign] (1) 2

Sample results:
(a) Diagram:

From face of LDR to filament of lamp
Use apparatus in a darkened room
OR
Take a reading of the background light level and subtract it from measured light levels
(b) $\ln I=\ln k+n \ln d$
$y=c+m x$
(c)

d / mm	I / lux	$\ln (d / \mathrm{mm})$	$\ln (I / \operatorname{lux})$	$\lg (d / \mathrm{mm})$	$\lg (1 / \mathrm{lux})$
40	8.20	4.94	2.10	2.15	0.91
60	6.05	5.08	1.80	2.20	0.782
200	3.35	5.30	1.21	2.30	0.525
250	1.80	5.52	0.59	2.40	0.255
300	1.15	5.70	0.14	2.48	0.061
350	0.79	5.86	-0.24	2.54	-0.102

Graph:

(d) $\quad n=\frac{-0.6-2.4}{6.0-4.855}$

$$
=-2.62
$$

85. Charge and energy table

For first column answers:
Charge $=1.0 \times 10^{-4} \mathrm{C}$
Value (1)
Unit (1)
Energy $=2.5 \times 10^{-3} \mathrm{~J}$
Value (1)
Unit (1)
[If zero marks are scored, then look to second column to award a maximum of 2 marks

Charge $=3.0 \times 10^{-4} \mathrm{C}$	Value/unit
Energy $=1.5 \times 10^{-2} \mathrm{~J}$	Value/unit

Equivalent capacitance
Capacitance $=5.0 \mu \mathrm{~F}(\mathbf{1})$

Total energy

$W=1 / 2 Q^{2} / C$
$\frac{\frac{1}{2}\left(4.0 \times 10^{-4} \mathrm{C}\right)^{2}}{\left(5.0 \times 10^{-6} \mathrm{~F}\right)}$
$=0.016 \mathrm{~J}$
Use of total charge (1)
Use of $W=\frac{Q^{2} r}{2 C_{r}} \quad$ OR $V=\frac{Q_{r}}{C_{r}}(80 \mathrm{~V})(\mathbf{1})$
Substitution of combined capacitance and answer (1)
[Accept ecf, their charges and total capacitance]

Energy loss

Gain in internal energy (1)
due to electrical work (1)
OR
Thermal energy/heating in the wires/wires get hot (1)
Dissipated in wires (1)
OR
Work done by charges (1)
OR
Energy needed to overcome resistance in the wires (1)
86. Cathode Ray Tube

Electron emission

- Heating effect (due to current) (1)
- (Surface) electrons (break free) because of energy gain (1)
[Thermionic emission scores both marks]
Electron motion towards anode
The electrons are attracted to/accelerated by the positive anode (1)

Energy

Electron energy $=\left(10 \times 10^{3} \mathrm{~V}\right)\left(1.6 \times 10^{-19} \mathrm{C}\right)$
$=1.6 \times 10^{-15} \mathrm{~J}$
Correct use of 1.6×10^{-19} OR use of $10 \times 10^{3} \mathbf{(1)}$
Answer (1)

Number of electrons per second

Number each second $=\frac{1.5 \times 10^{-3} \mathrm{~A}}{1.6 \times 10^{-19} \mathrm{~J}}$
$9.4 \times 10^{15} \mathrm{~s}^{-1}$
Correct conversion $\mathrm{mA} \rightarrow \mathrm{A}$
Answer (1)
Rate
Energy each second $=\left(9.4 \times 10^{15} \mathrm{~s}^{-1}\right)\left(1.6 \times 10^{-15} \mathrm{~J}\right)(\mathbf{1})$
$=15 \mathrm{Js}^{-1}(\mathrm{~W}) / 14.4 \mathrm{Js}^{-1}$ (1)
[ecf their energy]
87. Action of transformer

Quality of written communication (1)
a.c. input/changing current (1)

Flux linkage to secondary through core/B field carried through core (1)
Induced e.m.f. (in secondary)
Any one from:
Varying magnetic field (in primary)
Changing B field acts over secondary
Flux linkage is greater (1)
Output voltage of the transformer
$\frac{100}{1200} \times 240 \mathrm{~V}$ (1)
$=20 \mathrm{~V}$ [Correct answer only] (1) 2
88. Gravitational field strength a vector quantity
(Field) lines have arrows (to Earth) / direction (1) 1
Equipotential lines
Three circles drawn (1)
Reasonably concentric (1)
Getting further apart (1)
Work done
$2.2 \times 10^{7} \mathrm{~J} \mathrm{~kg}^{-1} 5500 \mathrm{~kg}$
$=1.2 \times 10^{11} \mathrm{~J}$
Ignore 10^{x}. See 2.2×5500 (1)
Answer $1.2 \times 10^{11} \mathrm{~J}(\mathbf{1})$
Satellite's gpe

Satellite follows an equipotential surface
OR
Satellite's circular orbit is an equipotential line
OR
Satellite's orbit has a fixed radius (1)
89. (a) (i) Circular field with arrows (1)

Arrows consistent with right hand rule (1)
Deflection increases as current increases (1)
Plotting compass lies along resultant field [seen or stated] (1)
(ii) Reasonable current with unit from at least two readings to 0.1 A or better (1)
(iii) Correct SI substitution (1)

Correct calculation ≥ 2 significant figures + unit (1)
[$\mathrm{NA}^{-1} \mathrm{~m}^{-1}$ OR T OR Wb m${ }^{-2}$]
Clear isosceles triangle formed OR international centres close to equator may comment on fields not equal (1)
(b) (i) Circuit set up correctly (1) (1) 2
[Polarity error -1]
(ii) $t_{1} \pm 0.5 \mathrm{~s}$ from Supervisor's value from ≥ 2 readings
$[\pm 0.5 \mathrm{~s}$ from one - (1) $\pm 1.0 \mathrm{~s}$ from two - (1)]
-1 if no $\mu \mathrm{A}$
-1 if no seconds
$I_{2} \approx 2 / 3 I_{1}$
$t_{2} \approx 3 / 2 t_{1}$ (1)
(iii) Correct calculation + unit (1)
giving $R_{2} 9 \rightarrow 11 \mathrm{k} \Omega$ when rounded to nearest $\mathrm{k} \Omega$ ecf wrong unit (1)

Resistance of ammeter or cell is negligible OR other circuit components have negligible resistance compared to R (1)

Sample results

(a) (i)

Circular field with arrows
Arrows consistent with right-hand rule Deflection increases as current increases Plotting compass lies along resultant field [seen or stated]
(ii) $\quad I=2.50,2.59,2.46,2.45,2.61,2.35 \mathrm{~A}$

Mean $I=2.49 \mathrm{~A}$
Approached 45° from both directions/tapping compass/4 or more currents
(iii) $B=\frac{\mu_{0} I}{2 \pi r}$
$=\frac{4 \pi \times 10^{-7} \times 2.49}{2 \pi \times 0.03}$
$=1.7 \times 10^{-5} \mathrm{~T}$

Clear isosceles traingle formed
(b) (i) Circuit set up correctly
(ii) $I_{1}=64 \mu \mathrm{~A}$
$t_{1}=16.97,16.91 \mathrm{~s}$
$\bar{t}=16.94 \mathrm{~s}$
$I_{2}=44 \mu \mathrm{~A}$
$t_{2}=24.72,24.69 \mathrm{~s}$
$\bar{t}_{2}=24.71 \mathrm{~s}$
(iii) $\frac{t_{1}}{t_{2}}=\frac{R_{1}}{R_{1}+R_{2}}$
$\frac{16.94}{24.71}=\frac{22 K}{22 K+R_{2}}$
$\frac{22 K+R_{2}}{22 K}=1.46$

$$
\therefore R_{2}=10.1 \mathrm{k} \Omega
$$

Resistance of ammeter or cell are negligible OR other circuit components have negligible resistance compared to R.
90. (a) Any four points from:

- B is set into forced oscillations by A
- and its amplitude of oscillation increases
- Energy is transferred from A to B
- Amplitude then reduces
- Energy is transferred back to A
- Process then repeats
- Same natural frequency (1) (1) (1)
- A is driver/A and B are coupled (1)
(b) $\pm 0.03 \mathrm{~s}$ of Supervisor from $\geq 40 T$ (1) (1)
$[\pm 0.03$ from $\geq 20 T$ (1)]
± 0.05 from $\geq 40 T$ (1)]
$T_{\mathrm{B}}>T_{\mathrm{A}}(\mathbf{1})$
from $\geq 40 T_{\mathrm{B}}$ (1)
[If no units at all -1]
Precautions (1) (1)
(c) $\quad T$ measured and repeated (1)

Correct calculation of $1 / r$ and $1 / T_{\mathrm{A}},-1 / T_{\mathrm{B}}$ to ≥ 3 significant figures (1)
[Ignore unit]
Percentage difference found [Either value or average as denominator] (1)
$\leq 5 \%$ (1) (1)
Hence sensible comment (1)
[10\% acceptable experimental error] 6

Sample results

(a) - B is set into forced oscillations by A

- and its amplitude of oscillation increases
- Energy is transferred from A to B
- Amplitude then reduces
- Energy is transferred back to A
- Process then repeats
- Same natural frequency
(b) $20 T_{\mathrm{A}}=15.94,15.87 \mathrm{~s}$
$T_{\mathrm{A}}=0.795 \mathrm{~s}$
$20 T_{\mathrm{B}}=17.32,17.28 \mathrm{~s}$
$T_{\mathrm{B}}=0.865 \mathrm{~s}$
Fiducial marker in centre of oscillation.
Eye level with marker
Repeats shown
(c) $5 T=46.66,47.54 \mathrm{~s}$
$T=9.42 \mathrm{~s}$
$\frac{1}{T}=\frac{1}{9.42}=0.106 s^{-1}$
$\frac{1}{T_{A}}-\frac{1}{T_{B}}=\frac{1}{0.795}-\frac{1}{0.865}$
$=1.258-1.156$
$=0.102 \mathrm{~s}^{-1}$
Percentage difference $=\frac{0.004}{0.104} \times 100 \%=3.8 \%$
Acceptable experimental error therefore supported

91. (a) Potential divider (1) (1)

Ammeter in series with lamp (1)
Voltmeter in parallel (1)
Ammeter: $100 \mathrm{~mA}, 150 \mathrm{~mA}, 200 \mathrm{~mA}$ (1)
Voltmeter: $10 \mathrm{~V}, 15 \mathrm{~V}, 20 \mathrm{~V}(1)$
[OR
Both values $>$ values for lamp but not standard (1)]
Heating effect correctly related to resistance change (1)
Sensible argument (1)
(b) $\ln I=n \ln V+\ln k$
$y=m x+c\left[\right.$ OR $\left.\log _{10}\right](1)$
(c) Table with correct values to ≥ 2 decimal places (1)

Graph:
Suitable scale (1)
Axes labelled with units (1)
Plots (1)
Line (1)
(d) $\Delta x \Delta y \geq 64 \mathrm{~cm}^{2}$ (1)

Correct calculation, no unit, $2 / 3$ significant figures and 0.50 and 0.55 [when rounded to 2 significant figures] (1)

Sample results

(a) Diagram

Ammeter: $100 \mathrm{~mA}, 150 \mathrm{~mA}, 200 \mathrm{~mA}$
Voltmeter: $10 \mathrm{~V}, 15 \mathrm{~V}, 20 \mathrm{~V}$
Heating effect correctly related to resistance change
Sensible argument
(b) $\ln I=n \ln V+\ln k$
$y=m x+\mathrm{c}\left[\mathrm{OR} \log _{10}\right]$
(c)

V / V	I / mA	$\ln (V / \mathrm{V})$	$\log _{10}(V / \mathrm{V})$	$\ln (I / \mathrm{mA})$	$\log _{10}(I / \mathrm{mA})$
0.87	20	-0.14	-0.060	3.00	1.30
1.33	25	0.29	0.124	3.22	1.40
1.81	30	0.59	0.258	3.40	1.48
2.51	35	0.92	0.400	3.56	1.54
3.08	40	1.12	0.489	3.69	1.60
4.02	45	1.39	0.604	3.81	1.65
4.66	50	1.54	0.668	3.91	1.70
5.66	55	1.73	0.753	4.01	1.74
6.79	60	1.92	0.832	4.09	1.78

(d) $n=$ gradient $=\frac{4.16-3.0}{2.0-(-0.2)}=0.53$
92. Alpha particle: diagram

Curving path between plates 1
Towards 0 V plate
Emerging from plates and carrying on straight
Calculation
Electric field $=\frac{2000 \mathrm{~V}}{10 \times\left(10^{-3}\right) \mathrm{m}}$
Substitution
Force $=E Q$
$=\left(\frac{2000}{10 \times 10^{-3}}\right) \mathrm{Vm}^{-1} \times(2) \times 1.6 \times 10^{-19} \mathrm{C}$
Substitution [ecf their E]
$=6.4 \times 10^{-14} \mathrm{~N}$
Correct answer
93. Completion of circuit diagrams
$1^{\text {st }}$ diagram:
Correctly connected in parallel with supply
$2^{\text {nd }}$ Diagram:
Correctly connected in series with supply
Table with calculations

Capacitors in parallel	Charge on C_{1}	$Q=V C$
	Energy stored on C_{1} when fully charged	$\left(\frac{C V^{2}}{2}\right)=\frac{12 \mu \mathrm{~F} \times(6 \mathrm{~V})^{2}}{2}=216 \mu \mathrm{~J}$
Capacitors in series	Charge on C_{2}	1 Total capacitance $=6 \mu \mathrm{~F}$ OR p.d. across $\mathrm{C}_{2}=3 \mathrm{~V}$ $6 \mathrm{~V} \times 6 \mu \mathrm{~F}=36 \mu \mathrm{C} /$ $3 \mathrm{~V} \times 12 \mu \mathrm{~F}=36 \mu \mathrm{C}$
	Total energy stored on C_{1} and C_{2} when Fully charged	$\frac{6 \mu \mathrm{~F} \times(6 \mathrm{~V})^{2}}{2}=108 \mu \mathrm{~J}$
	$2\left(\frac{12 \mu \mathrm{~F} \times(3 \mathrm{~V})^{2}}{2}\right)=108 \mu \mathrm{~J}$	

94. Horizontal component
$4.8 \times 10^{-5} \mathrm{~T} \times \cos 66^{\circ}$
$=1.95[2.0] \times 10^{-5} \mathrm{~T}$
Use $\cos 66^{\circ} / \sin 24^{\circ}$
Answer
Calculation of induced voltage
Speed after 2 seconds $=9.81 \mathrm{~m} \mathrm{~s}^{-2} \times 2 \mathrm{~s}$
[ecf their B]
Induced e.m.f. $=1.95 \times 10^{-5} \mathrm{~T} \times 2.5 \mathrm{~m} \times\left[9.81 \mathrm{~m} \mathrm{~s}^{-2} \times 2 \mathrm{~s}\right]$
$=9.6 \times 10^{-4} \mathrm{~V}$

North-south rod

Induced emf $=0(\mathrm{~V}) \quad 1$
Rod does not cut magnetic field lines/no flux cutting/no change in flux 1
95. Electrical property of blade

Resistance [Not resistivity] 1
Law of electromagnetic induction
The (magnitude of the) induced emf is equal to/proportional to 1
the rate of change of flux (linkage) 1
[Word equation can score two marks]

Explanation of damping

Quality of written communication $\quad 1$
E.m.f. induced (in blade) because flux linked (with blade) changes /
lines of force are cut (by blade)

Large with reference to (induced) current or (induced) magnetic field 1
Any one from:

- The two magnetic fields produce an opposing force (to motion)
- blade has low resistance current is induced
- current produces thermal energy
- kinetic energy/total energy is transferred to thermal energy 1

Blade B
Smaller (eddy) currents (induced) in blade B / weaker field created around blade B 1
96. Charge distribution on spheres marked on diagram

Left hand sphere marked positive 1
Right hand sphere marked negative 1
Arrow on field line to indicate direction
Direction on one field line correctly drawn
Arrow left to right [Any contradictory arrows lose the mark] 1
Work done
$\begin{array}{ll}\text { (i) } 0 & 1 \\ \text { (ii) }-50 & \end{array}$
One mark for $50 \quad 1$
One mark for negative sign $\quad 1$
97. Forces
(i) $\quad F=G M_{\mathrm{E}} m / R^{2}$
(ii) $\quad F=\mathrm{GM}_{\mathrm{M}} \mathrm{m} / \mathrm{r}^{2}$

Distance R

$$
\left.\begin{array}{c}
\frac{G M_{E} m}{R^{2}}=\frac{G M_{m} m}{r^{2}} \\
\text { OR } \\
=\frac{R^{2}}{r^{2}} \text { OR }\left(\frac{M_{E}}{M_{m}}\right)^{1 / 2}=\frac{R}{r}
\end{array}\right\}
$$

$\frac{81}{1}=\frac{R^{2}}{\left(3.9 \times 10^{7} \mathrm{~m}\right)^{2}}$
$R=3.5 \times 10^{8} \mathrm{~m}$
Evidence that equating forces has occurred
Correct substitution 1
Correct answer 1
98. (a) (i) $\begin{aligned} & \text { Circuit set up correctly without help } \\ & {[\text { Polarity of } \mathrm{C}-1] } \\ & \text { Correct calculation of } I_{0} \text {, with unit, from sensible } V[V \text { to } 3 / 4 \\ &\text { s.f. }+ \text { unit }]\end{aligned}$
(ii) Value between 12-22 s, to precision of 0.15 or better, with unit 1

Value $(3 \rightarrow 4) \times$ above value 1
Both repeated 1
(iii) Exponential shape 1

Three points plotted approximately in correct positions 1
[OR shown on axes]
(b) (i) From diagram or description

At least 2 orders of spectra observed 1
either side of the centre 1
with blud nearest the centre shown on both sides 1
(ii) Red and violet correct 1

At least orange OR yellow and green 1
(iii) Absorption shown 1

Cut off in green or blue 1
Range stated correctly from diagram [dependent mark] 1

Sample results

(a) (i) $V=1.54 \mathrm{~V}$

$$
I_{0}=\frac{1.54 \mathrm{~V}}{10 \mathrm{k} \Omega}=154 \mu \mathrm{~A}
$$

(ii) $154 \rightarrow 77 \mu \mathrm{~A}: 18.6,19.0$, average 18.8 s
$154 \rightarrow 15.4 \mu \mathrm{~A}: 63.0,63.8$, average 63.4 s
(iii)

(b) (i)

At least two orders of spectra observed either side of the centre with blue nearest the centre shown on both sides
(ii)

(iii)

$(4.5-5.8) \times 10^{14} \mathrm{~Hz}$ transmitted
99. (a) Any one from:

Stretched spring
Lined up end of spring where it went above the board
Used pencil to count turns
Mark made on spring
Sensible T from $\Sigma n T \geq 40[\geq 20$ gets (1)] with unit 2
Repeat 1
Used marker at centre of oscillations $\quad 1$
Correct calculation of percentage from $\Delta n T 0.05-0.1 \mathrm{~s}$ or range or $1 / 2$
range, whichever is the larger
Correct calculation to 3 s.f. for both S values with unit 1
[Accept inverse calculation]
(b) $\quad \Delta N \geq 8$ turns
T sensible and found from at least $2 \times 10 T \quad 1$
s values differ by $\leq 0,0001 \mathrm{~s}$ when both rounded to 2 s.f.
[$\leq 0.002 \mathrm{~s}$ gets (1)]
(c) Correct calculation from mean as denominator
$2 \times$ value found in (a)
Hence sensible deduction, based on candidate's quantitative argument
$m \propto N \quad$)
) $m l \propto \mathrm{~N}^{2}$
$l \propto N \quad)$
$\therefore T \propto N$

Sample results

(a) Stretched spring

Lined up end of spring where it went above the board
Used pencil to count turns
Mark made on spring
20T: 13.67, 13.75 s [± 0.04 of Supervisor's value]
$T=0.686 \mathrm{~s}$ ($\pm .04$ from 20 or ± 0.06 from 40 gets (1)]
Used marker at centre of oscillations
Percentage uncertainty $=\frac{0.1}{13.7} \times 100=0.7 \%$
$T=s N$
$s=\frac{T}{N}=\frac{0.686}{20}=0.343 \mathrm{~s}$
(b) $N=30$ turns

20T: 20.69, 20.68 s
$T=1.034 \mathrm{~s}$
$s=\frac{1.034}{30}=0.0345 \mathrm{~s}$
(c) Percentage difference $=\frac{(0.0345-0.0343)}{0.0344} \times 100=0.6 \%$

Experimental uncertainty $=2 \times 0.7=1.4 \%$
Values of s are constant within the experimental uncertainty

```
m\proptoN )
        ) ml\proptoN卦
l\proptoN )
\thereforeT\proptoN
```

100. (a) $T=0.4 \mathrm{~ms} 1$
$f=2.5 \mathrm{kHz} \quad$ [e.c.f. from $T] \quad 1$
(b) (i) Correct set up 2
[-1 for each error or omission. c.r.o and signal generator must be labelled]
[mic between LS and board otherwise -2]
(ii) Distance between (nodes/antinodes $/ \mathrm{max} / \mathrm{min}$) measured 1
is $\lambda / 2$ 1
Measure across several [implied] 1
(c) $1 / f$ values all correct, to 3 s.f. with unit [here or on graph]
[Allow kHz^{-1} OR $10^{3} \mathrm{~Hz}^{-1}$]
Graph:

(d) $\Delta x y \geq 80 \mathrm{~cm}^{2} \quad 1$

Gradient calculated correctly and $330-350 \mathrm{~m} \mathrm{~S}^{-1} \quad 1$
$=c, 2 / 3$ s.f. and unit 1
Eliminates a significant systematic error OR graph averages a number of values

Sample results

(a) $\lambda=4$ divisions $=4 \times 0.1 \mathrm{~ms}=0.4 \mathrm{~ms}$
$f=\frac{1}{T}=\frac{1}{0.4} \times 10^{-3}=2.5 \mathrm{kHz}$
(b) (i)

(ii) Distance between (nodes/antinodes/max/min) measured is $\lambda / 2$ Measure across several
(c) $\frac{1}{f} / \mathrm{ms}$
0.500
0.400
0.333
0.286
0.250
0.200
(d) $\quad \mathrm{c}=$ gradient $=\frac{0.180-0.010 \mathrm{~m}}{0.500-0.000 \mathrm{~ms}}=340 \mathrm{~m} \mathrm{~s}^{-1}$

Graphical method eliminates a significant systematic error OR graph averages a number of values
101. (a) (i) Sensible value, with unit to $0.1 \mathrm{~cm}^{3}$ or better

Total volume correct [e.c.f.] with unit
[Penalise unit error once only]
Sensible time, with unit to 0.1 s or better
Correct method clearly explained
(ii) Correct calculation with unit and $2 / 3$ s.f.

Correct re-arrangement and substitution hence correct calculation of value + unit

Value given to $2 / 3$ s.f. [Dependent mark]
(b) (i) Sensible T_{1} from $\Sigma T \geq 10$ or $\geq 10 \mathrm{~s}+$ unit
[Only penalise unit error in Ts once]
Sensible T_{2} from $\Sigma t \geq 10$ or $\geq 10 \mathrm{~s}+$ unit
T_{1} and T_{2} repeated
D_{1} and D_{2} sensible and repeated, with unit
(ii) $\Delta D \pm 0.5 \mathrm{~mm}$ or 1.0 mm
$\Delta T \pm 0.05-0.2 \mathrm{~s}$ [or range/ $1 / 2$ range if larger and based on their readings] and correct percentages [-1 per error] (2)

Ratio of $\frac{T}{D}$ OR $\frac{D_{1}}{D_{2}}$ and $\frac{T_{1}}{T_{2}}$ found (1)
Percentage difference found (1)
Compared with $2 \times$ percentage uncertainty above and sensible conclusion (1)
[Alternative for last two marks: Range of each ratio found
(1), comment related to overlapping ranges (1)]

Sample results

(a)
(i) Volume $=3.2 \mathrm{ml}\left(\mathrm{cm}^{3}\right)$

Volume $=50.0+3.2:=53.2 \mathrm{ml}$
$t=43.8 \mathrm{~s}$
Take time to run out from 0 mark (53.2 ml) to 26.6 ml mark
(i.e. $53.2 \div 2$ run out)
(ii) $T=t / \ln 2=43.8 / 0.693=63.2 \mathrm{~s}$
$T=C R \rightarrow R=\frac{T}{C}$
$R=\frac{63.2}{2200 \times 10^{-6}} \Omega=29 \mathrm{k} \Omega$
[Would use $33 \mathrm{k} \Omega$, being nearest preferred value]
(b) (i) $\quad 10 \mathrm{~T}_{1} / s=14.52,14.46$
$T_{I}=1.45 \mathrm{~s}$
$D_{I} / m m=59,59,57,57$
Average $D_{1}=58 \mathrm{~mm}$
$20 T_{2} / s=17.05,16.95$
$T_{2}=0.85 \mathrm{~s}$
$D_{2} / \mathrm{mm}=32,32$
Average $D_{2}=32 \mathrm{~mm}$
(ii) $\quad T_{2}: \frac{ \pm 0.1 \mathrm{~s}}{17.0 \mathrm{~s}} \times 100=0.6 \%$

$$
\begin{array}{l|l}
D_{2}: \frac{ \pm 0.5 \mathrm{~mm}}{32 \mathrm{~mm}} \times 100=1.6 \% \\
\frac{T_{1}}{D_{2}}=0.0250 \mathrm{~s} \mathrm{~mm}^{-1} & \frac{D_{1}}{D_{2}}=1.81 \\
\frac{T_{2}}{D_{2}}=0.0266 \mathrm{~s} \mathrm{~mm}^{-1} & \frac{T_{1}}{T_{2}}=1.71 \\
\% \text { diff }=\frac{0.0016}{0.026} \times 100 & \% \text { diff }=\frac{0.10}{1.76} \times 100 \\
=6 \% & =6 \%
\end{array}
$$

Experimental uncertainty $\sim 2 \times 2.2=4.4 \%$ Results do not entirely confirm T is proportional to D.
102. (a) Correct circuit without help 2
(b) Table with units [including no units for tan] 1
One $\theta \geq 45^{\circ}$ 1
One $\theta \leq 20^{\circ}$ 1
5 or more values plotted 1
Repeat I or θ seen 1
[Obvious systematic error in $I-1$, incorrect $\tan \theta-1$]
Any two from:

- look vertically on compass to avoid parallax/tap thecompass/check alignment of coil and compass
- repeat with I increasing and then decreasing
- repeat with I reversed 2
(d) Graph:
Sensible scale [at least half paper in each direction, avoiding 3s etc] and axes labelled or units 1
Plots to accuracy of $1 \mathrm{~mm}[1 / 2$ square] 1
Line -thin, straight line of best fit [not forced through origin] 1
[Graph plotted wrong way round, -1]
[Ignore missing $\theta=30$ if not tabulated]
(e) Large $\Delta\left[\Delta x \Delta y \geq 64 \mathrm{~cm}^{2}\right]$ 1
Correct calculation of gradient [ignore unit] 1
Correct rearrangement and substitution [i.e. SI units] 1
Correct calculation $2 / 3$ s.f. and unit 1

Sample results

(a) Circuit set up
(b) $I=0.14 \mathrm{~A}, 0.14 \mathrm{~A}$, Average 0.14 A
$\theta=30^{\circ}$

I / A	$\theta_{1} /{ }^{\circ}$	$\theta i_{2} /{ }^{\circ}$	$\operatorname{Mean} \theta /{ }^{\circ}$	$\operatorname{Tan} \theta$
0.05	17	21	19	0.344
0.09	25	29	27	0.510
0.15	34	42	38	0.781
0.20	42	49	$45(.5)$	1.018
0.26	48	54	51	1.235

(c) Look vertically on compass to avoid parallax/tap the compass/check alignment of coil and compass
Repeat with I increasing and then decreasing
OR
Repeat with I reversed
(d) Graph:

(e) \quad Gradient $=\frac{1.17-0.13}{0.24-0.00}=4.33 \mathrm{~A}^{-1}$
$\frac{\tan \theta}{I}=\frac{\mu_{0} N}{2 r B_{\text {hor }}}$
$B_{\text {hor }}=\frac{\mu_{0} N}{2 r \times \text { gradient }}$
$=\frac{4 \pi \times 10^{-7} \times 10}{2 \times 0.060 \times 4.33}$
$=2.4 \times 10^{-5} \mathrm{~T}$
[Unit T or $\mathrm{NA}^{-1} \mathrm{~m}^{-1}$ or $\mathrm{Wb} \mathrm{m}^{-2}$]
103. (a) (i) Correct circuit with ammeter in series with R and C and voltmeter across R and C

1,1
[-1 for each error or omission]
87.6Ω or 88Ω with unit
[Allow $\mathrm{V} \mathrm{A}^{-1}$; do not allow $\mathrm{V} \mathrm{mA}^{-1}$]
(ii) Correct substitution

Hence correct calculation [≥ 2 s.f. + unit]
[Do not penalise unit if already penalised in (i)]
(iii) Replace a.c. supply with a signal generator/variable frequency supply
Measure V and $I \quad 1$
for different frequencies of $f \quad 1$

$$
\begin{aligned}
& Z^{2}=\frac{1}{4 \pi^{2} C^{2}} \times \frac{1}{f^{2}}+R^{2} \quad \text { [clearly shown] } \\
& \downarrow \begin{array}{l}
\downarrow \\
y= \\
\downarrow
\end{array} \quad \begin{array}{l}
\downarrow \\
\downarrow
\end{array}
\end{aligned}
$$

(b) Z^{2} and $1 / f^{2}$ values all correct and $\quad 1$
≥ 2 s.f. with units for both 1
Graph
$\begin{array}{ll}\text { Scale -at least half paper in each direction avoiding 3s etc and axes } & 1 \\ \text { labelled [Ignore units] }\end{array}$
Plots- all accurate to $1 \mathrm{~mm}[1 / 2$ square $] \quad 1$
Line -thin, straight line of best fit 1
(c) Gradient $(1.29-1.35) 10^{7}$ from large $\Delta\left[\Delta x \Delta y \geq 64 \mathrm{~cm}^{2}\right]$
[Ignore units]
[As an alternative to the gradient candidates may use a point on the line and the intercept. This is allowed provided the point is not a data point]

Correct calculation of C with unit [Must be F or $\mu \mathrm{F}$] [Ignore s.f.]

Sample results
(a) (i)

$Z=\frac{1.49 \mathrm{~V}}{17 \mathrm{~mA}}=87.6 \Omega$
(ii) $\quad Z^{2}=\left(4 \pi^{2} \times\left(47 \times 10^{-6}\right)^{2} \times 50^{2}\right)-1+47^{2}$
$Z^{2}=4587+2209=6796$
$Z=82.4 \Omega$
(iii) Replace a.c. supply with a signal generator/variable frequency supply

Measure V and I for different frequencies of f

$$
\begin{aligned}
& Z^{2}=\frac{1}{4 \pi^{2} C^{2}} \times \frac{1}{f^{2}}+R^{2} \quad[\text { clearly shown }] \\
& y=m \quad x+C
\end{aligned}
$$

(b) Data:

$Z^{2} / \Omega^{2}-\times 10^{3}$	$1 / f^{2} / \mathrm{s}^{2} \times 10^{-4}\left(\mathrm{~Hz}^{-2}\right)$
10.6	6.25
8.9	4.94
7.7	4.00
6.7	3.31
6.0	2.78
5.1	2.04
4.0	1.23

Graph:

(c) \quad Gradient $=\frac{(10.3-2.4) \times 10^{3}}{(6.0-0.0) \times 10^{-4}}=1.32 \times 10^{7} \Omega^{2} \mathrm{~s}^{-2}$

$$
\begin{aligned}
& C^{2}=\left(4 \pi^{2} \times \text { gradient }^{-1}=\left(4 \pi^{2} \times 1.32 \times 10^{7}\right)^{-1} \mathrm{~F}\right. \\
& C=44 \mu \mathrm{~F}
\end{aligned}
$$

104. Field definition

A field is a region/space/area/volume (1) where forces act (1)

Two differences between magnetic and electric fields
Any two from:

- $\quad \mathrm{E}$ - can be due to single charges; B - cannot be due to single poles
- E - acts on (moving and) stationary charges / all charges; B - only acts on moving charges / does not act on stationary charges
- E - can be radial; B - closed loops
- $\quad \mathrm{E}$ - produces a force which is parallel to field; B - produces a force perpendicular to field (1) (1)

105. F proportional to I

Quality of written communication (1)
Any two from:
[In words or on diagram]

- Method of producing and measuring a varying direct current
- Wire perpendicular to B field
- Method of measuring/detennining forces, e.g. moments / acceleration (1) (1)

Graph of $F-I$ straight line through origin for $F=$ added weight (1)
[OR correct straight line if F is total weight $O R \frac{F}{I}$ constant]

Calculation of Initial acceleration

$F=B I l$
$=0.20 \mathrm{~T} \times 4.5 \mathrm{~A} \times 5.0 \times 10^{-2} \mathrm{~m}$
$=4.5 \times 10^{-2} \mathrm{~N}$
$a=F / m$
$=\frac{4.5 \times 10^{-2} \mathrm{~N}}{50 \times 10^{-3} \mathrm{~kg}}$
$=0.90 \mathrm{~m} \mathrm{~s}^{-2}$
Recall/state/use $F-m a$ and $F=\operatorname{BIl}$ (1)
Use $5.0 \times\left(10^{-2} \mathrm{~m}\right)$ for length (1)
Conversion of g to $\mathrm{kg} 50 \times 10^{-3}$ (1)
$a=0.90 \mathrm{~m} \mathrm{~s}^{-2}$ (1)
106. E.m.f.

Motion of magnet (1)
produces changing magnetic field over the coil (1)
OR
Field lines (of magnet) cut across coil
OR
Produces changes in flux linkage between coil and magnets
Diagram
X at both ends of path (1)
X in middle of path (1)

Rate of change of flux

$\frac{\Delta \phi}{\Delta t}=\frac{3 \times\left(10^{-3}\right)(V)}{500}$ (1)
$=6.0 \times 10^{-6} \mathrm{wb} \mathrm{s}^{-1} / \mathrm{V} / \mathrm{T} \mathrm{m}^{2} \mathrm{~s}^{-1}$ (1)
Changes to apparatus
Any three from:

- more coils
- stronger magnet [Accept 'more powerful']
- decrease length of suspension) [Not just 'increase'
- larger amplitude) speed of magnet]
- larger cross sectional area of coil
- iron core within coil (1) (1) (1)

107. Diagram

Electric pattern:
Straight, parallel, reasonably perpendicular to plates and equispaced [Minimum 3 lines] (1)
Correct direction labelled on one line [Downwards arrow] (1)
Equipotential lines:
Any two correct equipotentials with any labelling to identify potentials (rather than field lines) (1)
[Arrows on electric field lines - none on equipotential being sufficient labelling]

Force
$E=\frac{3000 \mathrm{~V}}{25 \times\left(10^{-3}\right) \mathrm{m}}$ [Correct substitution] (1)
Use of $F=E e$ even if value of " e " is incorrect (1)
$F=120 \times\left(10^{3}\right) \mathrm{V} \mathrm{m}^{-1} \times 1.6 \times 10^{-19} \mathrm{C}$
$=1.9(2) \times 10^{-14}(\mathrm{~N})(\mathbf{1})$
Graph
Straight horizontal line [Even if extending beyond 25 mm] (1)
Value of F marked [e.c.f. their value] provided graph begins on force axis and is marked at this point (1)

Speed

Use (1)

$\mathrm{eV}=1 / 2 m v^{2}$	$v^{2}=2\left(\frac{F}{m}\right) \mathrm{s}$	$F d=1 / 2 m v^{2}$ $v^{2}=2 \mathrm{eV} / \mathrm{m}$

Substitution (1)
$V^{2}=\frac{2 \times 1.6 \times 10^{-19}(\mathrm{C}) \times 3000(\mathrm{~V})}{9.11 \times 10^{-31} \mathrm{~kg}}$
$=2 \frac{\left(1.92 \times 10^{-14} \mathrm{~N}\right)}{9.11 \times 10^{-31} \mathrm{~kg}} \times 2510^{-3} \mathrm{~m}$
$=\frac{2 \times 1.92 \times 10^{-14} \mathrm{~N} \times 25 \times 10^{-3} \mathrm{~m}}{9.11 \times 10^{-31} \mathrm{~kg}}$
Answer: $V=3.2 \times 10^{7} \mathrm{~ms}^{-1}(\mathbf{1})$
[If $F=2 \times 10^{-14} \mathrm{~N}$, then $V=3.3 \times 10^{7} \mathrm{~ms}^{-1}$]
108. Expressions for magnitude
(i) Centripetal force $=\frac{m_{S} V_{S}{ }^{2}}{\left(R_{E}+h\right)} / \frac{G M_{E} m_{S}}{\left(R_{E}+h\right)^{2}}$

Correct formula and symbols, ignoring $R_{\mathrm{E}} \quad$ (1)
(ii) Gravitational field strength $=\frac{G M_{E}}{\left(R_{E}+h\right)^{2}}$

Correct formula and symbols, ignoring $R_{\mathrm{E}} \quad$ (1)
Use of ($R_{\mathrm{E}}+h$) in both equations (1)
Orbital speed
$\frac{m v_{S}{ }^{2}}{\left(R_{E}+h\right)}=\frac{G M_{E} m_{S}}{\left(R_{E}+h\right)^{2}}$ [Apply e.c.f. if h used above] (1)
$V_{\mathrm{S}}{ }^{2}=\frac{G M_{E}}{\left(R_{E}+h\right)}$
Since G, M_{E} and R_{E} are all constant $/ V_{\mathrm{S}}^{2}, \propto \frac{1}{R_{E}+h}$, the greater the value of h, the smaller the value of v. (1)

Motion of spanner

Path of the spanner is the same as path of spacecraft or mechanic / both moving in same direction / stationary with respect to spacecraft or mechanic (1)
They both have the same speed (1)
[OR the spanner continues to move with the same velocity as the spacecraft or mechanic - both marks]
[Same centripetal acceleration as spacecraft or mechanic gets both marks]
109. (a) (i) T found correctly
$\Sigma N T \geq 20$ for both (1)

Any two precautions (1) (1)
Ratio of Ts: $1.26-1.40$ (1)
(ii) Correct percentage from $\Delta(N T) 0.05-0.20 \mathrm{~s}$ [or range $/ 1 / 2$ range if this is $\geq 0.05 \mathrm{~s}]$ (1)
"Constant" or suitable ratios calculation (1)
Percentage difference using mean as denominator (1)
Sensible comment based on quantitative analysis (1)
[Or check whether values overlap]
(b) (i) Set up circuit without help (1) (1)
[Polarity of C (-1); V (ignore)]
$t=16.5-27.5 \mathrm{~s}$ with unit (1)
Repeated and averaged (1)
(ii) Resistor combination correct without help (1)
[Resistors need not be labelled $10 \mathrm{k} \Omega$]
$t>t$ (i) and $25.0-41.0 \mathrm{~s}$ (1) (1)
[If card given, this can only get 1 mark]
[-1 unit penalty unless already penalised in part (i)]
Correct calculation of average value, with unit and 2 or 3 s.f. (1)
[e.c.f.] [Do not accept s Ω^{-1}]

Sample results

(a)
(i) $n=16$
$10 T / s=11.53,11.54,11.53$
So mean $T=1.15 \mathrm{~s}$
Precautions:
Nail at centre of oscillations
Repeats shown for both
Careful release to prevent unwanted modes
Start timing when swings have settled
($n=9$) 20T/s: 17.53, 17.49, 17.59
So mean $T=0.877 \mathrm{~s}$
(ii) Percentage uncertainty in $T_{16}=\frac{0.1}{11.5} \times 100=0.9 \%$

Percentage uncertainty in $T_{9}=\frac{0.1}{17.5} \times 100=0.6 \%$
$\frac{T_{16}}{T_{9}}=\frac{1.15}{0.877}=1.31$
$\sqrt{\frac{16}{9}}=\frac{4}{3}=1.33$
These values differ by $\frac{0.020}{1.32} \times 100=1.5 \%$. which is comparable with uncertainties in T, thus supporting the suggestion.
(b) (i) $t / s: 26.34,25.86$
$\bar{t}=26.1 \mathrm{~s}$
(ii)

$$
\begin{aligned}
& t / s: 39.51,38,79 \\
& \bar{t}=39.2 \mathrm{~s} \\
& C=t / R=\frac{26.1}{10 \times 10^{3}}=2610 \mu \mathrm{~F} \\
& C=t / R=\frac{39.2}{15 \times 10^{3}}=2610 \mu \mathrm{~F} \\
& \bar{C}=2610 \mu \mathrm{~F}
\end{aligned}
$$

110. (a) Correct circuit without help (1) (1) 2$\theta 45^{\circ}-55^{\circ}$ and $I 0.15-0.25 \mathrm{~A}$, recorded to 0.01 A or better, with unit (1)Table with units [Must have $\tan \theta$] (1)

$$
\Delta x \geq 6 \mathrm{~cm}
$$

Clear S shaped curve (1)

$$
\text { At least } 6 \text { values of } \tan \theta \pm 0.02 \text { of examiner's best fit line (1) }
$$[Can include 50° point]5

(c) Any 2 precautions (1) (1) 2
(d) Graph:
Scale [at least $1 / 2$ paper used on each axis, avoiding scales of 3 etc] (1) Plots (1)
Smooth curve, of good fit (1) 3
(e) $\quad x$ read off correctly, to 0.1 cm or better, with unit (1)
$1 / 2 r$ found correctly from ≥ 2 values (1)
Percentage difference [average or either value as denominator] [or bracketing] (1)
Sensible comment from quantitative argument (1) 4

Sample results

(b) $\quad I=0.19 \mathrm{~A}$
$\theta=50^{\circ}$,
Table:

x / cm	θ°	$\tan \theta$
0.0	50	1.19
1.0	48	1.11
2.0	45	1.00
3.0	40	0.84
4.0	35	0.70
5.0	29	0.55
6.0	23	0.42
7.0	18	0.32
8.0	15	0.27

(c) Any two precautions from:

- readings taken on both sides of coil
- averaged [must be shown] and average plotted
- more than 8 readings
- check no iron objects nearby
- tap compass to avoid 'sticking'
- switch off between readings and check alignment of compass
(d) Graph:
$\tan \theta$

(e) $\tan \theta=0.71 \times 1.19=0.845$
$x=3.05 \mathrm{~cm}$
Radius of coil $=6.0 \mathrm{~cm}$
$1 / 2$ radius $=3.0 \mathrm{~cm}$
Percentage difference $=\frac{0.05}{3.0} \times 100=1.7 \%$
Acceptable experiment error, particularly as coil not circular and compass difficult to read

111. (a) (i) Pitch (frequency) is higher (1)
[Accept greater or more]
(ii) Resonance occurs and (1) energy is transferred from the loudspeaker to the vibrating air OR amplitude of vibration is a maximum (1)
(iii) Fill flask with water and find volume (with measuring cylinder) (1)

Empty out some water and measure its volume; this is the volume of air (1)
Repeat, removing more water each time to increase the volume of air (1)
[OR empty out all water to find volume of air initially;
add water to reduce volume of air]
Plot $\operatorname{In} f$ against $\ln V(\mathbf{1})$
[Allow $\ln f=n \ln V+\ln K$ or if correct graph plotted]
(b) Correct $\ln ($ or $\lg)$ values to 2 or 3 d.p. (1)

Graph:
Suitable scale (at least $1 / 2$ paper used for each axis, avoiding scales of 3 , etc) (1)
Axes labelled with units (or units in table) (1)
Plots (1)
Line (1)
[$f \mathrm{v} V$ can get all 4 marks]
(c) Large triangle [or maximum] ($\left.\Delta y \Delta x \geq 80 \mathrm{~cm}^{2}\right)$ (1)

Correct calculation with n in range $0.49-0.51$, , given to $2 / 3$ s.f.
and no unit (1)
Negative sign (1)
Negative sign indicates that f increases as V decreases, as was observed in (a)(i) (1)

Sample results

(a) (i) Pitch (frequency) is higher
(ii) Resonance occurs and energy is transferred from the loudspeaker to the vibrating air OR amplitude of vibration is a maximum
(iii) Fill flask with water and find volume (with measuring cylinder)

Empty out some water and measure its volume; this is the volume of air Repeat, removing more water each time to increase the volume of air
[OR empty out all water to find volume of air initially; add water to reduce volume of air]
Plot $\ln f$ against $\ln V$
(b) Table:

V / cm^{3}	f / Hz	$\ln \left(V / \mathrm{cm}^{3}\right)$	$\ln (f / \mathrm{Hz})$	$\log \left(V / \mathrm{cm}^{3}\right)$	$\log (f / \mathrm{Hz})$
554	219	6.32	5.39	2.74	2.34
454	242	6.12	5.49	2.66	2.38
354	274	5.87	5.61	2.55	2.44
254	324	5.54	5.78	2.40	2.51
204	361	5.32	5.89	2.31	2.56
154	415	5.04	6.03	2.19	2.62

Graph

(c) $n=$ gradient $=-\frac{6.05-5.30}{6.50-5.00}$

$$
=-\frac{0.75}{1.50}=-0.50
$$

Negative sign indicates that f increases as V decreases, as was observed in part (a) (i).
112. Explanation

Electrons are transferred from / move from/ rubbed off the rod to the duster (1) Same amount of charge on each/duster becomes negative (1)

Polystyrene

Polystyrene is an insulator / non conductor [NOT bad or poor conductor] (1) Prevents loss of charge/rod discharging/prevents conduction or charge low from metal plate (1)

Reading on balance

Quality of written communication (1) 1
Any three from:

- \quad Reading increases (1)
- There is a (mutual) force of repulsion/like charges repel/rods (they) repel (1)
- Because by Coulomb's law/inverse square law/ $\frac{k Q_{1} Q_{2}}{r^{2}} / \frac{1}{r^{2}}$ as r decreases force must increase (1)
- Reading increases at a greater rate/more rapidly [but accept if say "much more"] as distance reduces/when closer (1)

Max 3
113. Meaning of uniform magnetic field

Magnetic flux density constant / magnetic field lines parallel / (1) magnetic field strength is constant/ does not vary
Sizes and directions of forces on LM and NO
Force on LM: $2.4 \times 10^{-4} \mathrm{~N} / 0.24 \mathrm{mN}(\mathbf{1})$
Direction:
Downwards/into (paper) (1)
Force on NO:)
$2.4 \times 10^{-4} \mathrm{~N} / 0.24 \mathrm{mN}$ [No unit penalty]) Must have both (1) 3
Direction:)
Upwards / out of (paper))
Why no forces on MN and OL
Wires/current and B field directions are parallel [allow 'same direction'] / field due to current and B field of magnet are perpendicular to each other (1)
The effect on the square
A (turning) moment will be applied / it will (begin) to turn / spin / rotate (1)

Moving the pole pieces further apart

Reduces the size of the forces, (1)
Because the flux density is reduced/ magnetic field (strength)
reduced / B (field) reduced (1) 2
114. Charge on capacitor
$220 \mu \mathrm{~F} \times 5 \mathrm{~V}$ [use of CV ignore powers of 10] (1)
$=1100 \mu \mathrm{C}$ (1)
Energy on capacitor
$\frac{220}{2} \mu \mathrm{~F} \times(5 \mathrm{~V})^{2} / \frac{1100}{2} \mu \mathrm{C} \times 5 \mathrm{~V} / \frac{1100^{2} \mu \mathrm{C}^{2}}{2 \times 220 \mu \mathrm{~F}} \quad$ [ignore powers of 10] (1)
$=2750 \mu \mathrm{~J}\left(2.8 \times 10^{-3} \mathrm{~J}\right)(\mathbf{1})$

Experiment

Method 1 (constant current method):

- Circuit (1)
- For a given V record time to charge capacitor at a constant rate (1)
- for a range of values of $V(\mathbf{1})$
- Use $Q=I t$ to calculate $Q(\mathbf{1})$
- Plot $Q \rightarrow V$ - straight line graph through origin / sketch graph / dive Q / V and obtain constant value (1)
Method 2:
- \quad Circuit (1)
- For a given value V measure I and $\mathrm{t}(\mathbf{1})$
- \quad Plot $I \rightarrow t$ find area under graph Q (1)
- \quad Repeat for a range of values of $V(\mathbf{1})$
- Plot $Q \rightarrow V$ for straight line graph through origin/ sketch graph / dive Q / V and obtain constant value (1)
Method 3 (joulemeter method):
- \quad Circuit (1)
- \quad Record V and energy stored (1)
- For range of V (1)
- Determine Q from $1 / 2 \mathrm{QV}$ or $\frac{Q^{2}}{2 C}$
- Plot $Q \rightarrow V$ - straight line graph through origin / sketch graph / divide Q / V and obtain constant value (1)
[Coulombmeter (will not work with this value of capacitor) circuit (1); record charge Q on colombmeter (1); for a range of values of V (1); Plot $Q \rightarrow V$ for straight line through origin (1) - Max 3]

115. Lenz's law

The direction of an induced current/emf/voltage is such as (1) to oppose the change (in flux) that produces it (1)
Polarity at top of coil
North (1)
Direction of current

Only ONE arrow required (1)

Graph

Magnet is moving faster / accelerating (under gravity) (1)
(Rate of) change/ cutting of flux is greater (1)
Induced emf is greater (1)
116. Gravitational attraction of Earth on Moon

Use $\frac{G m_{1} m_{S}}{r^{2}}$, ie $\frac{G M m}{(60 R)^{2}}$ (1)
1
Orbital speed of the Moon
$\frac{m v^{2}}{r}=\frac{G M m}{r^{2}}$
Use of $r=60 R$, ie $60 \times 6.4 \times 10^{6}$ (1)
Rearrangement ie $v=\sqrt{\frac{6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2} \times 6 \times 10^{24} \mathrm{~kg}}{60 \times 6.4 \times 10^{6} \mathrm{~m}}}$ (1)
$=1020 \mathrm{~m} \mathrm{~s}^{-1}$ (1)
Orbit period
Time $=\frac{2 \pi r}{v} / \omega=\frac{2 \pi}{T}$
Calculation: $\frac{2 \times \pi \times 60 \times 6.4 \times 10^{6}}{1020 \mathrm{~m} \mathrm{~s}^{-1}}$
Divide by 3600×24 (1)
Using $1020 \mathrm{~m} / \mathrm{s}$: (27-27.4) days
Using $1000 \mathrm{~m} / \mathrm{s}:(27.8-28)$ days (1)
117. (a)
(i) p.d.

Circuit set up correctly without help (1) (1)
[Ignore meter polarity]
[Polarity of capacitors/cell reversed -1
Capacitors interchanged -2
Any one lead incorrect - 2]
(ii) Correct calculation of Q with unit and more than 2 sf (1)
\bar{V} found from more than 3 readings with unit (1) (1)
[from $2 \rightarrow(1)$]
[Missing or wrong unit -1 . Precision should be to 1 mV or better]
(iii) Correct calculation + unit [ecf] (1)
$2 / 3 \mathrm{sf}$ and in range $300-600 \mu \mathrm{~F}$ (1)
$C>10 \mu \mathrm{~F}$, so most of charge transfers to X (1)
[Allow $C>10 \mu \mathrm{~F}$ so stores more charge]
[Allow ecf $C<10 \mu \mathrm{~F} \therefore$ not valid]
(b) (i) Measurements of d in several different places (1)

Correct average of $\geq 3 d$ (1)
[Allow average values rounded to whole millimetre]
(ii) Width
$\Sigma t \geq 5$ seconds (1)
Repeated such that $\Sigma t \geq 10$ seconds (1)
v correctly calculated, with unit and between
$0.18-0.30 \mathrm{~m} \mathrm{~s}^{-1}$ (1)
[Less than or equal to 3 sf]
(iii) Correct calculation of k with unit and value between 7 and $13 \mathrm{~m} \mathrm{~s}^{-2}$ (when rounded) (1)
$\Delta d=0.5 \mathrm{~mm}$ or 1.0 mm or range or half range and correct percentage calculation (1)
[Allow ecf wrong d]
Quantitative (\%) comparison of k with g, hence conclusion (1)
[Allow ecf] [Either g as denominator or range of k compared to g]

Sample results

(a) (i) $V \mathrm{O}=1.60 \mathrm{~V}$
(ii) $Q=C V=10 \mu \mathrm{~F} \times 1.60 \mathrm{~V}$
$=16.0 \mu \mathrm{C}$
$V=0.034 \mathrm{~V}, 0.034 \mathrm{~V}, 0.035 \mathrm{~V}$
$\bar{V}=0.034(3) \mathrm{V}$
(iii) $\mathrm{C}=\frac{Q}{V}=\frac{16.0 \mu \mathrm{C}}{0.034(3) \mathrm{V}}=470 \mu \mathrm{~F}$

As X is 47 times larger than the $10 \mu \mathrm{~F}$ capacitor it will take $47 \div 48$ of the charge, ie 98%
(b) (i) Measure d in several different places
$d / \mathrm{mm}: 5.0,6.0,6.0,5.0$
$\bar{d}=5.5 \mathrm{~mm}$
(ii) Width $=0.285 \mathrm{~m}$
$4 t=4.81 \mathrm{~s}, 4.81 \mathrm{~s}$
$3 t=3.78 \mathrm{~s}, 3.68 \mathrm{~s}$
$\bar{t}=17.08 / 14=1.22 \mathrm{~s}$
$v=\frac{0.285 \mathrm{~m}}{1.22 \mathrm{~s}}$
$=0.234 \mathrm{~m} \mathrm{~s}^{-1}$
(iii) $k=\frac{v^{2}}{d}=\frac{(0.234)^{2}}{5.5 \times 10^{-3}}=9.9 \mathrm{~ms}^{-2}$
$\%$ uncertainty in $d=\frac{0.5 \mathrm{~mm}}{5.5 \mathrm{~mm}} \times 100=9.1 \%$
k differs from g by $\frac{9.9-9.8}{9.8} \times 100=1.0 \%$
So k could be equal to g
118. (a) Correct use of vertical rule (1)

Difference method indicated on diagram)
Correct use of set square for h; or vertical rule close to (1)(1) horizontal rule and eye level)
Set square used to ensure rule is vertical)
h_{1} and h_{2} recorded with unit (1)
Sensible scale [can include origin], correct plots and good line (1)
m read off correctly with unit and $\pm 8 \mathrm{~g}$ of Supervisor's value
[-1 per error]
(b) (i) $\Sigma n T \geq 30$ for T_{1} and T_{2} (1)

Repeats for T_{1} and T_{2} (1)
Correct $T_{1}{ }^{2}$ and $T_{2}{ }^{2}$, correctly plotted and good line (1)
[Ignore units and sf in section (b)(i)]
[Allow graph to start at origin]
$\begin{array}{lll}\text { (ii) } & T_{\mathrm{b}}{ }^{2} \text { read off correctly (1) } & \text {) [Allow ecf] } \\ & T_{\mathrm{b}} \text { calculated, with unit (1) } \quad \text {) }\end{array}$
± 0.05 s of Supervisor's value (1)
(c) $\Delta y \pm 1$ or 2 mm and correct percentage (1)
[OR range/ $1 / 2$ range if greater for Δy OR ΔT]
$\Delta n T \pm 0.05-0.2 \mathrm{~s}$ and correct percentage for T (1)
Doubled for T^{2} [Allow ecf] (1) 3

Sample results

(a) Diagram:

Table:

	h_{1} / mm	h_{2} / mm	y / mm
100 g	135	178	43
200 g	135	219	84
Block	135	200	65

$$
m=154 \mathrm{~g}
$$

Graph:

(b) (i) $20 T_{1} / \mathrm{s}: 8.81,8.87$
$\bar{T}=0.442 \mathrm{~s}$
$20 T_{2} / \mathrm{s}$: $11.65,11.61$
$\overline{T_{2}}=0.582 \mathrm{~s}$
$T_{1}^{2}=0.195 \mathrm{~s}^{2}$
$T_{2}{ }^{2}=0.338 \mathrm{~s}^{2}$

Graph:

(ii) $T_{\mathrm{b}}{ }^{2}=0.270\left(\mathrm{~s}^{2}\right)$ $T_{\mathrm{b}}=0.520 \mathrm{~s}$
(c) $\%$ uncertainty in $y_{\mathrm{b}}=\frac{ \pm 2 \mathrm{~mm}}{65 \mathrm{~mm}} \times 100=3.1 \%$
$\%$ uncertainty in $T_{2}{ }^{2}=2 \times \frac{ \pm 0.1 \mathrm{~s}}{11.63 \mathrm{~s}} \times 100=1.7 \%$
119. (a) (i) Straight wire, power supply, resistor and ammeter in series (1) Flat face of probe in same plane as wire/statement that probe is perpendicular to field line (1)
Distance r shown correctly to centre of sensor (1)
Probe alongside wire and approximately at mid-point (1)
Meter connected to probe in some way (1)
Half-metre rule perpendicular to wire (1)
Max 4
(ii) Resistor limits current (prevents short circuit) (1)
[Not reduces current]
and so prevents damage/overheating (1)
(iii) Between 5 A and 20 A (1) 1
(iv) Several parallel wires (or long length of wire wound into a large rectangular coil, with the probe near vertical side of coil) (1)
[NOT coils or solenoids unless clear that only one limb is used and the other limbs are far enough away not to have an effect.]
(b) Correct $1 / r$ values to $2 / 3 \mathrm{sf}$ and unit [here or on graph] (1)
[Only penalise wrong or no unit for $1 / r$ once]
Graph:
Scale: at least half paper in each direction, avoiding awkward scales, e.g. 3s (1)
Axes: labelled with units (1)
Plots: accurate to $1 / 2$ square (1)
Line: thin, straight, best fit (1)
(c) Large $\Delta\left(\Delta x \Delta y \geq 100 \mathrm{~cm}^{2}\right)$ (1)

Correct calculation of gradient to $\geq 2 \mathrm{sf}$ [ignore unit] (1)
Correct calculation of I to $2 / 3 \mathrm{sf}+$ unit (1)

Sample results

(a) (i)

(ii) Resistor limits current (prevents short circuit) and so prevents damage/overheating
(iii) Between 5 A and 20 A
(iv) Several parallel wires [or long length of wire wound into a large rectangular coil, with the probe near vertical side of coil]
(b) $\operatorname{Plot} B$ against $1 / r$

$B / \mu \mathrm{T}$	r / m	$\frac{1}{r} / \mathrm{m}^{-1}$
93	0.020	50.0
74	0.025	40.0
54	0.035	28.6
38	0.050	20.0
19	0.100	10.0

(c) \quad Gradient $=\frac{92.5-1.0}{50.0-0.0}=1.83 \mu \mathrm{~T} \mathrm{~m}$

Gradient $=\frac{\mu_{0} I}{2 \pi} \rightarrow I=\frac{2 \pi \times \text { gradient }}{\mu_{0}}$
$I=\frac{2 \pi \times 1.83 \times 10^{-6}}{4 \pi \times 10^{-7}}=9.2 \mathrm{~A}$

Graph:

120. (a) (i) $800 \pm 20 \mathrm{~mm}$, recorded to mm or better, with unit (1)
[670 $\pm 20 \mathrm{~mm}$ if 60 Hz]
(ii) Value $0.19 \pm 0.02 \mathrm{~mm}$. Recorded to 0.01 mm or better (1)
[OR Supervisor's value $\pm 0.02 \mathrm{~mm}$]
From more than 3 readings in different places (1)
Different directions (1)
(iii) Value 150-180 g with unit (1)
[$\pm 20 \mathrm{~g}$ of Supervisor's value]
(iv) Correct substitution in SI units [Allow m in grams if final unit is given as $\left.\mathrm{m}^{3} \mathrm{~g}^{-1}\right]$ (1)
Correct calculation with unit and 2 sf [unless d is 3 sf] (1)
Value between $(3.4-3.8) \times 10^{-5} \mathrm{~m}^{3} \mathrm{~kg}^{-1}$ (1)
(b) (i) Sensible value to 0.01 V or better with unit (1)

Correct calculation with unit and more than 2 sf (1)
(ii) Circuit set up correctly without help (1) (1)
[(-1) polarity on capacitor or cell; (-2) if help with flying lead]
(iii) $\quad V$ sensible, to mV or better, with unit (1)

Correct calculation with unit and more than $2 \mathrm{sf}[\mathrm{ecf}$ from $V]$ (1)
(iv) Correct percentage transfer (1)

Less than expected [allow 100\%] because of leakage [no data needed] (1)

Sample results
(a) (i) $l=807 \mathrm{~mm}$
(ii) $\mathrm{d} / \mathrm{mm}: 0.19,0.19 .0 .19,0.19$
$\bar{d}=0.19 \mathrm{~mm}$
Repeated at different positions along the wire and in perpendicular (different) directions
(iii) $m=170 \mathrm{~g}$
(iv) $k=\frac{50^{2} \times\left(0.19 \times 10^{-3}\right)^{2} \times(0.807)^{2}}{0.170 \times 9.81}$
$=3.5 \times 10^{-5} \mathrm{~m}^{3} \mathrm{~kg}^{-1}$
(b) (i) $E=1.52 \mathrm{~V}$
$Q=C V=1 \mu \mathrm{~F} \times 1.52 \mathrm{~V}$
$=1.52 \mu \mathrm{C}$
(ii) Circuit set up correctly
(iii) $V=25.9 \mathrm{mV}$
$Q=C V=47 \mu \mathrm{~F} \times 25.9 \times 10^{-3} \mathrm{~V}$
$=1.22 \mu \mathrm{C}$
(iv) Percentage transferred $=\frac{1.22}{1.52} \times 100 \%$
$=80 \%$
[Would expect 47/48 = 98\%]
121. (a) Correct use of vertical rule (1)

Difference method indicated (1)
Correct use of set-square for h; or rule close and at eye level (1)
Set-square used to ensure rule is vertical (1)
h_{1} and h_{2} recorded (1)
Sensible scale, good plots and line (1)
m read off correctly with unit (1)
$\pm 8 \mathrm{~g}$ of Supervisor's value (1)
(b) (i) $\Sigma n T \geq 30$ for T_{1}, T_{2} and $T_{\mathrm{b}}(\mathbf{1})$

Repeats for T_{1}, T_{2} and T_{b} (1)
Correct T_{1} and $T_{2}{ }^{2}$, correctly plotted with good line (1)
[Penalise ($10 T)^{2}, f^{2}$ etc in the above]
$T_{\mathrm{b}}{ }^{2}$ correct, plotted correctly and m read off correctly, with unit (1)
(ii) $\pm 8 \mathrm{~g}$ of Supervisor (1)
(c) $\Delta x_{\mathrm{b}} \pm 1$ or 2 mm and correct percentage (1)
[or range/ $1 / 2$ range if greater]
$\Delta n T_{\mathrm{b}} \pm 0.05-0.1 \mathrm{~s}$ and correct percentage for T_{b} (1)
[OR range / $1 / 2$ range if greater]
Doubled for $T_{\mathrm{b}}{ }^{2}$ (1)
[Allow ecf]
Percentage difference correctly calculated using mean as denominator, hence sensible comment comparing with above percentage (1)

Sample results

(a) Diagram:

	h_{1} / mm	h_{2} / mm	x / mm
110 g	340	391	51
210 g	340	443	103
Block	340	413	73

Graph

$m=152 \mathrm{~g}$
(b) (i) $20 T_{1} / \mathrm{s}: 9.18,9.21$
$\overline{T_{1}}=0.460 \mathrm{~s}$
$20 T_{2} / \mathrm{s}: 12.98,12.96$
$\overline{T_{2}}=0.649 \mathrm{~s}$
$20 T_{\mathrm{b}} / \mathrm{s}: 11.01,11.05$
$\overline{T_{b}}=0.551 \mathrm{~s}$
$T_{1}{ }^{2}=0.211 \mathrm{~s}^{2}$
$T_{2}{ }^{2}=0.421 \mathrm{~s}^{2}$
$T_{\mathrm{b}}{ }^{2}=0.304 \mathrm{~s}^{2}$

(ii) $m=154 \mathrm{~g}$
(c) Percentage uncertainty in $x_{\mathrm{b}}=\frac{ \pm 2 \mathrm{~mm}}{73 \mathrm{~mm}} \times 100 \%$

$$
=2.7 \%
$$

Percentage uncertainty in $T_{\mathrm{b}}^{2}=2 \times \frac{0.1 s}{11.03 s} \times 100 \%$

$$
\begin{aligned}
& =1.8 \% \\
& =\frac{(154-152) g}{153 g} \\
& =1.3 \%
\end{aligned}
$$

Difference in two values for mass of block easily accounted for in terms of uncertainties in x_{b} and $T_{\mathrm{b}}{ }^{2}$
122. (a) (i) Solenoid, power supply and ammeter in series (1) Hall probe sensor shown at centre of solenoid (1) Flat face of probe perpendicular to axis of solenoid (1) [Details of Hall probe circuit are not required]
Length of solenoid (1)
Number of turns (1)
(ii) Sensor shown near mid-axis of magnet (1)

Correct orientation of flat face of sensor [ecf] (1) d shown correctly from axis of magnet to centre of sensor (1)
(b) Correct expansion [Need not be related to $y=m x+c]$ (1)

Correct \ln values to 2 or 3 decimal places (1)
Units [here OR on graph] (1)
Graph:
Scale - at least $1 / 2$ paper in each direction, avoiding awkward scales, e.g. 3s, AND axes - labelled [ignore units here] (1)

Plots - accurate to $1 / 2$ square (1)
Line - thin, straight, best fit (1)
(c) Large $\Delta\left(\Delta x \Delta y \geq 80 \mathrm{~cm}^{2}\right)$ [Allow if a tangent drawn to a curve] (1)

Correct calculation giving n in range -2.05 to -2.11 (1)

Sample results

(a) (i)

[^0]
(b) $\quad \ln B=n \ln d+\ln k$
$y=m x+c$

B / mT	d / mm	$\ln (b / \mathrm{mT})$		$\ln (d / \mathrm{mm})$	
5.26	20	1.66	0.721	3.00	1.30
3.31	25	1.20	0.520	3.22	1.40
2.27	30	0.82	0.356	3.40	1.48
1.67	35	0.51	0.223	3.56	1.54
1.24	40	0.22	0.093	3.69	1.60
1.04	44	0.04	0.017	3.78	1.64

Graph:

(c) Gradient $=-\frac{1.67-0.00}{3.80-3.00}$
$n=-2.08$
123. (i) Calculation of equivalent capacitance

Use of $C_{1}+C_{2}$ OR $4 \mu \mathrm{~F}$ (1)
(ii) Charge stored

EITHER

- Hence same voltage across $4 \mu \mathrm{~F}$
and parallel combination $/ 12 \mathrm{~V}$
- Use of $Q=V C(12 \mathrm{~V} \times 4$ $\mu \mathrm{F}$)
- $=48 \mu \mathrm{C}$

OR

- Combined capacitance $\frac{1}{C_{1}}+\frac{1}{C_{2}} \quad / 2 \mu \mathrm{~F}$ (1)
- Use of $Q=V C(24 \mathrm{~V} \times 2$ $\mu \mathrm{F})(\mathbf{1})$
- $=48 \mu \mathrm{C}$ (1)

124. (a) (i) Definition of law

EITHER
Equation given and all symbols defined (1) (1)
[For each symbol incorrectly defined -1 mark; 3 incorrect get zero, not -1]
OR
Force proportional to product of masses (1)
Force inversely proportional to square of distance between the masses (1)
(ii) Derivation

Set $m g=\frac{G M m}{r^{2}}$ hence $g=\frac{G M}{r^{2}}$ (1)
(iii) Graph

Starting point $[R, g](\mathbf{1})$
(R, g) and $\left(2 R, \frac{g}{4}\right)$ plotted (1)
$\left(3 R, \frac{g}{9}\right)$ and $\left(4 R, \frac{g}{16}\right) \sim \operatorname{plotted}(\mathbf{1})$
[Ignore the line joining origin to (R, g)]
(b) (i) Equipotential surface

Surface containing all points at the same (gravitational) potential (energy) (1)
(b) (ii) Drawing of equipotential surfaces

Three concentric circles drawn (1) Increasing separation (1)
(c) Explanation

The weight / g must remain constant OR uniform gravitational (1) field
(For this to be true) changes in height must be small (1)
125. (a) Direction of field lines

Downwards (1)
(b) (i) Calculation of force

Use of V / d i.e. $250 \mathrm{~V} / 0.05 \mathrm{~m}$ [if 5 used mark still awarded] (1)
Use of $\frac{V}{d} e\left[\right.$ Mark is for correct use of $\left.1.6 \times 10^{-19} \mathrm{C}\right](\mathbf{1})$
$=8.0 \times 10^{-16} \mathrm{~N}(\mathbf{1})$
(ii) Direction and explanation
(Vertically) upwards / towards AB (1)
No (component of) force in the horizontal direction OR because (1) (the force) does no work in the horizontal direction
(c) Calculation of p.d.

Use of $\Delta E_{\mathrm{K}}=1 / 2 \mathrm{mv}^{2} / 1 / 29.11 \times 10^{-31}(\mathrm{~kg}) \times\left(1.3 \times 10^{7}\right)^{2}(\mathbf{1})$
Use of V e $/ V \times 1.6 \times 10^{-19}$ (C) (1)
$=480 \mathrm{~V}$ (1)
(d) Beam of electrons

Diagram showing:
Spreading out from one point (1)
fastest electrons labelled (1)

126. (a) Investigation

Name or describe apparatus for measuring B, eg Hall probe/search coil (with pre-calibrated meter) (1)
Probe positioned so the B field is perpendicular to the Hall (1) slice/probe
Appropriate method for measuring r perpendicular to wire described or shown on diagram OR repeat readings for each r (1) OR keep current constant
Vary distance r and measure B (and r) each time OR reference to (1)
graph plotting
(b) (i) Relationship shown by graph
(B) inversely proportional (to r) $/ B$ proportional to $1 / r / B r=(\mathbf{1})$ constant
(ii) Finding I

Gradient measured / corresponding values of B and $1 / r \mathrm{read}$ from graph / $2.95-3.00\left(10^{-7}\right)(\mathrm{T} \mathrm{m})$ [Ignore incorrect powers of 10] (1)

Use of $B=\left(\frac{\mu I}{2 \pi}\right) \frac{1}{r}$ ie $3 \times\left(10^{-7}\right) \mathrm{Tm}=\frac{\mu I}{2 \pi}$
[Ignore incorrect powers of 10]
$=I=1.48-1.50 \mathrm{~A}(\mathbf{1})$
127. Explanation
$\mathrm{AC} /$ changing current in the primary (1)
Produces a changing B field (1)
B field carried through core (to secondary) (1)
Changing B field over secondary induces emf (1)
Rate of change of flux linkage is less through secondary OR emf induced across sec. is less because it has less turns than primary OR explanation in terms of the turns ratio formula (1)

Quality of written communication (1)
128. (a) Sensible use of rule in contact with block or clamp (1) and set square or pin (1)
Readings on both sides of mass or $b+1 / 2$ diameter or uses slot (1)
Sensible l to 1 mm i.e. < 880 mm or centre value (1)
$\pm 0.02 \mathrm{~s}$ of Supervisor's from $\geq 30 T$ (1) (1)
$\binom{ \pm 0.02 \mathrm{~s}$ from $\geq 10 T \mathbf{(1)}}{ \pm 0.03 \mathrm{~s}$ from $\geq 30 T \mathbf{(1)}}$
Repeat readings shown (1)
Fiducial marker (pin) at centre of oscillations [must be at centre] (1)
[Do not allow "eye level"]
(b) $\quad w \pm 0.03 \mathrm{~cm}$ of Supervisor's from ≥ 2 readings (1) (1)
$\binom{ \pm 0.03 \mathrm{~cm}$ from 1 reading (1) }{$\pm 0.05 \mathrm{~cm}$ from ≥ 2 readings (1) }
$t \pm 0.03 \mathrm{~cm}$ of Supervisor's from ≥ 2 readings (1) (1)
$\binom{ \pm 0.03 \mathrm{~cm}$ from 1 reading (1) }{$\pm 0.05 \mathrm{~cm}$ from ≥ 2 readings (1) }
[Readings to 0.1 mm , otherwise max 2/4]
(c) Consistent (for l, w, t) substitution [allow ecf] (1) Correct calculation [dependent mark] (1) Unit consistent with substitution (1) Value in range $(0.5 \rightarrow 2.5) \times 10^{10} \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-2}$ and $2 / 3$ (1) significant figures [No ue]

Sample results

Second metre rule and set square used as shown
$a=90.0 \mathrm{~cm}$
$b=5.5 \mathrm{~cm}$
$c=0.2 \mathrm{~cm}$
$l=90.0-\left(\frac{5.5+0.2}{2}\right) \mathrm{cm}$
$=87.2 \mathrm{~cm}$
$20 \mathrm{~T} / \mathrm{s}=13.13,13.00,13.16$
average $T=0.655 \mathrm{~s}$
Repeat readings
Fiducial marker (pin) at centre of oscillations
(b) $\quad w / \mathrm{cm}=2.78,2.82,2.86$
average $w=2.82 \mathrm{~cm}$
$t / \mathrm{cm}=0.64,0.67,0.66$
average $t=0.66 \mathrm{~cm}$
(c) $E=\frac{16 \pi^{2} M l^{3}}{T^{2} w t^{3}}$

$$
\begin{aligned}
& =\frac{16 \pi^{2} \times 0.600 \times(0.872)^{3}}{(0.655)^{2} \times 2.82 \times 10^{-2} \times\left(0.66 \times 10^{-2}\right)^{3}} \\
& =1.8 \times 10^{10} \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-2}[\mathrm{~Pa}]
\end{aligned}
$$

129. (a) Table with units (allow x to whole cm), precision of V to (1)
0.1 V ,

One value $<2 \mathrm{~cm}$ (1)
Linear region in middle (1)
Steep fall detected by 14 cm or one value > 14 cm (1)
9 good points, [if x from wrong end -2 then ecf]
$\binom{7$ good points (1)(1) }{5 good points (1) }
(1) (1) (1)
"Good" $= \pm 0.1 \mathrm{~V}$ from best fit curve
(b) Plots accurate to $1 / 2$ square (1)

Good smooth curve (1)
(c) Sensible range [no extrapolation] from limits of linear (1)
region, with unit [based on examiner's line]
Base of triangle $\geq 10 \mathrm{~cm}$ (1)
Correct calculation [allow ecf wrong x] (1)
$2 / 3$ significant figures + unit [allow N^{-1} if x in metres] (1)
(d) Correct pattern with no lines crossing. Must be some (1) curved lines beyond each charge and ≥ 5 "parallel" lines, allow lines not reaching charges

Arrows in correct direction and on virtually all lines (1)
Regions where lines are approximately parallel marked and equi-spaced [can get this mark if draw equipotentials] (1)

Sample results

(a) $\quad V=2.74 \mathrm{~V}$

x / cm	V / V	x / cm	V / V
0.0	5.88	8.0	2.74
1.0	4.64	9.0	2.43
2.0	4.07	10.0	2.26
3.0	3.75	11.0	2.06
4.0	3.56	12.0	1.68
5.0	3.34	13.0	1.34
6.0	3.13	14.0	0.93
7.0	2.88	15.0	0.00

(b) Graph

(c) Range of $x 3.0-11.5 \mathrm{~cm}$

$$
\begin{aligned}
E= & -\left(\frac{4.43-0.90}{0.16-0.00}\right) \\
& =-22 \mathrm{~V} \mathrm{~m}^{-1}\left(-0.22 \mathrm{~V} \mathrm{~cm}^{-1}\right)
\end{aligned}
$$

(d)

130. (a) (i) $T=2 \mathrm{~ms}$ (1)
$f=500 \mathrm{~Hz}+$ unit (1)
[ecf on T]
(ii) (6.5 $\rightarrow 7.0) \mathrm{V}+$ unit [allow 1 significant figure] (1)
(b) Correct series circuit (1)

CRO across coil or resistor (1)
[CRO in series 0 / 2]
Vary frequency $f(\mathbf{1})$
Find f from CRO or scale of signal generator (1)
Measure V across coil [stated or seen] with CRO between
A and B (1)
Determine current by finding V across 10Ω resistor with) Max 5
CRO between BC and using $I=V / 10 \Omega$ (1))
Calculate Z from $V_{\mathrm{c}} / I_{\mathrm{c}}$ [accept $\left.V_{\mathrm{c}} / I\right]$ (1))
Plot Z^{2} against f^{2} (1))
(c) (i) f^{2} and Z^{2} values correct to 2 to 4 significant figures (ignore units) (1)

Graph
Scale: at least $1 / 2$ grid in both directions, avoiding awkward scales, e.g. 3's etc (1)
Axes: labelled with correct units (1)
Plots \& line: Plots accurate to $1 / 2$ square and thin, straight line (1)
[Allow ecf for incorrect graphs]
(ii) Intercept read off correctly [ecf incorrect graph] (1) $R=5.5 \rightarrow 5.8 \Omega$ to 2 significant figures + unit [from correct graph] (1) 2

Sample results
(a)
(i) $1 \lambda=4 \mathrm{div}=4 \times 0.5=2.0 \mathrm{~ms}$

$$
\begin{aligned}
f & =\frac{1}{2 \times 10^{-3}} \\
& =500 \mathrm{~Hz}
\end{aligned}
$$

(ii) Peak $=1.4 \mathrm{div} \times 5 \mathrm{~V} / \mathrm{div}$ $V_{0}=7.0 \mathrm{~V}$
(b)

Vary frequency f
Find f from CRO or scale of signal generator
Measure V across coil with CRO between A and B
Determine current by finding V across 10Ω resistor with
CRO between BC and using $I=V / 10 \Omega$
Calculate Z
Plot Z^{2} against f^{2}
(c) (i)

$f^{2} / 10^{4} \mathrm{~Hz}^{2}$	Z^{2} / Ω^{2}
4.00	56.3
9.00	88.4
12.25	110.3
16.00	132.3
20.25	161.3
25.00	190.4

Graph

(ii) Intercept on $Z^{2}=32 \Omega^{2}$
$R=\sqrt{ } 32=5.7 \Omega$
131. (a) l correctly found to mm or better from average of l_{1} and l_{2} [shown] (1)

Checked that separation of threads at top was also 40.0 cm (1)
$\pm 0.03 \mathrm{~s}$ of Supervisor's value from $\geq 30 T$ (1) (1)
$\binom{ \pm 0.03 \mathrm{~s}$ from $\geq 10 T(\mathbf{1})}{ \pm 0.05$ sfrom $\geq 30 T \mathbf{(1)}}$
[$0 / 2$ if T to nearest second]
[$0 / 2$ if T not shown i.e. 20T]
Repeat readings [shown] (1)
Use of fiducial mark (pin) at centre of oscillations [must be at centre] (1)
(b) Correct diagram of arrangement (1)

Distances shown clearly to centres of mass (1)
All positions recorded to mm or better from diagram or below (1)
Long lengths used (both $>8 \mathrm{~cm}$) or repeats shown (1)
Any good technique for centre of 50 g mass (1)
Correct calculation $2 / 3$ significant figures + unit (1)
[Max 5]
Value $\pm 2 \mathrm{~g}$ of Supervisor's value (1) (1)
$[\pm 4 \mathrm{~g} \rightarrow$ (1) $]$
(c) Correct S.I. substitution (1)

Correct calculation (1)
Unit (1) 3

Sample results

(a) $l_{1}=49.0 \mathrm{~cm}, l_{2}=49.0 \mathrm{~cm} \Rightarrow l=49.0 \mathrm{~cm}$

Checked that separation of threads at top was also 40.0 cm
20T/s: 20.03, 20.13, 19.96
average $T=1.00 \mathrm{~s}$
Repeat readings
Use of a fiducial mark (pin) at centre of oscillations
(b) Scale readings at centre of mass $=24.9 \mathrm{~cm}$

$x=\left[\frac{50.0+46.5}{2}\right]-35.1 \mathrm{~cm}$

$$
=13.15 \mathrm{~cm}
$$

$y=35.1-24.9=10.2 \mathrm{~cm}$
$m g y=0.050 g x$
$m=\frac{0.050 \times 13.15}{10.2}$
$=0.0645 \mathrm{~kg}(64.5 \mathrm{~g})$
(c) $I=\frac{0.0645 \times 9.81 \times(0.400)^{2} \times(1.00)^{2}}{16 \pi^{2} \times 0.490}$

$$
=1.31 \times 10^{-3} \mathrm{~kg} \mathrm{~m}^{2}
$$

132. (a) Table with units (1)

One value $<1.0 \mathrm{~cm}$ (1)
Gently sloping curve (1)
One value $>7.0 \mathrm{~cm}$ (1)
9 good values (1) (1) (1)
$\binom{7$ good values $\rightarrow \mathbf{(1) (1)}}{5$ good values $\rightarrow \mathbf{(1)}}$
"Good" $= \pm 0.1 \mathrm{~V}$ from best fit curve
(b) Plots (accurate to $1 / 2$ square) (1)

Good, smooth curve (1)
(c) Good tangents at correct points (1)

Base of triangle's at least 6 cm (1)
Correct calculations (1)
$2 / 3$ significant figures + unit (1)
(d) $E=k / d$

Correct ratio expected (2.00 or 0.50) Or correct k values calculated (1)
Percentage difference correctly calculated with 2.00 (or 0.50) as denominator Or percentage difference for k with (1) mean as denominator
Sensible comment based on any one source of error Or (1) reference to 10% experimental error

Sample results

(a) $V=1.52 \mathrm{~V}$

r / cm	V / V	r / cm	V / V
0.0	4.65	6.0	1.37
1.0	2.20	7.0	1.27
2.0	1.88	8.0	0.00
3.0	1.68	Supplementary	
4.0	1.52	0.5	2.7
5.0	1.44	7.5	1.1

(b) Graph

(c) $\quad E_{2}=-\frac{2.30-0.50}{0.08}$

$$
=\underline{-22.5 \mathrm{~V} \mathrm{~m}^{-1}}\left(-0.225 \mathrm{~V} \mathrm{~cm}^{-1}\right)
$$

$$
\begin{aligned}
E_{4} & =-\frac{2.00-1.16}{0.08} \\
& =-10.5 \mathrm{Vm}^{-1}\left(-0.105 \mathrm{~V} \mathrm{~cm}^{-1}\right)
\end{aligned}
$$

(d) If $E \propto 1 / d$
would expect $\underline{E}_{\underline{2}}=2.00$
E_{4}
Experimentally $\underline{E}_{2}=-22.5=2.14$

$$
E_{4}-10.5
$$

Percentage difference $=\frac{2.14-2.00}{2.00} \times 100$

$$
=\underline{7 \%}
$$

This is probably in the order of experimental error from size of electrode, r, measurements and difficulty in drawing tangents, so suggestion is supported.
133. (a)
(i) $\begin{aligned} & T=4 \mathrm{~ms} \mathrm{(1)} \\ & f=250 \mathrm{~Hz}+\text { unit }[\operatorname{ecf} \text { on } T] \text { (1) }\end{aligned}$
(ii) $\quad(2.6 \rightarrow 2.8) \mathrm{V}+$ unit (1)
(b) Correct series circuit (1)

CRO across capacitor or resistor (1)
[CRO in series $0 / 2$]
Vary frequency $f(\mathbf{1})$)
Find f from scale of signal generator or CRO (1))
Measure V across capacitor with CRO connected between)
A and B (1)
Determine current by finding V across 100Ω resistor with) Max 5
CRO between B and C using $I=\frac{V}{100 \Omega}$ (1))
Calculate X from $\left.V_{\mathrm{c}} / I_{\mathrm{c}} \mathbf{(1)}\right)$
Plot X against $1 / f(\mathbf{1)})$
[or $1 / X$ against $f ; \ln X$ against $\ln f$]
(c) (i) $1 / f$ values (or $1 / X$; ln) correct to 2 to 4 significant figures (ignore units) (1)
Graph
Scale: at least $1 / 2$ grid in both directions, avoiding awkward (1) scales, eg 3's etc.
Axes: labelled with correct units (1)
Plots \& line: plots accurate to $1 / 2$ square and thin, straight line (1)
(ii) Comment on origin and straight line (1)

Suitable deduction (1)
Or
For log log graph straight line of slope $=-1$ (1)
Slope value found (1)

Sample results

(a) (i) $1 \lambda=4 \mathrm{div}=4 \times 1 \mathrm{~ms}=4 \mathrm{~ms}$

$$
\begin{aligned}
f= & \frac{1}{4 \times 10^{-3}} \\
& =\underline{250 \mathrm{~Hz}}
\end{aligned}
$$

(ii) $V_{0}=1.4 \mathrm{div} \times 2 \mathrm{~V} / \mathrm{div}=\underline{2.8 \mathrm{~V}}$
(b)

Vary frequency f
Find f from scale of signal generator or CRO
Measure V across capacitor with CRO connected between A and B

Determine current by finding V across 100Ω resistor with
CRO between B and C and using $I=\frac{V}{100 \Omega}$
Calculate X
Plot X against $1 / f$
[or $1 / X$ against $f ; \ln X$ against $\ln f$]
(c) (i)

$1 / X / \mathrm{k} \Omega^{-1}$	$1 / f / \mathrm{ms}$
23.9	12.5
29.1	10.0
36.9	8.0
49.8	5.9
87.7	3.3
147.1	2.0

(ii) The graph is a straight line with a very small intercept
which could easily be a small systematic error, suggesting the relationship is confirmed.

134. (a) Formula in words
(The force between two charged particles is directly) proportional to the product of their charges [plural] and (1)
inversely proportional to the square of their separation [not just 'radius']. (1)
OR Either equation for F^{*}, with valid word replacements for $\mathrm{Q}_{1}, \mathrm{Q}_{2}(\mathbf{1})$ and r or r^{2} symbols. One mark for numerator, one for denominator. (1)

$$
\left[\text { *i.e. words in } \mathrm{F}=\frac{k Q_{1} Q_{2}}{r^{2}} \text { or in } \frac{Q_{1} Q_{2}}{4 \pi \varepsilon_{0} r^{2}}\right]
$$

[If equation given in symbol form, followed by a key to the symbol meanings, then $1 / 2$.]
(b) Base units of constant
[Either k or $(4 \pi) \varepsilon_{0}$, be sure which]
[ecf from part a if power of Q or r wrong]
$F=\frac{k Q_{1} Q_{2}}{r^{2}} \quad$ or $F=\frac{Q_{1} Q_{2}}{4 \pi \varepsilon_{0} r^{2}} \quad\left[\right.$ OR using k units $\mathrm{N} \mathrm{m}^{2} \mathrm{C}^{-2}$]
$Q_{1} Q_{2} \quad\left(o r \mathrm{C}^{2}\right) \quad \rightarrow \quad \mathrm{A}^{2} \mathrm{~s}^{2}(\mathbf{1})$
$F \quad(o r \mathrm{~N}) \quad \rightarrow \quad \mathrm{kg} \mathrm{m} \mathrm{s}^{-2}(\mathbf{1})$
\rightarrow (units of) $k=\mathrm{kg} \mathrm{m}^{3} \mathrm{~A}^{-2} \mathrm{~s}^{-4}$ OR (units of) $\varepsilon_{0}=\mathrm{kg}^{-1} \mathrm{~m}^{-3} \mathrm{~A}^{2} \mathrm{~s}^{4}$ (1)
OR using ε_{0} units $\mathrm{F} \mathrm{m}^{-1}$:

$$
\begin{aligned}
& \mathrm{C}=\mathrm{As} \text { and either } \mathrm{F}=\mathrm{CV}^{-1} \quad \text { or } \mathrm{V}=\mathrm{JC}^{-1}(\mathbf{1}) \\
& \mathrm{J}=\mathrm{kg} \mathrm{~m}^{2} \mathrm{~s}^{-2} \quad \text { or } \quad \mathrm{N}=\mathrm{kg} \mathrm{~m} \mathrm{~s}^{-2}(\mathbf{1}) \\
& \rightarrow \text { (units of) } \varepsilon_{0}=\mathrm{kg}^{-1} \mathrm{~m}^{-3} \mathrm{~A}^{2} \mathrm{~s}^{4}(\mathbf{1})
\end{aligned}
$$

135. (a) (i) Direction of current

Into (paper) [not just 'down'] (1)
(ii) Feature
(Field lines are) circular / circles / rings / constant radius idea / no distortion (1)
[Accept circles are uniform - the no distortion idea - but not uniform field or 'uniform spacing']

(b) Explanation of observation

At the point concerned [stated or implied], the two fields are:
Equal (in magnitude / size / strength) [not simply 'same'] (1)
Opposite (in direction) [not simply 'opposing'.
Accept field directions cancel out] (1)
[For just saying it is a neutral point, 1 mark only of these 2.]
Current in second wire is in the same direction as that in L (1)
OR the point (in question) is mid-way between / equidistant
from the two wires OR the field around the second wire is clockwise
136. (a) Electron speed

Substitution of electronic charge and 5000 V in $\mathrm{eV}(\mathbf{1})$
Substitution of electron mass in $1 / 2 m v^{2}$ (1)
Correct answer [4.2 (4.19) $\times 10^{7}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$, no ue] to at least $2 \mathrm{sf}(\mathbf{1})$
[Bald answer scores zero, reverse working can score $2 / 3$ only]
Example of answer:
$v^{2}=\left(2 \times 1.6 \times 10^{-19} \mathrm{C} \times 5000 \mathrm{~V}\right) /\left(9.11 \times 10^{-31} \mathrm{~kg}\right)=1.76 \times 10^{15}$
$v=4.19 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1}$
(b) (i) Value of E

Correct answer $\left[2.80 \times 10^{4} \mathrm{~V} \mathrm{~m}^{-1} / \mathrm{N} \mathrm{C}^{-1}\right.$ or $\left.2.80 \times 10^{2} \mathrm{~V} \mathrm{~cm}^{-1}\right]$ (1) $\quad 1$
Example of answer:

$$
\begin{aligned}
E & =V / d=1400 \mathrm{~V} / 5.0 \times 10^{-2} \\
& =28000 \mathrm{~V} \mathrm{~m}^{-1}
\end{aligned}
$$

(ii) Value of force F

Correct answer $\left[4.5 \times 10^{-15} \mathrm{~N}\right.$, ecf for their $\left.E\right]$ (1)
Example of answer:

$$
\begin{aligned}
F & =E e=2.80 \times 10^{4} \mathrm{~V} \mathrm{~m}^{-1} \times 1.6 \times 10^{-19} \mathrm{C} \\
& =4.48 \times 10^{-15} \mathrm{~N}
\end{aligned}
$$

(c) Calculation of h

See $a=$ their $F / 9.11 \times 10^{-31} \mathrm{~kg}(\mathbf{1})$
$\left[\rightarrow a=4.9 \times 10^{15} \mathrm{~m} \mathrm{~s}^{-2}\right]$
See $t=12\left(\times 10^{-2}\right) \mathrm{m} / 4 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1}$ (or use $\left.4.2 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1}\right)(\mathbf{1})$
[$t=d / v$, with $d=$ plate length; 12 cm]
$\left[\rightarrow t=3.0 \times 10^{-9} \mathrm{~s}\right.$, or $2.86 \times 10^{-9} \mathrm{~s}$]
See substitution of a and t values [arrived at by above
methods] into $1 / 2 a t^{2}(\mathbf{1})$
Correct answer [$h=0.020 \mathrm{~m}-0.022 \mathrm{~m}]$ (1)
[Full ecf for their value of F if methods for a and t correct and their $h \leq 5.0 \mathrm{~cm}$]

Example of answer:
$h=1 / 2 a t^{2}$
$=1 / 2 \times 4.9 \times 10^{15} \mathrm{~m} \mathrm{~s}^{-2} \times\left(2.86 \times 10^{-9} \mathrm{~s}\right)^{2}$
$=2.0 \times 10^{-2} \mathrm{~m}$
(d) (i) Path A of electron beam

Less curved than original (1)
(ii) Path B of electron beam

More curved than original, curve starting as beam enters field [started by H of the Horizontal plate label] (1)
[For both curves:

- ignore any curvature beyond plates after exit
- new path must be same as original up to plates]
[No marks if lines not identified, OK if either one is labelled]

137. (a) Newton's law

Equation route:

$$
\begin{equation*}
\mathrm{F}=\frac{G M_{1} M_{2}}{R^{2}} \tag{1}
\end{equation*}
$$

M_{1}, M_{2}, R defined correctly, G defined correctly or not defined (1) [Both marks can be awarded for word equation]

OR Proportion route:
(force is directly) proportional to the product of the masses [plural] and
inversely proportional to the square of their separation [not just 'radius', unless related to orbital motion] (1)
(b) (i) Graph

Take two pairs of values off graph (1)
A). Find $g R^{2}$ for one pair $\left[\approx 400\left(\times 10^{12}\right)\right]$

Attempt to show $g R^{2} \approx$ same for second pair (1) (within uncertainty limits of data read from graph) (1)
OR B). Compare pairs of values to show that as R changes by a factor n, g changes by a factor $1 / \mathrm{n}^{2}$. (1) (1)
OR C). Substitute into formula with one pair to give a value of M or some other constant. (1)

Repeat with second pair to give same value OR substitute back to confirm agreement of second pair of values. (1)
(ii) Gravitational field strength

Valid approach via routes A, B or C above. (1)
$g=0.0027-0.0031 \mathrm{~N} \mathrm{~kg}^{-1}$ (1)
Example of answer:
$g \times 380^{2}=400 \rightarrow \mathrm{~g}=400 / 380^{2}=0.00277 \mathrm{~N} \mathrm{~kg}^{-1}$
(c) Effect

Maintains the Moon in orbit around the Earth / keeps Moon (1) rotating around the Earth / provides (all the) centripetal (1) force/acceleration for its circular motion / pulls Moon towards 1 Earth. [not just exerts force on the Moon]
138. (a) (i) Additional force

Correct answer [3.9 $\left.\times 10^{-3} \mathrm{~N}\right]$ (1)
Example of answer:
$0.4 \times 10^{-3} \mathrm{~kg} \times 9.81 \mathrm{~N} \mathrm{~kg}^{-1}=4 \times 10^{-3} \mathrm{~N}$
(ii) Explanation

Quality of written communication (1)
(Current produces) a magnetic field around the rod (1)
[Do not accept in the rod]
There is an interaction between the two magnetic fields / fields combine to give catapult field (1)

Fleming's Left Hand Rule/ Fleming's Motor Rule (1)
The rod experiences an upward force (1)
Using Newton $3 \rightarrow$ downward force on magnet
(b) (i) Diagram

Lower pole labelled North/N and upper pole labelled South/S (1)
(ii) Calculation of current in rod

Use of $F=B I l$. (Ignore $10^{\mathrm{x}} . F$ is their force and l is 5 cm) (1)
See conversions; mT to T and cm to m (1)
Correct answer [2.6/2.7 A] (1)
Example of answer:
$I=3.9 \times 10^{-3} \mathrm{~N} /\left(30 \times 10^{-3} \mathrm{~T} \times 5 \times 10^{-2} \mathrm{~m}\right)=2.6 \mathrm{~A}$
(iii) New reading on the balance

Value $<85 \mathrm{~g}$ [not a negative value] (1)
84.6 g (1)
139. (a) (i) $\pm 1 \mathrm{~mm}$ from accepted values $\&$ to mm precision (or better) (1)

Repeats of both (1)
Correct calculation $2 / 3$ s.f. + unit [Allow ecf] (1)
(ii) Folded thickness $\geq 8 \mathrm{t}$ (1)

Repeat or zero error (1)
Value $0.090-0.110 \mathrm{~mm}$ to 0.01 mm precision or better (1) Correct calculation $2 / 3$ s.f. + unit [ecf] (1)
(b) (i) $\quad(1.5 \mathrm{~s} \rightarrow 2.5 \mathrm{~s})$ sensible value from $\geq 15 T+$ unit (1) (1)
[from $\geq 10 \mathrm{~T}$ only (1)]
$\left[\begin{array}{l}\text { If } \neq T \rightarrow 0 \\ \underline{\text { Or }} \\ \overline{\text { Counting oscillations in fixed time } \rightarrow 0} \\ \text { If time not recorded to } 0.1 \mathrm{~s} \text { or better } \rightarrow(-1) \\ (\text { but no s.f. penalty for } T)\end{array}\right]$
(ii) $\quad T_{2}>T_{1}$ from $>15 T+$ unit (1)
[from $>10 \mathrm{~T}$ only (1)] [ecf if $\neq \mathrm{T}]$ (1) (1)
[only penalise units once in (i) and (ii)]
(iii) Both values recorded to mm precision, $\pm 2 \mathrm{~mm}$ of stated values + unit (1)

Both calculated correctly to $2 / 3$ s.f. [ecf] (1)
Valid comparison (i.e. 10% in T_{2} / T_{1}) (1)
Sensible comment (1)
Or
Percentage difference using 1.63 as denominator (1)
Compared with $\underline{10 \%}$ for T_{2} / T_{1} (1)

Sample results
(a)

$$
\text { (i) } \begin{aligned}
& l=297 \mathrm{~mm}, 297 \mathrm{~mm} \quad \mathrm{Av} .=297 \mathrm{~mm} \\
& w=210 \mathrm{~mm}, 210 \mathrm{~mm} \quad \mathrm{Av} .=210 \mathrm{~mm} \\
& \text { mass }=80 \times 0.297 \times 0.210 \mathrm{~g} \\
& =5.0 \mathrm{~g}
\end{aligned}
$$

16t/mm: $1.57,1.58,1.57$
$\bar{t}=0.098 \mathrm{~mm}\left(9.8 \times 10^{-5} \mathrm{~m}\right)$
Density $=\frac{\text { mass }}{\text { volume }}=\frac{5.0 \times 10^{-3} \mathrm{~kg}}{9.8 \times 10^{-5} \times 0.297 \times 0.210 \mathrm{~m}^{3}}$
$\left.=\underline{8.2 \times 10^{2} \mathrm{~kg} \mathrm{~m}^{-3}}\right)$

$$
\left[\frac{80 \times 10^{-3} \mathrm{~kg} \mathrm{~m}^{-2}}{9.8 \times 10^{-5} \mathrm{~m}}\right]
$$

(b) (i) $10 T_{1} / \mathrm{s}: 20.53,20.61$
$\overline{T_{1}}=2.06 \mathrm{~s}$
Pin was placed at centre of oscillations
$10 \mathrm{~T}_{2} / \mathrm{s}: 38.86,38.79$
$\overline{T_{2}}=3.88 \mathrm{~s}$
(iii) $l_{1}=480 \mathrm{~mm}$
$l_{2}=780 \mathrm{~mm}$
$T_{2} / T_{1}=3.88 / 2.06=1.88$
$l_{2} / l_{1}=780 / 480=1.63$
Smallest feasible $T_{2} / T_{1}=0.90 \times 1.88=1.69$
As this is still more than 1.63 , the data suggests the relationship is not valid.
Or
Percentage difference $=\frac{1.88-1.63}{1.63} \times 100 \%=15.3 \%$
which is $>10 \%$ in T_{2} / T_{1}
140. (a) Circuit set up correctly without help (2)
(b) (i) Units for X and V [seen anywhere] (1)

5 good values ($\pm 0.01 \mathrm{~V}$ of examiner's best line) (1)
[4 good values + units only (1)]
(ii) Graph

Plots - accurate to $1 / 2$ square (1)
Lines - both thin, straight and best fit (1)
(iii) 5 good values $(\pm 0.01 \mathrm{~V}$ of examiner's best line) (2)
[4 good values only (1)]
[Allow point(s) off end of voltage scale]
(iv) Read off correctly, $0.66-0.71 \mathrm{~m}+$ unit (1)
(c) Both triangle's large [m_{X} base $\geq 6 \mathrm{~cm}, m_{Y}$ base $\left.\geq 4 \mathrm{~cm}\right]$ (1) m_{X} correctly calculated to >2 s.f. (1)
m_{Y} correctly calculated to >2 s.f. [No units required] (1)
(d) Ratio correctly calculated to >2 s.f. [ecf] (1)

Correct percentage difference with 0.360 as denominator (1)
Sensible comment based on percentage difference (1)
With reference to experimental error or sensible estimate of experimental error e.g. error in V or gradient (1)

Sample results
(a) $x=0.500 \mathrm{~m}$
$V=0.39 \mathrm{~V}$
(b) (i)

AB	x / m	$\boldsymbol{V} / \mathbf{V}$
	0.100	0.08
	0.200	0.15
	0.300	0.23
	0.400	0.31
	0.500	0.39
	0.600	0.46
	0.680	0.52

(ii)

(iii)

$\mathbf{B C}$	x / m	\mathbf{V} / \mathbf{V}
	0.750	0.66
	0.800	0.78
	0.850	0.88
	0.900	0.99
	0.950	1.10
	1.000	1.20

(iv) $x=0.68(5) \mathrm{m}$

$$
\begin{aligned}
& m_{\mathrm{X}}=\frac{0.78-0.00}{1.00-0.44}=0.78 \mathrm{~V} \mathrm{~m}^{-1} \\
& m_{\mathrm{Y}}=\frac{1.20-0.00}{1.00-0.44}=2.14 \mathrm{~V} \mathrm{~m}^{-1}
\end{aligned}
$$

(d) $\frac{m_{\mathrm{X}}}{m_{Y}}=\frac{0.78}{2.14}=0.36(4)$

$$
\begin{aligned}
\text { Percentage difference } & =\frac{0.364-0.360}{0.360} \times 100 \\
& =\underline{1 \%}
\end{aligned}
$$

This is acceptable experimental error, suggesting the results support the suggestion.
141. (a) (i) Geiger-Muller tube must be labelled (1)

Level and $\leq 1 \mathrm{~cm}$ away [between ' g ' and ' e ' of 'arrangement'] (1)
Counter, ratemeter or scaler must be labelled
[Or G-M tube (1), Close (1) and Interface + computer (or datalogger) (1)]
(ii) Well-away from other sources/sample and NOT in several places (1)

Record for at least 3 minutes (1)b
(iii) $\begin{aligned} & \text { Suitable time interval }(5 \mathrm{~s} \rightarrow 20 \mathrm{~s}) \\ & \text { for }\end{aligned}$
≥ 2 minutes (1)

(iv) Correct arrangement into $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ [need not relate to (1) 1 $y=m x+c]$

(b) Corrected count rate \& $\ln A$ to ≥ 3 s.f. (1) (1)

Graph
Scale at least $1 / 2$ graph paper in each direction, avoiding awkward scales such as 3 's (1)
Axes: labelled with units, must have $\ln \left(A / \mathrm{min}^{-1}\right)(\mathbf{1})$
Plots: accurate to $1 / 2$ square (1)
Line: straight thin \& best fit (1) 5
(c) Large triangle $[$ base $\geq 8 \mathrm{~cm}]$ (1)

Correct calculation of $\lambda \geq 2$ s.f. [ignore unit] (1)
$69-73 \mathrm{~s}$ with unit and 2 s.f. [No ecf] (1)
$\left(\begin{array}{l}\frac{\text { If } A \mathrm{v} t \text { plotted }}{3 \times \frac{1}{2} \text { lives read off correctly }(69-73 \mathrm{~s}) \text {, with unit (1) (1) }} \\ {\left[2 \times \frac{1}{2} \text { lives only (1) }\right.} \\ H \text { Hence } \lambda \text { calculated[ignore unit] to } 2 \text { s.f. (1) }\end{array}\right)$

Sample results

(a) (i)

(ii) Keep G-M tube well away from all radioactive sources (or Pa sample) and record count for 5 minutes to determine the average count rate. Subtract this from subsequent count rates.
(iii) Record readings from ratemeter every 15 s for about 5 mins

Or
Diagram interface to integrate for 3 s and find count rate for a duration of 5 minutes.
(iv) $A=A_{0} \mathrm{e}^{-\lambda t}$
$\ln A=-\lambda t+\ln A_{0}$
$y=m x+c$
(b)

Corrected count rate $/ \mathrm{min}^{-1}$	$\ln \left(A / \mathrm{min}^{-1}\right)$
500	6.21
420	6.04
340	5.83
273	5.61
235	5.46
189	5.24
156	5.05

(c) $\lambda=-$ gradient $=\frac{6.22-5.00}{126-0} \mathrm{~s}^{-1}$

$$
\begin{aligned}
& =9.68 \times 10^{-3} \mathrm{~s}^{-1} \\
t_{1 / 2} & =\frac{0.69}{9.68 \times 10^{-3}} \mathrm{~s} \\
= & \underline{71 \mathrm{~s}}
\end{aligned}
$$

142. (a) (i) $\pm 1 \mathrm{~mm}$ from accepted values $\&$ to mm precision (or better) (1) Repeats of both (1)
Correct calculation to give value in $\mathrm{g} \mathrm{m}^{-2}$ [Allow ecf] (1)
2/3 s.f. (1)
(ii) Use a micrometer screw gauge (1)

Fold the paper to measure
several thicknesses/ use several sheets (1)
$\left.\begin{array}{l}\text { Exclude air } \\ \begin{array}{l}\text { Measure in several places } \\ \text { Check zero error }\end{array}\end{array}\right\}$ Any one
(b) (i) Sensible value with unit from $\geq 15 T$ (1) (1)
[from >10 Tonly (1)] [No s.f. penalty on T]
[Counts no. of oscillations in fixed time 0/2]
Placed pin at centre of oscillations (1)
(ii) $T_{2}<T_{1}$ from $>15 T$ (1) (1)
[from $\geq 10 T$ only (1)]
(iii) Calculated as a decimal or percentage to $2 / 3$ s.f. \& NO unit (1)

Sensible $\Delta \mathrm{n} T$ rangeM range or $0.50-0.10 \mathrm{~s}$ human error
[whichever is larger] (1)
Correct percentages (1)
Add to get percentage of ratio [Allow ecf] (1)

Sample results

(a)

$$
\begin{array}{ll}
\text { (i) } \begin{array}{ll}
l=297 \mathrm{~mm}, 297 \mathrm{~mm} \\
w=210 \mathrm{~mm}, 210 \mathrm{~mm} \\
m=5.02 \mathrm{~g}
\end{array} & \begin{array}{l}
\text { Av. }=297 \mathrm{~mm} \\
\text { Av. }=210 \mathrm{~mm}
\end{array} \\
& \begin{array}{l}
\text { mass } \\
\text { area }
\end{array}=\frac{5.02 \mathrm{~g}}{0.297 \mathrm{~m} \times 0.210 \mathrm{~m}}=\underline{80.5 \mathrm{~g} \mathrm{~m}^{-2}}
\end{array}
$$

(b) (i) $10 T_{1} / \mathrm{s}: 40.42,40.89$
$\overline{T_{1}}=4.07 \mathrm{~s}$
(ii) $5 T_{2} / \mathrm{s}: 12.01,12.14,12.18,12.17$
$\overline{T_{2}}=2.43 \mathrm{~s}$
(iii) $\quad T_{2} / T_{1}=2.43 / 4.07=0.60$

Percentage uncertainty in $10 T_{1}=\frac{0.24}{40.7} \times 100 \%$

$$
=0.6 \%
$$

Percentage uncertainty in $5 T_{2}=\frac{0.09}{12.1} \times 100 \%$

$$
=0.8 \%
$$

Percentage uncertainty in ratio $=0.6 \%+0.8 \%$

$$
=\underline{1.4 \%}
$$

143. (a) $0.25-0.29 \mathrm{~mm}$ with 0.01 mm precision + unit or centre value (1) $\pm 0.02 \mathrm{~mm}$
Repeat (1) 2
(b) (i) Circuit set up without help (2)
(ii) $\quad V \& I$ to 3 s.f. or better and correct values in table (1)
R and R / x correctly calculated ≥ 2 d.p. (1)
6 good values ($\pm 1 \frac{1}{2}$ squares in R / x) (1) (1) (1) (1)
[4 good values only (1) (1)]
[If these 6 include $x<0.300 \mathrm{~m}$, allow best fit line as curve then -2 rubric error]
(c) Graph

Plots: to $1 / 2$ square accuracy (1)
Line: thin, straight and of best fit (1) 2
(d) Large triangle [base $\geq 6 \mathrm{~cm}]$ (1)

Correct calculation ≥ 2 s.f. [Ignore unit] [Ignore sign] (1) 2
(e) Correct calculation [Allow ecf] (1)

2/3 s.f. + unit (1)

Sample results

(a) $d=0.27 \mathrm{~mm}, 0.27 \mathrm{~mm}$

Av. $=0.27 \mathrm{~mm}$
(b) (ii) $V=0.292 \mathrm{~V} \quad I=0.138 \mathrm{~A}$
$R=2.12 \Omega$

x / m	V / V	I / A	R / Ω	$(R / x) / \Omega \mathrm{m}^{-1}$
0.300	0.242	0.127	1.90	6.34
0.400	0.268	0.124	2.17	5.42
0.500	0.292	0.129	2.26	4.53
0.600	0.306	0.138	2.22	3.70
0.700	0.277	0.138	2.01	2.87
0.800	0.234	0.143	1.64	2.05
0.900	0.164	0.145	1.13	1.26

(c)

(d) $s=\frac{8.81-0.36}{1.00-0.00}$
$=\underline{8.45}$
(e) $\quad \rho=\frac{\pi\left(0.27 \times 10^{-3}\right)^{2} \times 8.45 \times 1.00}{4}$
$=4.8 \times 10^{-7} \Omega \mathrm{~m}$
144. (a) (i) Correct circuit [-1 per error or omission] (1) (1) (1)
(ii) Connect capacitor to P to charge it (1)

Switch to Q and start stopwatch (1)
Record current I at regular time intervals t (1)
(iii) Correct arrangement into $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ form
[need not relate to $y=m x+c$] (1)
Correct calculation shown + unit (1)
(b) Correct values of $\ln (I / \mathrm{uA})$ to $3 / 4$ s.f. (1)

Scale: at least $1 / 2$ paper in each direction, avoiding awkward (1) scales, eg 3's
Axes: labelled + unit, must be of form $\ln (I / \mathrm{uA})(\mathbf{1})$
Plots: accurate to $V 2$ square (1)
(c) Large triangle [base $\geq 8 \mathrm{~cm}]$ (1)

Correct value [ignore units] [Ignore signs] (1)
$4.5 \mathrm{mF}<C<4.7 \mathrm{mF}$ from correct calculation $2 / 3$ s.f. + unit (1) 3
[must be F, mF or $\mu \mathrm{F}$]

Sample results

(a) (i)

(iii) $I=I_{0} \mathrm{e}^{-a t}$

$$
\ln I=-\mathrm{a} t+\ln I_{0}
$$

$$
y=m x+c
$$

$$
\text { At } t=0, I=\frac{V}{R} \approx \frac{1.5 \mathrm{~V}}{10 \mathrm{k} \Omega}
$$

$$
\approx 0.15 \mathrm{~mA}(150 \mu \mathrm{~A})
$$

(b)

$\ln (I / \mu \mathrm{A})$
4.80
4.58
4.37
4.15
3.94
3.73
3.50

(c) $\quad a=-$ gradient $=\frac{5.02-3.68}{62-0}$

$$
=0.0216 \mathrm{~s}^{-1}
$$

$$
C=\frac{1}{a R}=\frac{1}{0.0216 \times 10 \times 10^{3}}=4.6 \times 10^{-3} \mathrm{~F}
$$

$$
=\underline{46000 \mu \mathrm{~F}} \text { (to } 2 \text { s.f) }
$$

[^0]: Length of solenoid
 Number of turns
 (ii)

