1. No mark scheme available

2.	The list gives so International (SI	me quantitie) System of	es and units. units.	<i>Underline</i> t	hose which are	e base quantities of the	
	coulomb	force	<u>length</u>	mole	newton	temperature interval	(2 marks)
	Define the volt. Vol	t = Joule/C	oulomb or V	Vatt/Ampere			(2 marks)
	Use your definit Vol	ion to expre t = J/C	ss the volt in	terms of bas	e units.		
		= kg m²	s ^{–2} /A s				
		= kg m² s	–3 A –1				(3 marks)
	Explain the diffe	erence betwo ctor has ma	een scalar an Ignitude and	d vector quar I direction	ntities		
	Sca	alar has ma	gnitude only	y			(2 marks)
	Is potential diffe	erence a scal	ar or vector of	quantity?			

(1 mark) [Total 10 marks]

3. The graph below shows the behaviour of a material A subjected to a tensile stress.

(1 mark)

On the same graph, draw a second line to show the behaviour of a material B which has a greater Young modulus and is brittle.

Draw a third line to show the behaviour of a material C which has a lower value of Young modulus and whose behaviour becomes plastic at a lower strain.

[Total 6 marks]

4. Rubber is commonly described as being more elastic than steel but steel has a greater modulus of elasticity than rubber. On the axes below, sketch two graphs which illustrate the difference in behaviour of rubber and steel when subjected to stress. Stress

L	Strain	
	large strains	(1)
	(iv) One of several possible shape marks	
	(iii) Max strain rubber \ge 2 × steel	(1)
	(ii) Max stress steel \geq 2 × rubber	(1)
	(i) Steel steeper	(1)
S	Graphs to show:	

(4 marks)

Describe with the aid of diagrams the difference in molecular structure of rubber and steel. One point from each line below could be on a diagram

l	Rubber:	Long molecules/polymers coiled/tangled/amorphous	/equivalent (1)	(1)	
:	Steel:	Long range order/lattice/e positive ions/polycrystalli	quivalent ne (1)	(1)	
					(4 marks) [Total 8 marks]
With the aid written as the Both r	of an examp product of number and	le, explain the statement "Than umber and a unit". unit identified in an examp	e magnitude ble (1)	of a physical quant	ity is
follow	ed by the id	ea of multiplication (1)			
					(2 marks)
Explain why If the u the eq equal	an equation units on one uation relat [or similar p	must be homogeneous with side differ from those on e to different kinds of phys positive statements] (1)	respect to the the other, th sical quantity	units if it is to be c en the two sides c y. They cannot	orrect.)f be
					(1 mark)
Write down a Any in	an equation victor	which is homogeneous, but s homogeneous algebraic c	till incorrect.	tion :	

 $2\text{mgh} = \frac{1}{2}\text{mv}^2$, 2 kg = 3 kg, pressure =stress/strain (2 or 0)

5.

(2 marks) [Total 5 marks]

- 6. Draw a labelled diagram of the apparatus you would use to find the Young modulus of copper wire. Diagram to show: wire fixed at one end, load at other end and length of wire implied as (i) being at least 1 metre (1) device to aid measurement of small extensions (simplest acceptable (ii) marker against fixed ruler) (1) (2 marks) State the measurements you would take. Original length of wire Extension / new length of wire Diameter / radius / cross-sectional area of wire All three (1) (1 mark) How would you use your measurements to obtain a value for the Young modulus? plot stress (defined) v. strain (defined) OR plot load v. extension substitute values in Fl/Ae OR (1) E = qradientE= gradient × l_0/A OR **Repeat for different loads** OR (1) EITHER gradient of linear region OR use E values to check specimen is still elastic. (1) (3 marks) Explain why the copper is used in the form of a long thin wire. So that a reasonable extension is obtained OR so it stretches with a small load. (1)
 - Measurements of extension will have smaller percentage uncertainty. (1) (Accept: measurements more accurate).

(2 marks)

Two wires, X and Y, are made from the same material. Wire X is three times as long as Y and has twice the diameter of Y. When a load is suspended from X the wire extends by 8 mm. How much will wire Y extend with the same load? Length correction $\times 1/3$ (1)

> Area factor (x4 OR \div 4) (1) Extension of wire Y = 11 mm (1)

> > (3 marks) [Total 11 marks]

7. For each of the four concepts listed in the left hand column, place a tick by the correct example of that concept in the appropriate box.

8. The table and graph show the properties of TWO materials A and B.

Material	Young modulus/ 10 ¹⁰ Pa	Ultimate tensile stress/10 ⁸ Pa	Nature
А	1.0	2.6	Plastic / ductile
В	0.34	3.2	brittle

Use the graph to complete the table for material A.

(3 marks)

Use the table to draw a graph on the grid above showing the behaviour of material B. Straight line of appropriate gradient (1)

9. Classify each of the terms in the left-hand column by placing a tick in the relevant box.

[Total 6 marks]

10.	Joule:kg m² s-2(1)Coulomb:Derived unit(1)Time:Scalar quantity(1)Volt: $W \times A^{-1}$ (1)	[Total 4 marks]
11.	Example:	
	Rubber or other suitable material (1)	
	$\begin{array}{l} \text{2nd line on graph:} \\ \text{Straight line, any length} \\ \text{Aiming for } (0.5, 5) \ \textbf{(1)} \end{array} \tag{1}$	3
	Description:Polymeric diagram(2)Crystalline diagramLong molecules/chains of atoms/ionsatoms in random order/	
	tangled/coiled (2)	4
	[No diagrams, maximum 2/4]	[Total 7 marks]
12.	Structure of a polycrystalline material:	
	[Diagram essential. It must be compatible with words and must convey the "jigsaw" idea, i.e. <i>not</i> a "bowl of sugar".]	
	Diagram and words convey idea of a number of crystals/grains	
	Idea of planes of atoms in different directions	2
	Region on graph where copper wire obeys Hooke's law:	
	Hooke's law region up to (9,15)	
	Additional information needed:	
	Length and cross-sectional area	
	Estimate of energy stored in wire:	
	Sensible attempt at area up to 20 mm	
	Answer in range $250 \rightarrow 270$	
	0.26 J	5 [7]
13.	What is meant by "an equation is homogeneous with respect to its units": <u>Each side/term</u> has the same units	1
	Equation $x = ut + \frac{1}{2} at^2$:	
	$ut - (m s^{-1}) s = m$	
	$at^2/2 \text{ (m s}^{-2}) \text{ s}^2 = \text{ m}$	
	all 3 terms reduce to m	3
	[Allow dimensions]	

Explanation:

Wrong numerical constant/wrong variables

Units same, numbers wrong/

Units same, magnitudes wrong

Example = 1 kg + 2 kg = 5 kg

14.

It breaks/fractures at greater force/stress Brittle material is A/straight line/linear Just elastic/no plastic deformation

Wire B because area greater Convincing argument comparing area 1 with area 2 e.g. could show vertical at 11 mm

[Last mark consequent upon previous mark]

15. The joule in base units:

kg m² s⁻² [No dimensions] (1)

Homogeneity of formula:

$$\rho \quad \text{kg m}^{-3} \text{ (1)}$$

$$r \quad \text{m, } f = \text{s}^{-1} \text{ (1)}$$
(Right hand side units = (kg m⁻³) (m)⁵ (s⁻¹)²) [Correct algebra]
= kg m² s⁻² [Only if 1st two marks are earned] (1) 3
[Ignore numbers; dimensions OK if *clear*]

Why formula might be incorrect:

The $\frac{1}{2}$ could be wrong (1) 1

[5]

1

4

2

1

[6]

[5]

16. Labels of elements:

17.

Explanation:

Base	quantities/units	[Not fundamental]	(1)	
Not	(1)			
OR other (physical) quantities are derived from them				
OR	cannot be split up/broken	down		
			2	

[4]

Nuclear equation: 18.

$${}^{32}_{15}\mathrm{P} \rightarrow {}^{32}_{16}\mathrm{S} + \beta^{-} \left| {}^{0}_{-1}\beta \right| {}^{0}_{-1}\mathrm{e} \left| \mathrm{e}^{-} \left[\mathrm{Ignore} + \gamma + \upsilon \right]$$
(1)

Description:

Take background count	(1)
Take count close to source, then insert paper/card and count	(1)
Little/no change	(1)
[OR absorption in air: Take close reading and move counter back; no sudden reduction (1)(1)]	
Insert sheet aluminium and count	(1)
Down to background, or zero	(1) Max 4
am: Any region above dots [show (1) or (X)]	(1) 1

Explanation:

19.

Бури	marion.		
1	β^- decay involves a neutron \rightarrow a proton Any two from:	(1)	
	Any two from:		
2.	on the diagram this means \downarrow^{-1} (⁺¹ / diagonal movement		
3.	so nuclide moves towards dotted line		
4.	decay means greater stability	(1)(1)	
	$[\beta^-$ in wrong region, (1) and (4) only available.		
Deca	y towards drawn $N = Z$ line 1 and 2 only available]		
			[9]
Rang	e of extensions where Hooke's law is obeyed:		
	(From 0 to) 9 (mm) or 9.5 (mm)	(1)	
		I	
Addi	tion to diagram:		
	Horizontal ruler fixed to bench with marker anywhere on wire		
	OR		
	Vertical ruler with pointer on load/hanger OR closely aligned with ruler	(1)	
Leng	th to be measured, as shown on diagram:		
	Length from double blocks to marker on wire		
	OR		
	Length from double blocks to just above the point where mass hanger is hung on pulley	5	

Young modulus:

Use of
$$E = \frac{Fl}{Ae}$$
 OR $\frac{F}{A} \div \frac{e}{l}$ (1)

F, *e* valid pair on straight line region consistent with their answer to point 1 (1)

[Do not allow 10 mm 44 N. Ignore 10ⁿ error]

$$= 1.2 \times 10^{11} \text{ N m}^{-2}/\text{Pa/kg m}^{-1} \text{ s}^{-2}$$
 (1)

$$[1.1 - 1.3]$$

3

Energy stored in wire:

20.

21.

•••		
Use of $\frac{1}{2}$ <i>Fx</i> /area up to 7 mm OR count squares ≈ 50	(1)	
0.1 J [Accept Nm]	(1)	
	2	
One energy transformation:		
$GPE \rightarrow elastic potential energy$	(1)	
	1	
Tensile strength of brass:		
Attempt to calculate stress i.e F/A	(1)	
$46/47 \text{ N}$ F_{max} off graph	(1)	
$= 3.5 \times 10^8 (\text{N m}^{-2})$ [No u.e.]	(1)	
[3.5 - 3.62]	2	
	3	[40]
		[12]
work energy		
Power = $\frac{\text{work}}{\text{time}}$ OR $\frac{\text{energy}}{\text{time}}$ OR rate of doing work OR rate of		
transfer of energy (1)	1	
[Symbols, if used, must be defined]		
Unit = Watt OR J s^{-1} (1)	1	
Base units:		
$kg m^2 s^{-3} (1)(1)$	2	
[If incorrect, possible 1 mark for energy or work = kg m ² s ⁻² or for J = Nm]		
		[6]
H. P. diagram.		
Circle \bigcirc S on main sequence at $I_{\odot} = 10^{\circ}$ (1)		
Circle \bigcirc M on main sequence at ten left (1)	r	
Circle M on main sequence at top left (1)	2	
Numbers on temperature axis showing increase \leftarrow (1)		
Coolest 3000 ± 1000 ; hottest $20\ 000 - 50\ 000$ [Both for the mark] (1)	2	
Large mass stars:		
They are brighter OR have greater luminosity OR are hotter (than the Sun) (1)		
and burn up fuel/hydrogen quickly [Not energy] (1)	2	

Calculation:

See
$$E = mc^{2}$$
 (1)
See $\frac{3.9 \times 10^{26} \text{ watts}}{(3 \times 10^{8} \text{ m s}^{-1})^{2}}$ (1)
 $= 4.3 \times 10^{9} \text{ kg s}^{-1}$ (1) 3
[9]

22. Advantages:

Can detect fainter stars or more distant stars OR very small amount of light (1)				
Less time to get image OR more images per session (1)				
Telescopes in space:				
Any two of:				
Detect wavelengths absorbed by atmosphere/wider range λ (1) OR less dust/less scattering/less light pollution (1) OR no refraction / twinkling (1)	Max 2			

Explanation:

23.

1	β^- decay involves a neutron \rightarrow a proton Any two from:	(1)	
	Any two from:		
2.	on the diagram this means \downarrow^{-1} (⁺¹ / diagonal movement		
3.	so nuclide moves towards dotted line		
4.	decay means greater stability	(1)(1)	
	$[\beta^-$ in wrong region, (1) and (4) only available.		
Deca	y towards drawn $N = Z$ line 1 and 2 only available]		
			[9]
Dula	n is a neutron ston (1)	1	
Puisa	ir is a neutron star (1)	1	
Sign	als are regular (pulses) / at precise intervals (1)		
Shor	t / fast		
[If ti	me given, it should be of the order seconds] (1)	2	
Qual	ity of written communication (1)		
Not o	continuous as star spins OR rotates (1)		
Whe Earth	n points to Earth/radio beam sweeps round OR beam passes a once/twice per revolution (1)		
Furth	er detail e.g. lighthouse analogy / diagram/ narrow beam (1)	Max 3	101
			[6]

24.	Red g	giants:					
	They lumir	are cool high volume stars OR cool large surface area OR cool high nosity/bright/cool big stars (1)					
	Paral	lax displacement:					
	Comp distar	pares the angle between a star and a distant star OR the position of a star relative in star/relative to fixed background (1)	to a				
	View	ed six months later (1)	3				
	[Thes out of	the latter two marks could be obtained from a suitably labelled diagram, but probables f 2 for <i>just</i> a diagram.]	y only 1				
	Perio	d:					
	5 (dag	$ys) \pm half day (1)$	1				
	• Lur	ninosity of B greater than luminosity of A (1)	1				
	B mu	st be further away (1)					
	Convincing reasoning, for example: [consequent on correct distance]						
	<i>I</i> sam <i>I</i> = <i>L</i> / [e.c.f	2					
	Two forces: Gravitational/gravitation/gravity (1)						
	(Forc	e due to) radiation/photon/electromagnetic wave pressure/forces (1)	2				
				[9]			
25.	(a)	Work = force × distance /displacement (1)	1				
		Unit = Nm OR joule/ $J(1)$ (1)	1				
		Base units = kg m ² s ⁻² (1)(1)	2				
	(b)	Hooke's law:					
		Extension proportional to (∞) force/load OR $F = k\Delta x$ with <i>F</i> , <i>x</i> defined (1)					
		below the elastic limit OR below limit of proportionality (1)	2				
		Ultimate tensile stress = $2.3 (\times 10^8 \text{ Pa})$					
		Young modulus = stress/strain [No mark]					
		= any pair off linear region between 0.8, 1 and 1.6, 2.1 (1)					
		$= 1.3 \times 10^{11} (Pa/N m^{-2}) [1.2 - 1.4]$ (1)	3				

	Attempt to calculate	$\frac{250 \text{ N}}{1.7 \times 10^{-6} \text{ m}^2}$ OR <i>P</i> con	rrectly plotted (1)	
	Elastic because —	→ on straight line/equivale	ent (1)	2
	Point P on line at str	$ess = 1.5 \times 10^8$ Pa [e.c.f the	ir value of stress] (1)	1
	Extension of wire:			
	Determine strain = 1	$.1 \times (10^{-3})$ [OR 1.2] (1)		
	Either by calculatio	n or by reading off graph]		
	Extension = $3 \times \text{stra}$	in [e c f]= 3 3 (3 6) $\times 10^{-3}$	m	2
(c)	Diagram.			2
				1
	Dislocation is an ext	ra/missing half row/plane of	atoms/ions	
	[OR 2 nd diagram sho	owing dislocation moved] (1)		1
	Risk of cracking:			
	Quality of written co	ommunication (1)		Max 3
	Dislocation moves	OR crack grows/moves	OR many dislocations tangle	(1)
	Blunts tip of crack	stops at dislocation	no mark	(1)
	Reduce stress $F \mid$	stress reduced	no mark	(1)
(d)	Graph:			
		<u> </u>		
	Axes and shape (1)			
	Arrow heads or labe	ls [if axes inverted, arrows m	ust be reversed] (1)	2
	Warmer because:			
	Area represents ener [Must refer to graph]	gy or work done [may be lab]	elled on graph] (1)	
	Converted to heat (in	n rubber band) (1)		2
(e)	Any two of:			
	Composite material	is two (or more) materials bo	onded/joined/ combined	(1)
	[Beware statements	which describe a molecule O	R a compound]	
	To make use of (bes	t) properties of both (1)		
	[May be given as tw	o specific properties, e.g. a st	trong and a tough materi	al]
	A named composite Diagrams:	other than dentine as an exar	nple (1)	Max 2

26.

27.

OR

	Elastic because ——	→ on straight line/equivale	ent (1)		2	
	Point P on line at stress = 1.5×10^8 Pa [e.c.f their value of stress] (1)					
	Extension of wire:					
	Determine strain $= 1.1$	$1 \times (10^{-3})$ [OR 1.2] (1)				
	[Either by calculation	or by reading off graph]				
	Extension = $3 \times$	$e \text{ strain } [e.c.f.] = 3.3 (3.6) \times$	10^{-3} m		2	[10]
28.	Diagram:					
		(1)			1	
	Dislocation is an extra	/missing half row/plane of	atoms/ions			
	[OR 2 nd diagram show	ving dislocation moved] (1)			1	
	Risk of cracking:					
	Quality of written con	nmunication (1)				
	Dislocation moves	OR crack grows/moves	OR many dislocations tangle	(1)		
	Blunts tip of crack	stops at dislocation	no mark	(1)		
	Reduce stress	stress reduced	no mark	(1)	Max 3	[5]
29.	Graph:	<u></u>				
	Axes and shape (1)					
	Arrow heads or labels	[if axes inverted, arrows m	ust be reversed] (1)		2	
	Warmer because:					
	Area represents energy [Must refer to graph]	y or work done [may be lab	elled on graph] (1)			
	Converted to heat (in a	rubber band) (1)			2	г <i>и</i> 1

[4]

30. Any two of:

Composite material is two (or more) *materials* bonded/joined/ combined (1) [Beware statements which describe a molecule OR a compound] To make use of (best) properties of both (1) [May be given as two specific properties, e.g. a strong and a tough material] A named composite other than dentine as an example (1) Max 2 Diagrams: OR Polycrystalline Crystalline No. of No. of α particles particles K.E. K.E. 3–D attempt at lattice (2) Tight fitting "jig-saw" (1) (1) Planes of atoms labelled (1) (1) 2–D attempt (1) Amorphous polymer

[Several strands: if no "blobs" then must label one strand "molecule" (1) Graph:

Е Anywhere in third quadrant (1)

to greater stress (1)

Less steep initially [Totally straight, accept] (1) D

Large area (1)

[9]

3

4

31. Density = mass symbol \div volume OR d = mv (1) 1 (a) Volume ratio = $\frac{(10^{-10})^3}{(10^{-15})^3}$ [Beware $\frac{10^{-27}}{10^{-42}}$] (1) Density of gold nucleus: $1.9 \times 10^{19} \text{ kg m}^{-3}$ (1) Assumption: Mass nucleus = mass atom OR electrons negligible/zero mass (1) 3 (b) Graphs: No. of No. of α particles particles K.E. K.E. [Accept several lines/peaks] (1) [Accept narrow peak 1 α shape (1) only eligible for 2nd mark] β shape [Linear β intercept k.e. axis (1) 3 Equation: $n \rightarrow p + e^- + \overline{\nu}$ $e^{-}(1)$ \overline{v} (1) 2 Composition: n (udd) p (uud) [Both] (1) Explanation: (1) Quality of written communication Decay involves down quark \rightarrow u quark (1) General statement about change of flavour OR type of quark means only weak/neither strong nor e/m interaction can do this (1) Max 3 [No mark other than quality of language for discussion in terms of \overline{v}] N-Z grid (c) Sr at 38, 52 (1) Y at 39, 51 [e.c.f. Sr incorrect \rightarrow 1 diagonal move] (1) 2 Rb at 37, 45 (1) Decays by β^+ emission/positron/ α (1) 2

(d) Charge	on strange q	uark = -1/3 (1)
------------	--------------	------------------

Conservation law:

Charge $-(-1) + (+1) \rightarrow (0) + X/by$ charge conservation (1)

X is neutral (1)

Particle X is a meson (1)

Baryon number conservation $(0) + (+1) \rightarrow (+1) + (0)$ (1)

OR discussion in terms of total number of $q + \overline{q} = 5$ OR $\Sigma q - \overline{q} = 3$

Composition of X is s \overline{d} [0/3 if not q \overline{q}](1)

Justify S quark:

This is not a weak interaction/only a weak interaction can change quark type/ this is a strong interaction/strangeness is conserved/ quark flavour cannot change (1)

Justify \overline{d} quark:

X neutral; s - 1/3; $\overline{d} + 1/3$. [e.c.f. if s = -1/3 in first line.]

For the third mark accept any $q \overline{q}$ pair that creates a meson

of the charge deduced for X above. (1)

[The justification for both q and \overline{q} can be done also by tracking individual quarks]

(e) Antiparticles:

e⁺ (positron) \overline{c} (Charmed antiquark) (1)(1) [Also accept either π^+ OR π^- as long as it is stated that one is the antiparticle

[Also accept either π OR π as long as it is stated that one is the antiparti of the other, i.e. NOT just π^+ OR π^-]

Zero charm, since quarks have equal and opposite charm OR (+1) (1) charm + (-1) charm = 0 [Not equal and opposite charge]

Heavier version by \overline{c} and c moving round each other/orbiting with (1) higher energy level

Diagram:

$$\begin{array}{ccc} B & \pi^{+} \text{ OR } \pi^{-} \\ & & \\ C & \pi^{-} \text{ OR } \pi^{+} \end{array} \right\}$$
 (1)

Interaction: strong (1) Exchange particle: gluon (1)

 $[e/m (0) but ecf Z^{\circ} (1)]$

[32]

1

2

2

3

2

1

1

2

1

1

32. Density = mass symbol \div volume OR d = mv(1)

Volume ratio =
$$\frac{(10^{-10})^3}{(10^{-15})^3}$$
 [Beware $\frac{10^{-27}}{10^{-42}}$] (1)

Density of gold nucleus:

$$1.9 \times 10^{19} \text{ kg m}^{-3}$$
 (1)

Assumption:

Mass nucleus = mass atom OR electrons negligible/zero mass (1)

1

3

33. Graphs:

34.	<i>N–Z</i> grid		
	Sr at 38, 52 (1)		
	Y at 39, 51 [e.c.f. Sr incorrect \rightarrow 1 diagonal move] (1)	2	
	Rb at 37, 45 (1)		
	Decays by β^+ emission/positron/ α (1)	2	Г 4 1
			[4]
35.	Charge on strange quark = $-1/3$ (1)	1	
	Conservation law:		
	Charge $-(-1) + (+1) \rightarrow (0) + X/by$ charge conservation (1)		
	X is neutral (1)	2	
	Particle X is a meson (1)		
	Baryon number conservation $(0) + (+1) \rightarrow (+1) + (0)$ (1)	2	
	OR discussion in terms of total number of $q + \overline{q} = 5$ OR $\Sigma q - \overline{q} = 3$		
	Composition of X is s \overline{d} [0/3 if not q \overline{q}](1)		
	Justify S quark:		
	This is not a weak interaction/only a weak interaction can change quark type/this is a strong interaction/strangeness is conserved/ quark flavour cannot change (1)		
	Justify d quark:		
	X neutral; $s - 1/3$; $d + 1/3$. [e.c.f. if $s = -1/3$ in first line.]		
	For the third mark accept any $q \overline{q}$ pair that creates a meson of the charge deduced for X above. (1)	3	
	[The justification for both q and \overline{q} can be done also by tracking individual quarks]		[8]
36.	Antiparticles:		
	e^+ (positron) \overline{c} (Charmed antiquark) (1)(1)	2	
	[Also accept either π^+ OR π^- as long as it is stated that one is the antiparticle of the other, i.e. NOT just π^+ OR π^-]		
	Zero charm, since quarks have equal and opposite charm OR $(+1)$ (1) charm + (-1) charm = 0 [Not equal and opposite charge]	1	
	Heavier version by \overline{c} and c moving round each other/orbiting with (1) higher energy level	1	

Diagram:

$$\begin{array}{c} B & \pi^{+} \text{ OR } \pi^{-} \\ C & \pi^{-} \text{ OR } \pi^{+} \end{array}$$
(1)
$$\begin{array}{c} C & \pi^{-} \text{ OR } \pi^{+} \end{array}$$

$$\begin{array}{c} 2 \\ \text{Interaction: strong (1)} \\ \text{Exchange particle: gluon (1)} \\ \text{[e/m (0) but ecf } Z^{\circ} (1)] \end{array}$$

Potential difference = $\frac{\text{work/energy}}{\text{charge}}$ OR $\frac{\text{power}}{\text{current}}$ 37. (a) OR in words: work done in moving 1 coulomb of charge between two points. (1) 1 Unit: volt OR J C^{-1} OR V (1) 1 Base units: kg m² A⁻¹ s⁻³ (1)(1) 2 [2/2 possible even if final answers wrong for recognising that As = C J = Nm] (b) Explain half life: some isotope is removed from the body by biological 1 processes/decay [OR a specific example, e.g. by excretion] (1) Effective half–life $\frac{1}{t_e} = \frac{1}{8} + \frac{1}{21}$ (1) $t_e = 6$ (days) (5.8) [139 hours, 500 524 seconds] (1) 2 Number of days: $1/8 \text{ is } (1 \rightarrow \frac{1}{2} \rightarrow \frac{1}{4} \rightarrow 1/8)$ 3 half-lives (1) so 18 (days) [17] (1) 2 Reason for γ : Can be detected outside the body OR less strongly ionising than α or β OR weakly ionising/does not interact with tissue (1) 1 Property: Must be chemically appropriate for take up by the organ/part of the body

concerned/non-toxic/pure γ /equivalent (1)

1

[8]

(c)	Quality of written communication (1)				
	Any three from:				
	• Coupling medium excludes air between transmitter and body (1)				
	• Z _{air} and Z _{body} very different (1)				
	• Ultrasound strongly reflected at skin / equivalent (1)				
	• Little ultrasound reaches organs being investigated (1)	Max 3			
	Coupling medium:				
	Water/gel/Vaseline/equivalent (1)	1			
	Calculation:				
	Distance = speed \times time [or use of] (1)				
	= $1.5 \times 10^3 \text{ m s}^{-1} \times 135 (\times 10^{-6}) \text{ s}$ (1)				
	[Accept 90 \rightarrow 180] [i.e. 50 (1.8 \rightarrow 3.6)]				
	$= 200 \times 10^{-3} \text{ m} [\pm 10]$ (1)				
	Head = $\frac{1}{2} \times \text{this} = 0.10 \text{ m}$ [e.c.f.] (1)	4			
(d)	Appropriate voltage:				
	kilovolt range [Not keV] (1)	1			
	Anode rotated:				
	so heat spread out/not just one point (1)	1			
	Tube evacuated:				
	So no collisions/obstruction/scattering of electrons with air molecules OR by atoms/particles OR equivalent (1)	1			
	Appropriate material:				
	Lead (1)	1			
(e)	Heterogeneous - containing X-rays of many wavelengths/ energies/frequences/	uencies (1)			
	Hardening – removing lower energy/longer wavelength X–rays OR increase average energy OR make more penetrating OR improve quality [Beware "increase energy"] (1)				
	Graph:				

λ

[Identical shape shifted left or right, 0/3]

----- Less area enclosed (1)

(Almost) the same at small λ (1)

(Much) lower at long λ (1)

More penetrating because:

The remaining X-rays have a higher <u>average</u> energy OR shorter average wavelength (1) Any one of: \cdot

- Long λ attenuated more than short λ
- Low E attenuated more than high E
- The beam is harder
- The beam is of higher quality (1) 2

Beneficial since:

Low energy X–rays are absorbed by patient (1) Filtering reduces dose/equivalent to patient (1)

[Many will say much more than this which effectively implies these two points]

[32]

2

1

2

2

1

1

38.	Potential difference = $\frac{\text{work/energy}}{\text{charge}}$ OR $\frac{\text{power}}{\text{current}}$		
	OR in words: work done in moving 1 coulomb of charge between two points. (1)	1	
	Unit: volt OR J C^{-1} OR V (1)	1	
	Base units: $kg m^2 A^{-1} s^{-3}$ (1)(1)	2	
	[2/2 possible even if final answers wrong for recognising that $As = C$ J = Nm]		[4]
39.	Explain half life: some isotope is <i>removed</i> from the body by biological		

59 .	Explain half life: some isotope is <i>removed</i> from the body by biological
	processes/decay [OR a specific example, e.g. by excretion] (1)
	1 1 1

Effective half–life $\frac{1}{t_e} = \frac{1}{8} + \frac{1}{21}$ (1)

 $t_{\rm e} = 6 \text{ (days)} (5.8) [139 \text{ hours, } 500 \text{ 524 seconds}] (1)$

Number of days:

1/8 is $(1 \rightarrow \frac{1}{2} \rightarrow \frac{1}{4} \rightarrow 1/8)$ 3 half-lives (1)

so 18 (days) [17] (1)
Reason for γ:
Can be detected outside the body OR less strongly ionising than α or β
OR weakly ionising/does not interact with tissue (1)

Property:

Must be chemically appropriate for take up by the organ/part of the body concerned/non–toxic/pure γ /equivalent (1)

[7]

40.	Quality of written communication (1)		
	Any three from:		
	• Coupling medium excludes air between transmitter and body (1)		
	• Z _{air} and Z _{body} very different (1)		
	• Ultrasound strongly reflected at skin / equivalent (1)		
	• Little ultrasound reaches organs being investigated (1)	Max 3	
	Coupling medium:		
	Water/gel/Vaseline/equivalent (1)	1	
	Calculation:		
	Distance = speed \times time [or use of] (1)		
	= 1.5×10^3 m s ⁻¹ × 135 (× 10 ⁻⁶) s (1)		
	[Accept 90 \rightarrow 180] [i.e. 50 (1.8 \rightarrow 3.6)]		
	$= 200 \times 10^{-3} \text{ m} [\pm 10]$ (1)		
	Head = $\frac{1}{2} \times \text{this} = 0.10 \text{ m}$ [e.c.f.] (1)	4	
			[8]
<i>4</i> 1	Annronriate voltage:		
71.	kilovolt range [Not keV] (1)	1	
	Anode rotated:	1	
	so heat spread out/not just one point (1)	1	
	Tube evacuated:	1	
	So no collisions/obstruction/scattering of electrons with air molecules OR by atoms/particles OR equivalent (1)	1	
	Appropriate material:		
	Lead (1)	1	
			[4]
40		(1)	
42.	Heterogeneous – containing X–rays of many wavelengths/ energies/ frequencie	es (1)	
	Hardening – removing lower energy/longer wavelength X–rays OR increase average energy OR make more penetrating OR improve quality [Beware "increase energy"] (1)	2	
	Graph:		
	I		

	[Ide	ntical s	hape shifted left or right, 0/3]		
	(1 1	Les	ss area enclosed (1)		
	(Aln	nost) tr	the same at small λ (1)	2	
	(Mu	ch) lov	ver at long λ (1)	3	
	Mor	e penet	trating because:	.1	
	The	remain	ning X-rays have a higher <u>average</u> energy OR shorter average wavele	ength (1)	
	Any	one of	ά. ·		
	•	Long	g λ attenuated more than short λ		
	•	Low	E attenuated more than high E		
	•	The	beam is harder		
	•	The	beam is of higher quality (1)	2	
	Bene	eficial	since:		
	Low	energy	y X-rays are absorbed by patient (1)	2	
	Filte	ering re	duces dose/equivalent to patient (1)	2	
	[Ma	ny will	say much more than this which effectively implies these two points]	[9]
43.	(a)	(i)	± 2 of supervisor's value (1)		
			$D \pm 1 \text{ mm of supervisor, } + \text{unit } (1)$		
			Suitable method for D using set squares (1)(1) [Use of 1 set square can get (1) or slide rule/set square between tur	ms]	
			$\pm 1 \text{ mm of supervisor} + \text{unit (1)}$		
			Repeats for <i>D</i> and <i>l</i> [shown and averaged] (1) [Penalise units <u>once</u> only]	6	
		(ii)	<i>L</i> found correctly with unit and symbol ≥ 2 significant figures (1)		
			<i>d</i> found correctly with unit and ≥ 2 significant figures (1) [but allow $21 \div 30 = 0.7$ mm]		
			<i>V</i> found correctly with unit and ≥ 2 significant figures (1) [No e.c.f. – can only get this mark if <i>L</i> and <i>d</i> correct]	3	
		(iii)	Correct calculation based on sensible m (1)		
			2/3 significant figures + unit (1)		
			(7000 – 9000) kg m ⁻³ (1) [No e.c.f. but ignore unit]	3	
	(b)	(i)	$R(0.5-1.5) \Omega + unit (1)$		
			"Zero" checked (1)		
			Good contact (1)		
			Avoid "shorting" (1) [Any 2 precautions – can be <u>inferred]</u>	Max 3	

	(ii)	Correct substitution [i.e. consistent units] (1)	
		Correct calculation to 1 or 2 significant figures (1)	
		Value $(1.0 - 3.0) 10^{-7} \Omega m$ [but with consistent unit] (1)	3
(c)	Newt	ton meter vertical [diagram or stated] OR zero checked (1)	
	Clean [i.e.] OR s [appr	r indication that stretched length = distance between nails (1) 150 mm] tretched length of coiled part of spring roximately 120 mm]	
	Good	l technique for making this measurement using nails	
	Sensi	ible value for x, with unit (1)	
	by di	fferent method (1)	
	Sensi	ible F + unit (1)	
	Corre	ect calculation of energy with unit [no e.c.f. if F and x clearly wrong] (1	l)
	[Allo	w Nm, but not N cm, N mm]	Max 6
Samp	ole resi	ults:	
(a)	(i)	<i>N</i> = 31	
		<i>D</i> /mm: 15, 15, average 15 mm	
		<i>l</i> /mm: 22, 22, average 22 mm	
	(ii)	$L = (31 + 4)\pi \times 0.015 \text{ m}$	
		$= 35\pi \times 0.015 \text{ m}$	
		= 1.65 m	
		$d = 22 \div 31 \text{ mm}$	
		= 0.71 mm	
		$V = \frac{\pi (0.71 \times 10^{-3})^2 \times 1.65}{4} \text{ m}^3$	
		$= 6.5 \ 10^{-7} \ \mathrm{m}^3$	
	(iii)	m = 5.10 g	
		Density = $\frac{m}{V} = \frac{5.10 \times 10^{-7} \text{ kg}}{6.5 \times 10^{-7} \text{ m}^3}$	
		$= 7800 \text{ kg m}^{-3}$	
(b)	(i)	Leads shorted by connecting crocodile clips (zero error = 0.3Ω)	
		Coil gripped <u>tightly</u> , $R = 1.1 \Omega$	
		$R = 1.1 - 0.3 = 0.8 \ \Omega$	
		$0.8 \times (0.71 \times 10^{-3})^2$	

(ii)
$$\rho = \frac{0.8 \times (0.71 \times 10^{-7})}{4 \times 31 \times 0.015}$$

= 2.2 10⁻⁷ Ωm

_

Hook spring on to Newton meter and keep just above nail. (c) Hook spring over nail and hold tightly Stretched length of spring = 150 mmUnstretched length = 54 mm \therefore extension *x* = 96 mm Applied force F = 2.7 N \therefore energy stored $\frac{1}{2}Fx = \frac{1}{2} \times 2.7 \times 0.096$ = 0.13 J44. Table with columns headed with quantities and units (1) (a) (i) Reading every ¹/₂ minute or better OR timed for every 1°C fall (1) Start \geq 80 °C and finish \leq 70 °C (1) Concave curve established (1) 4 Graph: (ii) Scale [more than $\frac{1}{2}$ grid in both directions, avoiding scales of 3 etc; (1) allow 60 s per square] Axes [labelled, with units] (1) Plots [accurate to $\frac{1}{2}$ division] (1) Line [smooth curve] (1) 4 (iii) Good tangent at 75° C [must be a curve for this mark] (1) Large $\Delta \left[\Delta x \Delta y \ge 64 \text{ cm}^2 \right]$ (1) Correct calculation + unit and > 2 significant figures [ignore sign] (1) Correction + unit [W or $J s^{-1}$] (1) 4 (b) (i) Temperature sensor (1) Data logger (1) Computer (1) [-1 if no arrows] 4 $\leq 30 \text{ s}(1)$ (9.3 - 9.4) V + unit (1) (ii) Potential divider [not series rheostat] OR labelled [or with arrow] variable power supply (1) Heater (1) Voltmeter (1) If voltmeter in series with heater can only get first mark] 4 (iii) Any two from:

Leave datalogger operating overnight OR set time for 12 - 24 h (1)Sampling rate $\leq 30 \min (1)$ Download data to computer next morning (1) Any two reasons: (1)(1)

- variation of room temperature
- evaporation of water
- fluctuations in power supply

[NB "heat lost from beaker" is not a reason]

[24]

4

Sample results:

(a) (i)

<i>t</i> /min	$\theta \circ C$
0.0	85.0
0.5	83.0
1.0	81.0
1.5	79.5
2.0	78.0
2.5	77.0
3.0	75.5
3.5	74.5
4.0	73.5
4.5	72.5
5.0	71.5

Sampling rate of every 10 s would give 30 readings in 5 minutes

p.d. = 9.4 V (ii) Diagram: Set p.d. to 9.4 V as read off from curve Set data logger to record for 24 h at sampling rate of every 30 min (iii) Reasons: variation of room temperature • • evaporation of water fluctuations in power supply . *l* and $w \pm 2$ mm of supervisor [must be mm or better precision] (1) (a) (i) Both repeated and averaged (1) $t \pm 0.03$ mm of supervisor from at least two readings and to 0.01 mm or better (1)(1) [Average values may be used in formula for V] $[\pm 0.05 \text{ from } 2(1); \pm 0.03 \text{ from } 1(1)]$ Zero error OR \geq 4 readings of *t* (1) Any one explanation – see sample results (1) (ii) Correct calculation + unit [e.c.f. wrong l, w or t] (1) 2 or 3 significant figures from correct calculation (1) Value obtained is for edges only (1) so cut/fold card into smaller pieces/use longer reach micrometer (1) and measure the thickness of, say, 20 pieces to get a better average (1) [larger number or > 10 specified] Max 2 (b) Set up correctly without help (1)(1) (i) [Ignore wrong polarity] Sensible value of ε to 0.01 V or better (1) (ii) Sensible value of V to 0.01 V or better (1) [Unit must be seen at least once] Correct calculation of *I* with unit and > 2 significant figures (1) (iii) [e.c.f. from V] Correct use of, and substitution in, formula (1)

45.

Correct calculation with unit and 2/3 significant figures (1) 3 [Allow e.c.f.]

6

2

2

2

(c) (i) Sensible θ_1 and θ_2 recorded with unit (1) [Minimum value of θ_1 to be 10 °C; maximum temperature rise, 15 °C]

Correct substitution [consistent units] (1)

Correct calculation with unit (1)

Value 300 – 500 (1)(1) [Value 200 – 600, (1)] [Value mark only scored from correct calculation]

5

- (ii) Any two sources of error:
 - loss of heat from washers at transfer (1)
 - washers may not be at 100 °C (1)
 - some water transferred with washers (1)
 - heat lost from cup to surroundings (1)
 - some heat gained by cup (1)
 - some heat gained by thermometer (1)

2

[Not parallax in thermometer reading; generally not measurement errors]

Sample results:

(a) (i) *l*/mm: 297, 297, average: 297 mm

w/mm: 211, 211, average: 211 mm

t/mm: 0.98, 0.94, 0.96, 0.93, 0.94, average: 0.95 mm [No zero error on micrometer]

Minimises error

in dimensions (particularly thickness)

Eliminates anomalous/rogue readings

(ii)
$$m = 37.2 \text{ g}$$

$$\rho = \frac{m}{V} = \frac{37.2 \times 10^{-3}}{0.297 \times 0.211 \times 0.95 \times 10^{-3}}$$

 $= 625 \text{ kg m}^{-3}$

Value obtained is for edges only,

so cut/fold card into smaller pieces/use longer reach micrometer and measure the thickness of, say, 20 pieces to get a better average (b) (i) Circuit set up correctly

(ii)
$$\varepsilon = 1.52 \text{ V}$$

 $V = 1.32 \text{ V}$
(iii) $I = V \div R = \frac{1.32 \text{ V}}{4.7 \Omega}$
 $= 0.281 \text{ A} [281 \text{ mA}]$
 $r = \frac{\varepsilon - V}{I} = \frac{1.52 - 1.32}{0.281}$
 $= 0.71\Omega$
(i) $\theta_I = 18.5 \text{ °C}$
 $\theta_2 = 23.3 \text{ °C}$
 $m_s = 36 \text{ g}$
 $c_s = \frac{0.050 \times 4200(23.3 - 18.5)}{0.036 \times (100.0 - 23.3)}$
 $= 365 \text{ J kg}^{-1} \text{ K}^{-1} [\text{ J kg}^{-1} \text{ °C}^{-1}]$
 $[0.365 \text{ J g}^{-1} \text{ K}^{-1}]$
(ii) Any two sources of error:
• loss of heat from washers at transfer
• washers may not be at 100 °C
• some water transferred with washers
• heat lost from cup to surroundings

- some heat gained by cup
- some heat gained by thermometer

[24]

4

3

46. (a) Average of *t* found from \ge 3 runs and average found with units (1)(1)

 $[2 \text{ runs} \rightarrow (1)]$

2.0 s – 5.0 s (1)

[Systematic error in *t*, do not award third mark]

[All measurements to nearest second⁻¹]

Correct calculation and unit to ≥ 2 significant figures (1)

(b) Diagram clearly showing distance travelled [could be from base of mass to ground] (1)

Using same point on trolley or falling mass (1)

Good method for determining starting and stopping positions of trolley, e.g. eye level, block on bench, etc. (1)

(c)	Correct re–arrangement (1)				
	Corre	ect substitution (SI units) (1)			
	Corre	ect calculation with unit and ≥ 2 significant figures (1)	3		
(d)	Sens	ible $\Delta m > 30$ g OR max value of $m(100 \text{ g})$ (1)			
	Aver	rage t found from ≥ 3 runs (1)(1)			
	[From	$m 2 \rightarrow (1)$]			
	Corre	ect calculation (of <i>a</i>) and <i>F</i> , with units for <i>F</i> and ≥ 2 significant figures (1)	I) 4		
(e)	Corre	ect percentage difference with mean or either value as denominator (1)			
	Sens	ible conclusion based on where less or more than 10% (1)	2		
	[Allo	by modulus if one F positive and the other negative]			
(f)	(i)	Keep M constant OR keep x constant [or measure x] (1)			
		Use range of value of <i>m</i> (1)			
		Find corresponding <i>t</i> (1)			
		Calculate acceleration (1)			
	(ii)	Axes labelled (1)			
		Correct line (1)			
		-F shown on graph OR dotted extrapolation OR F with negative sign stated in part (iii) (1)			
	(iii)	Gradient = $g(1)$			
		Intercept = $-F$ [Ignore sign] (1)			
		[Accept numerical values from (c) or (d) without units] N	lax 8		
Sam	ple rest	ults:			
(a)	m = 4	40 g [i.e. 30 g added to hanger]			

$$t/s: 3.9, 4.3, 4.2, 3.9, 4.1$$
 average = 4.08 s

$$a = \frac{2 \times 0.500}{4.08^2}$$

 $= 0.060 \text{ m s}^{-2}$

(b) Diagram:

Pulley may be used as end point

(c)
$$(M = 2.42 \text{ kg})$$

 $F = mg - (M + m) a$
 $= (0.04 \times 9.81) - (2.42 + 0.04) \times 0.060$
 $= 0.392 - 0.147 \text{ N}$
 $= 0.24 \text{ N}$
(d) $m = 80 \text{ g}$
 $t/s = 2.0, 2.3, 2.1, 2.4, 2.3 \text{ Average } t = 2.22 \text{ s}$
 $a = \frac{2 \times 0.500}{2.22^2}$
 $= 0.20 \text{ m s}^{-2}$
 $F = 0.08 \times 9.81 - (2.42 + 0.08) \times 0.20$
 $= 0.785 - 0.500$
 $= 0.28 \text{ N}$
(e) Percentage difference $= \frac{0.28 - 0.24}{0.26} \times 100\%$
 $= 15\% (> 10\%)$

So *F* cannot be considered as constant

(iii) Gradient = gIntercept = -F

[24]

	(b)	Earth temperature 0 -39° C/280 - 300 K $\rightarrow \lambda_{max} = 1.4/1.3 \times 10^{-5}$ m or 14/13 µm	2	
		Graph line:		
		Gradually rising line [no peak before $10 \ \mu m$] Never getting higher than a quarter of Sun	2	
	(c)	Giant stars and white dwarfs marked on diagram	2	
		5000 K	1	
		Approximately $10^2 \times 3.9 \times 10^{26} \text{ W} = 3.9 \times 10^{28} \text{ W}$	2	
		Power = σAT^4 4 × 10 ²⁸ W = 5.7 × 10 ⁻⁸ W m ⁻² K ⁻⁴ × A × 10 000 K ⁴ ∴ A = 7.0 × 10 ¹⁹ m ²		
		$(4\pi r^2 = A :: r = \sqrt{\frac{7.0 \times 10^{19} \text{ m}^2}{4\pi}} = 1.2 \times 10^9 \text{ m}$	4	
	(d)	Steady burning on main sequence for a long time (1) Core reaction pushes outer layers out (1) Red giant/outer layers lost (1) (Core) remnant becomes white dwarf (1)	Max 3	
		Quality of written communication	1	
	(e)	(i) 0.1 μm –1 μm 5 μm –50 μm		
		Advantages:		
		Higher quantum efficiency/responds to individual photons No need to replace/can be used repeatedly [One mark for operates more quickly]	4	
		(ii) $L = km^{3.5}/L \propto m^{3.5}$ 2.3 ^{3.5} = 18.45/18.5/18 [not 20]	3	
		 Below a certain mass the core temperature is not high enough for fusion/hydrogen burning 	2	[32]
48.	(a)	Ability of a material to withstand a force without breaking, independent of sample dimensions	1	
		Stress-strain graph:		
		Axes (Stress on ordinate, strain on abscissa) Shape	2	
		Labels in correct places	3	
	(b)	Attempt to use principle of moments $\rightarrow T_1 = 200 \text{ N} \text{ [e.g1 for a.c.]}$ and $T_2 = 360 \text{ N} \text{ [e.c.f.]}$		

(c)	Young modulus = $\frac{Fl}{4r}$				
	$=\frac{1}{\pi}$				
	= 1.9	3			
	Ener				
	Volu				
		$=\frac{280\times4\times10^{-6}\mathrm{m}}{\pi\times0.0175^{2}\mathrm{m}^{2}\times0.39\mathrm{m}}$			
	= 2.9	8 J m ⁻³	4		
(d)	Half plane displaced and labelled		4		
	In perfect crystal, all bonds under same force/ (1) all must fail at same time (1) with dislocations one bond/line can fail at a time (1)		Max 2		
	Quali	ty of written communication	1		
(e)	(i)	Creep:			
		Continued/continual (acting over time) Strain/extension/deformation when subject to constant/fixed force/stress	3		
	(ii)	N m ^{-2} and kg m ³ (1) Use of N as kg m s ^{-2} (1)			
		For plastic(s) $E/\rho = \frac{1}{5} \times 1.5 \times 10^7 \mathrm{m^2 s^{-2}}$ (1)			
		$= 3 \times 10^{6} \text{m}^{2} \text{s}^{-2}$ $\therefore E \text{ plastic} = (3 \times 10^{6} \text{m}^{2} \text{s}^{-2}) (910 \text{ kg m}^{-3}) (1)$ $= 2.7 \times 10^{9} \text{N m}^{-2}/\text{Pa} (1)$	Max 4		
	(iii)	A material which uses the properties of two (or more) materials Fibre (composite)	2		

49. (a) Gluon

Weak Electromagnetic Gravitational Gravitational circled

5

[32]
(b) Marks for words in italics as shown below.

	Alpha scattering	Deep inelastic scattering
Target	Gold atoms	Hydrogen atoms
Incoming particles	Alpha particles	Electrons
Provided evidence for the existence of	Nuclei	Quarks

(c) Ω- is a baryon [no mark] p is a baryon/need to conserve baryon number Strangeness – 3 needs three quarks
p is uud Ω- is sss All Ks quark-antiquark pairs
K- is us K+ is us K⁰ is ds [all right]

(d)
$${}^{19}_{8}\text{O} \rightarrow {}^{19}_{9}\text{X} + {}^{0}_{-1}e / {}^{0}_{-1}\beta + \overline{v}$$

No of electrons/ beta particles

|--|--|--|

Energy

	Labe Hum Goo	els (1) np (1) d shape (1)	Max 2
	Deca Spre Mea for e Qual	ay process has fixed/definite/one energy (1) ead of energies (1) ins some energy has gone elsewhere (1) energy to be conserved (1) lity of written communication (1)	Max 4
(e)	(i)	Lots of energy needed to produce the extra mass	2
	(ii)	Conservation laws:	
		charge lepton number baryon number	3

2

4

(iii) They annihilate one another giving rise to $\gamma \operatorname{ray}/\gamma$ photon

50.

Energy of γ ray	
= 2(0.00055) (930 MeV)	
= 1.0/1.02/1.023 MeV	

4

[32]

(a)	P = I = 780	$W = (65 \times 10^{3} \text{V}) (120 \times 10^{-3} \text{A})$ O W		
	Corre	ect use of 99.2 %/0.992		
	\rightarrow ra	te of heat production = $770/773.6$ W	3	
(b)	(Ave (Av.)	rage) time for $\frac{1}{2}$ specified nuclei in a sample to decay. time for $\frac{1}{2}$ the chemical in an organ to be metabolised/excreted	2	
	Depe and n	ends on metabolic rate which varies between organs netabolic rate also depends on activity of patient	2	
(c)	Injec Add After Com	t radioactive tracer (1) equal amount of tracer to known volume of water (1) a time/20 min take blood sample (1) pare activity of sample with that of an equal volume of water (1)		
	Qual	ity of written communication	Max 3	
			1	
	Anv	suggestion of four half-lives		
	Appr	oximately 6%	2	
	131 T			
	531-	$\rightarrow \frac{5}{54} Xe + \beta + \gamma$	2	
	I-131			
	Has (3		
	More	e damage to tissue	3	
(d)	(Spec	cific) acoustic impedance	1	
	Z ₁ -Z	Z_2 large for empty bladder		
	Refle	ected signals strong		
	Insuf	ficient transmitted	3	
	No ti	ssue damage/can discriminate between soft tissues	1	
(e)	(i)	1 μ s is 1 \times 10 ⁻⁶ s (not just 10 ⁻⁶) 3.5 MHz is 3.5 \times 10 ⁶ Hz Moves in and out 3.5 times (in 1 μ s)		
		Graph: 3 ¹ / ₂ cycles of sin/cos graph		
		each about 0.3 μs on axis	5	
	(ii)	$f \propto \frac{1}{\lambda} / \lambda^{-1}$ / inversely proportional		
		High frequency means small wavelength		
		which enables smaller detail to be seen/resolved	3	
	(iii)	Investigation: eye depth/length	1	
				[32]

51.	Radi Visił	o Jle	2	
	Exan	nples of benefits:		
	Incre No a	ased clarity tmospheric refraction/scattering		
	Incre No a	ased range of wavelengths tmospheric absorption	4	[6]
52.	Earth $\rightarrow \lambda_{I}$	temperature 0 -39° C/280 - 300 K _{nax} = 1.4/1.3 × 10 ⁻⁵ m or 14/13 µm	2	
	Grap	h line:		
	Grad Neve	ually rising line [no peak before 10 μm] or getting higher than a quarter of Sun	2	[4]
53.	Gian	t stars and white dwarfs marked on diagram	2	
	5000	K	1	
	Аррі	roximately $10^2 \times 3.9 \times 10^{26} \text{ W} = 3.9 \times 10^{28} \text{ W}$	2	
	Powe 4×1 $\therefore A =$	$er = \sigma AT^{4}$ $0^{28} W = 5.7 \times 10^{-8} W m^{-2} K^{-4} \times A \times 10\ 000\ K^{4}$ $= 7.0 \times 10^{19} m^{2}$		
	(4πr²	$=A :: r = \sqrt{\frac{7.0 \times 10^{19} \mathrm{m}^2}{4\pi}} = 1.2 \times 10^9 \mathrm{m}$	4	[9]
54.	Stead Core Red	ly burning on main sequence for a long time (1) reaction pushes outer layers out (1) giant/outer layers lost (1)		
	(Cor	e) remnant becomes white dwarf (1)	Max 3	
	Qual	ity of written communication	1	[4]
55.	(a)	0.1 μm –1 μm 5 μm –50 μm		
		Advantages:		
		Higher quantum efficiency/responds to individual photons No need to replace/can be used repeatedly [One mark for operates more quickly]	4	
	(b)	$L = km^{3.5}/L \propto m^{3.5}$		
		2.33.5 = 18.45/18.5/18 [not 20]	3	

	(c)	Below a certain mass the core temperature is not high enough for fusion/hydrogen burning	2	[9]
56.	Abil inde	ity of a material to withstand a force without breaking, pendent of sample dimensions	1	
	Stre	ss-strain graph:		
	Axe Shaj	s (Stress on ordinate, strain on abscissa)	2	
	Labo	els in correct places	3	[6]
57.	Atte $\rightarrow T$ and	mpt to use principle of moments $T_1 = 200 \text{ N} \text{ [e.g1 for a.c.]}$ $T_2 = 360 \text{ N} \text{ [e.c.f.]}$		[4]
58.	You =	ng modulus = $\frac{Fl}{Ax}$ 350N × 0.39m		
	π	$\times 0.0175^2 \mathrm{m}^2 \times 5 \times 10^{-6} \mathrm{m}$		
		$= 1.9 \times 10^{11} \text{ N m}^{-2}$	3	
	Ene Vol	ume		
	=	$280 \times 4 \times 10^{-6} \mathrm{m}$		
	π	$\times 0.0175^{2} \text{ m}^{2} \times 0.39 \text{ m}$		
	= 2.9	98 J m ⁻³	4	[7]
59.	Half and	plane displaced labelled	4	
	In po all n with	erfect crystal, all bonds under same force/ (1) nust fail at same time (1) dislocations one bond/line can fail at a time (1)	Max 2	
	Qua	lity of written communication	1	[7]
60.	(a)	Creep:		
		Continued/continual (acting over time) Strain/extension/deformation when subject to constant/fixed force/stress	3	

- (b) N m⁻² and kg m³ (1) Use of N as kg m s⁻² (1) For plastic(s) $E/\rho = \frac{1}{5} \times 1.5 \times 10^7 \text{ m}^2 \text{s}^{-2}$ (1) $= 3 \times 10^6 \text{m}^2 \text{s}^{-2}$ $\therefore E$ plastic = (3.× 10⁶ m² \text{s}^{-2}) (910 kg m⁻³) (1) $= 2.7 \times 10^9 \text{N m}^{-2}/\text{Pa}$ (1) Max 4 (c) A material which uses the properties of two (or more) materials Fibre (composite) 2
- 61. Gluon Weak Electromagnetic Gravitational Gravitational circled
- **62.** Marks for words in italics as shown below.

	Alpha scattering	Deep inelastic scattering
Target	Gold atoms	Hydrogen atoms
Incoming particles	Alpha particles	Electrons
Provided evidence for the existence of	Nuclei	Quarks

[4]

[9]

[5]

63.	 Ω- is a baryon [no mark] p is a baryon/need to conserve baryon number Strangeness – 3 needs three quarks 	2	
	p is uud Ω- is sss All Ks quark-antiquark pairs		
	K- is $us K^+$ is $us K^0$ is ds [all right]	4	[6]

67.	(Ave (Av.	erage) time for $\frac{1}{2}$ specified nuclei in a sample to decay.) time for $\frac{1}{2}$ the chemical in an organ to be metabolised/excreted	2	
	Depe and 1	ends on metabolic rate which varies between organs metabolic rate also depends on activity of patient	2	[4]
68.	Injec Add Afte Com	et radioactive tracer (1) equal amount of tracer to known volume of water (1) r a time/20 min take blood sample (1) pare activity of sample with that of an equal volume of water (1)	Max 3	
	Qual	ity of written communication	1	
	Any Appi	suggestion of four half-lives coximately 6%	2	
	¹³¹ ₅₃ I -	$\rightarrow^{131}_{54} \mathrm{Xe} + \beta^- + \gamma$	2	
	I-13 Has More	l β e damage to tissue	3	[11]
69.	(Spe	cific) acoustic impedance	1	
	Z ₁ – Refle Insut	Z ₂ large for empty bladder ected signals strong fficient transmitted	3	
	No t	issue damage/can discriminate between soft tissues	1	[5]
70.	(a)	1 μ s is 1 × 10-6 s (not just 10-6) 3.5 MHz is 3.5 × 106Hz Moves in and out 3.5 times (in 1 μ s) Graph: 3½ cycles of sin/cos graph each about 0.3 μ s on axis	5	
	(b)	$f \propto \frac{1}{\lambda} / \lambda^{-1} / \text{inversely proportional}$		
		High frequency means small wavelength which enables smaller detail to be seen/resolved	3	
	(c)	Investigation: eye depth/length	1	[9]
71.	(a)	 (i) Use of five coins in a row Set square or repeat 1p: 20.0 - 20.1 mm expressed to 0.1 mm 2p: 25.8 -28.6 mm expressed to 0.1 mm 	4	

(b) (i) Circuit set up correctly

If help:

- –1 potentiometer–1 ammeter
- -1 voltmeter

(ii)

V/V	I/A
0.0	0.00
0.5	0.49
1.0	0.63
1.5	0.72
2.0	0.81
3.0	0.97
4.0	1.11
6.0	1.37
8.0	1.58
10.0	1.78
12.0	1.96

 \geq 6 values, tabulated with units Good distribution up to 12 V Correct shape curve \geq 8 values \pm 0.04 A from curve

[5 - 7 gets (1)]

5

1

(iii) Graph on grid:

Plots Line

(iv) When V = 4.5 V, I = 1.17 A4 5V

$$R = \frac{4.3 v}{1.17 A} = 3.8 \Omega$$

Current read off at 4.5 V R, with unit

(v) "12 V" means the operating voltage of the lamp, , at which it will generate 24 W of power. This would mean a current of 2 A. The experimental value was 1.96 A, which differs by 2%, which is acceptable experimental error.

24 W at 12 V explained (1) Related to 2 A (1)

[24]

2

2

72. (a) (i) Correct trigonometric method Correct determination of θ Value of θ : 1.30° – 1.55°

A protractor could measure to 0.5° at best, giving a 30% uncertainty.

(ii) *t* found from at least 4 runs

Typical values t/s: 3.53, 3.64, 3.58, 3.66 t = 3.60 s

Short time/human error starting and stopping watch

$$a = \frac{2 \times 1.00}{3.60^2}$$
 Use of t_{av}
= 0.154 m s⁻²

(iii) $a = 0.71 \times 9.8 \times \sin 1.4$ = 0.174 m s⁻² [-1 once for incorrect or omitted units]

Percentage difference = $\frac{0.174 - 0.154}{0.174} \times 100\%$

= 11% air resistance sliding/skidding

(b) (i) Repeat the experiment by altering the angle θ of the slope and measuring the corresponding time *t* for the ball to run a distance of 1.00 m down the slope.

Calculate the corresponding acceleration a for each value of θ .

A straight line through the origin with gradient 0.71 g would be expected.

If the bench were not horizontal, the graph would still have a gradient 0.71 g but would not pass through the origin.

7

4

5

4

(ii) Diagram:

	Lamps Detectors Timer	
	Align detectors with light beam 1.00 m apart. As ball passes first beam it starts the timer and then stops the timer as it passes the second beam.	4
(a)	Similarities – any TWO from:	
	• both penetrate Earth's atmosphere	
	• same speed [Not "similar"]	
	• travel through vacuum	
	• transverse	
	• electromagnetic (2)	
	[Not a property general to ALL waves, e.g. "diffract"]	
	<u>Difference – any ONE from</u> : different wavelengths (OR frequencies) light absorbed/scattered by cosmic dust/atmosphere: radio not: must refer to <i>both</i> radio and light (1)	3
(b)	$\begin{array}{ll} \underline{Peak \ wavelengths:} \\ \beta \ Ori & 2.9 \times (10^{-3}) \ m \ K \\ & 1.1 \times (10^4) \ K (1) \\ & = 2.6 \times 10^{-7} \ m \ OR \ 260 \ nm \ (263 \ nm) (1) \end{array}$	
	$\alpha \text{ Cet}$ 8.1 × 10 ^o m OR 810 nm (805 nm, 800 nm) (1)	2
	[Penalise "Not nanometres" once only]	3
	Attempt to use σT^4 (5.67 and 1.1 ⁴ substituted) (1) = $8.3 \times 10^8 (W m^{-2})$ (1)	2
	<u>Labelled graph shows</u> : Ori peak at ~ 260 nm [e.c.f. their value] [Obviously to left of 400 nm] (1) Cet peak at ~ 800 nm [e.c.f.] [Obviously to right of 700 nm] (1)	
	Area Ori » area Cet [e.c.f. their power] (1) [Accept > 4 × height] [irrespective of λ]	3
	Explanation:[NB Refer to candidate's graph]Ori at blue end of spectrum; Ceti at red end (1)BOTH outside visible region [e.g. in ultraviolet, in infra-red, "near"] (1)	
	[Apply e.c.f. if wrong λ s above]	2

73.

[24]

(c) <u>Parallax diagram:</u>

Diagram labels:(Dark +) pale grey region: radiative zone (by radiation)(1)Unshaded region: convective zone/gas circulates(1)³/₄ R and ¹/₄ R labelled OR zig-zags in pale grey regionOR convection arrows in white region

[32]

3

74. (a) <u>Diagram:</u>

[Dotted lines indicate acceptable alternative positions] [Reaction force cancels mark] P and W correct at ¹/₄, ¹/₂ by eye (1) R and S at or close to ends (1) Origin of R and S e.g. "brick pillar" NOT "tension" (1)

(b) <u>Completion of table</u>:

(P)

Material	Young modulus/10 ¹⁰ Pa	Ultimate tensile stress/10 ⁸ N m ⁻²	Nature	
А	1.2 or 1.25	3.1 or 3.15 (< 3.2)	Tough	(2)
В	3.0	3.6	Brittle	

Line drawn on graph: straight and stops suddenly (1) at stress 3.6×10^8 N m⁻²) if not brittle, then peaks at this value) (1) (and strain 0.012) Correct gradient for straight region e.g. through 0.01, 3.0. (1) Hooke's law marked up to stress 2.7 to 2.9×10^{10} Pa [must be labelled] (1) Energy stored: [Accept stress in range $2.4 - 2.5 \times 10^{10}$ Pa] Factor $\frac{1}{2} \times$ (1) Extension = $0.020 \times 2.5 \text{ m}$ [0.05 m] (1) $F = 2.4 \times (10^8) \text{ N m}^{-2} \times 8.8 \times (10^{-7}) \text{ m}^2$ (1) $[210 \text{ N}; 220 \text{ N} \text{ if stress} = 2.5 \times 10^{10} \text{ Pa}]$ [5.5 J if using stress = 2.5×10^{10} Pa] [ue] = 5.25 J (1)

[For middle 2 marks candidates may use stress×strain×volume, credit 1 mark for calculating stress×strain $2.4 \times (10^8)$ N m⁻² × 0.020 and 1 mark for volume $8.8 \times (10^{-7})$ m² × 2.5 m]

3

2

3

1

4

Description: Idea that fibre composite is strands of something inside another material laminate is layers of different materials (1)	(1) 2
Reducing risk:Prestressed reinforced concrete as exampleFibre OR laminateQuality of language (1)Crack grows/moves/travels (1)until it reaches the boundary between layers/matrix material (1)Crack spreads along boundary/tip blunted/matrix yields (1)	Max 3
Diagram:Spaghetti-like arrangement [more than 1 strand](1)Individual strand labelled "molecule" or blob "atom"(1)	2
Atom Molecule/chain of atoms	
Difference:Thermoplastic softens on heating/can be remoulded/melts(1)[Not "becomes plastic"](1)Thermoset decomposes/burns/does not soften/remains rigid(1)Perspex is a thermoplastic(1)	2 1
Strain energy: is the energy stored /used/created/added/needed when a material is under stress/strained/loaded/stretched OR in stretched bonds OR is work done when stressed (1)	1
Why stress should not be beyond elastic limit: Must return to original length when unstressed OR must give up stored energy when unstressed OR must not deform permanently/plastically (1)	1
Car calculation: Substitution in mgh 1200 kg × 10 m s ⁻² [9.81]× 0.03 m (1) = 360 [350] J (1) 3 kg steel store 390 J OR 360 J needs 2.8 kg steel (1) [Can also be argued in terms of 390 J \rightarrow 3.3 cm]	3
	Description: Idea that fibre composite is strands of something inside another material laminate is layers of different materials (1)Reducing risk: Prestressed reinforced concrete as example Fibre OR laminate Quality of language (1) Crack grows/moves/travels (1) until it reaches the boundary between layers/matrix material (1) Crack spreads along boundary/tip blunted/matrix yields (1)Diagram: Spaghetti-like arrangement [more than 1 strand] (1) Individual strand labelled "molecule" or blob "atom" (1)Difference: Thermoplastic softens on heating/can be remoulded/melts (1) [Not "becomes plastic"] Thermoset decomposes/burns/does not soften/remains rigid (1) Perspex is a thermoplastic (1)Strain energy: is the energy stored /used/created/added/needed when a material is under stress/strained/loaded/stretched OR in stretched bonds OR is work done when stressed (1)Why stress should not be beyond elastic limit: Must return to original length when unstressed OR must give up stored energy when unstressed OR must not deform permanently/plastically (1)Car calculation: Substitution in mgh 1200 kg × 10 m s ⁻² [9.81]× 0.03 m (1) = 360 [350] J (1) 3 kg steel store 390 J OR 360 J needs 2.8 kg steel (1) [Can also be argued in terms of 390 J → 3.3 cm]

Tendons:		
Will store 0.4 m × 2500 N /(1000) J	(1)	
$\Delta h = 1.3 \text{ m} [1.4 \text{ m}]$ [e.c.f. their energy	$\div (75 \times 10[9.81])$	(1)

[u.e.]

2

2

1

2

3

Sketch graph:

F/stress Load Unload

x/strain

Axes and shape + load line (1) Arrow heads/labels + unload line (1) [Beware inverted axes]

75. (a) <u>Similarity – any ONE from:</u>

- both nuclear decay products
- both charged/ionise/damage tissue
- both have momentum
- both deflected by E fields
- by B fields (1)

[Not both particles]

Differences - any TWO from:

- β fundamental, α not
- mass $\alpha >>$ mass β [NB much greater]
- α positive, β either
- β a lepton, α composed of hadrons
- α is He⁺⁺, β is e⁺ or e⁻ (2)

[A difference must mention BOTH particles] [If discussing spectrum shape needs "given source" idea]

(b) Show that: Radius proportional to $A^{1/3}$ [Accept $(47/7)^{1/3}$] (1) $(\text{Ratio}) = (108/14)^{1/3}$ (1) Evidence of valid working leading to ≈ 2 [e.g. not $r_0 = 1$, not $4/3\pi r^3 = 108$] (1) Explanation: Quality of written communication (1) Energy per decay is constant (1) β^{-} has a range of energies (1) Must be another particle to take missing energy (1) [32]

Sketch graph:

(c)

[Be generous re shape in this instance but beware inverted axes]		Max 4
Atom is neutral (1) Quark composition is $\overline{uu}\overline{d}$ (1) Antiproton is $(-2/3) + (-2/3) + (+1/3) (= -1)$ (1)		3
Explanation: As soon as it touches the container/matter (1) (Matter and antimatter) annihilate (1) [Not "cancel"; not "react"]		2
Completion of table:		

	Quarks		Charge
up	charm	ТОР	+2/3
down	strange	BOTTOM	-1/3

[OR TRUTH & BEAUTY] [Both needed for 1 mark]

- (i) Neutral strange meson: $s\overline{d} OR d\overline{s}$ (1)
- (ii) Positive charmed meson: $c \overline{d} OR c \overline{s}$ (1)
- (iii) Neutral strange baryon: uss/css/uds/cds OR any of their antiparticles, e.g. $\overline{u} \ \overline{s} \ \overline{s}$ (1)
- (d) <u>Conservation laws:</u>
 - (i) Charge: (-1) + (+1) = (0) + (-1) + (+1) + (0) (1) Baryon number: (0) + (+1) = (+1) + (0) + (0) + (0) (1) [So possible, no mark]
 - (ii) Charge: (+1) + (+1) = (+1) + (+1) + (-1) (1) Baryon number: (+1) + (+1) = (+1) + (+1) + (-1) (1) [So possible, no mark]

```
(e)<u>Photon:</u><br/>Is a tiny packet of energy/of electromagnetic radiation(1)1Is exchange particle of e.m. interaction1
```

How virtual photons differ: Does not conserve energy 1

3

Completion of table:

Interaction	Exchange particle(s)	Mass of exchange particle(s)	Range of interaction	
Electromagnetic	Photon	0 ZERO Massless	INFINITE	(2)
Weak	$W^+ W^- Z^0$	$\approx 90 \times m_{\rm proton}$	< diameter nucleus	(1)

3

2

2

[32]

<u>Calculation of time</u> : $1.1 \times 10^{-34} \text{ J s} = 1.4 \times 10^{-8} \text{ J} \times t$ $t = 8 \times 10^{-27} \text{ s}[7.86]$	[Correct substitution] (1) [ue] (1)
<u>Estimation of range</u> : Distance = speed × time	
$= 3 \times 10^8 \text{ m s}^{-1} \times \text{their time} \qquad (1)$	
$= 2.4 \times 10^{-18} \text{ m}$ [2.36; 2.37]	[e.c.f][u.e.] (1)

76. (a) <u>Similarity – any ONE from</u>:

- Both nuclear decay products
- Both charged
- Both have momentum
- Both deflected by E fields
- By B fields
- Both ionise
- Damage tissue
- Both particles (1)

Differences - any TWO from:

- β fundamental α not
- Mass $\alpha \gg$ mass β [much greater than] (2)
- α positive, β either /two types β , 1 type α
- α is He⁺⁺ β is e⁺ or e α shorter range/ α greater ionising power

[A difference must usually mention BOTH particles] [If discussing spectrum, shape needs "given source" idea]

(b)	Completion	of table:
· · ·		

X-ray use	Typical accelerating voltage	Dependence of X-ray absorption on proton number	
Diagnosis	KILOVOLT RANGE [Penalise eV once]	STRONGLY / αZ^2 / αZ^3 /HIGH	(2)
Therapy	MEGAVOLT RANGE	LOW/WEAKLY/NO/ INDEPENDENT OF Z	(2)

	Explanation:(1)Use rotating beam/multiple beams/filters/vary profile/rotate patient so dose concentrated at particular place one (for filter] removes low energy rays energy rays (1)(1)But spread out over so less to surrounding tissue OR [for filter] careful comment about absorption of high E in tumour (1)(1)[Any or all could be on a diagram] [Cover healthy tissue with lead \rightarrow max 1/3 if fully described]	3
(c)	$\frac{\text{Show that:}}{\text{kg m}^{-3}} (1) \\ \times \text{m s}^{-1} = \text{kg m}^{-2} \text{ s}^{-1} (1)$	2
	Explanation: Quality of written communication (1) $(Z_2 - Z_1)^2 / (Z_2 + Z_1)^2$ mentioned OR difference in Zs very large (1) = 0.999 [0.9995 or 1] (1) so all/most u-sound is reflected (1) at boundary between (air in) lungs and tissue (1) "none" penetrates to organs behind lungs (1)	Max 5
	<u>Reason</u> : Less damaging of cells/tissue OR non-ionising OR can image moving parts OR can distinguish different types of soft tissue (1)	1
(d)	<u>Label:</u> A = scintillator/ <i>NaI</i> /sodium iodide/etc (1)	1
	<u>Purpose of collimator:</u> To give a sharper image/only lets through rays travelling perpendicular/on a diagram/to get rid of scattered or reflected rays (1) Is made of lead (1)	2
	Description of physical process in photomultiplier: <u>Light</u> releases <u>electrons</u> OR light converted to electrical signals [2 or 0] OR electrons accelerated/speeded up (1) by electric field/high p.d./high voltages/positive voltages (1)	(2)
	releasing more electrons (1) (1)	2

	(e)	<u>Eluti</u> Salt : [Idea	<u>on:</u> solution passing through the generator removes the tracer/Tc of a liquid washing through] (1)	1	
		<u>Equa</u> ⁹⁹ M Sym 99, 4	$\frac{\text{ntion}}{43} \text{Tc} + \beta^{-} / \frac{o}{-1} \beta / e^{-} / \frac{o}{-1} e$ bols and "-" sign (1) 42, 99m, 43 added correctly (1)	2	
		<u>Reas</u> Beca	on: uuse it has a short half-life (1)	1	
		<u>Show</u> Activ [Evic 1 we [or e	v that:vity down to $\frac{1}{4}$ in 134 hours (5.6 days)(1)dence of understanding of two half lives]ek = 168 hours > 134 hours so less than $\frac{1}{4}$ (1)quivalent, e.g. in days]	2	
		<u>Indic</u> Marl	cation on graph: k by graph; 48 hours indicated somehow (1)	1	
		<u>Expl</u> Beca	anation of smaller peaks: uuse molybdenum is decaying/activity decreasing (1)	1	
		<u>Why</u> To g be pi	<u>advisable to leave 1 day between elutions:</u> ive time for the Tc to reach its next peak / enough Tc to roduced / enough daughter isotope produced (1)	1	[32]
77.	(a)	(i)	<i>l</i> to nearest mm and between 850 mm \rightarrow 860 mm or centre value \pm 3 mm (1) $d \pm 0.02$ mm of supervisor's value and from \geq 2 readings,	1	
			to 0.01 mm or better (2) $[\pm 0.02 \text{ mm from 1 reading 1 mark} (1)$ $\pm 0.05 \text{ mm from } \ge 2 \text{ readings } 2 \text{ mark}]$ [Unit error -1 once only] Variation in diameter	2	
		(ii)	Correct calculation and unit and ≥ 2 significant figures (1) [Allow e.c.f.] Correct calculation and unit and 2 significant figures (1) [Allow e.c.f.]	1	
	(b)	(i)	Value $8.5 - 9.5 \text{ g cm}^{-3}$ [No e.c.f.] (1) <i>m</i> giving $2.0 \le t \le 6.0 \text{ s}$ with measurements to better than 1 s [Do not award these 2 marks if systematic error, e.g. 0.0305 s] 4 values of <i>t</i> averaged (2) [2/3 values 1 mark] Correct calculation of <i>a</i> [Allow e.c.f.] (1) 2/3 significant figure + unit from correct calculation (1)	3 (2) 6	
		(ii)	If trolley not at rest at start position, then 0/3 (1) Start and stop positions marked in some way (1) Eye level at start and end/touch marker at start and end (1) Stopwatch started as trolley released and stopped after 0.500 m/ use same point on trolley at start and stop (1)	3	

Zero tabulated or plotted (c) (i) (1) 4 other results (or results up to N = 0) tabulated and reasonable (1) Graph: Scale and plots and correct orientation (1) Good curve (2) [For candidates who re-start at 48 every time: scale (probably in range 20 to 30), plots and correct orientation (1); horizontal straight line through mean position (2)] 5 Not representation (ii) Throws discrete – time continuous (1) 48 is too small to represent a large number of atoms (1) Statistical error is very large with such a small number (1) Reasonable representation: Probability of decay per throw = $\frac{1}{2}$ /curve decreases by equal amounts in equal times/one throw is equivalent to one half life (1) Both decays are random (1) Max 3 [24]

Sample results:

(a) (i) l = 0.855 mNo zero error on micrometer d = 0.38, 0.38 mmAverage d = 0.38 mmReduces random error due to variation in diameter of the wire

(ii)
$$V = \frac{1}{4} \pi \left(\frac{0.38}{10}\right)^2 \times 85.5 = 0.097 \text{ cm}^3$$

Mass = 0.84 g
 $p = \frac{0.84}{0.097} = 8.7 \text{ g cm}^{-3}$

(b) (i)
$$m = 50 \text{ g}$$

 $t = 2.84, 3.16, 3.06, 3.16, 3.02$
Av. $t = 3.05 \text{ s}$
 $a = \frac{2 \times 0.5}{(3.05)^2} = 0.108 \text{ m s}^{-2}$

		Graph:	
78.	(a)	Circuit set up correctly without assistance (2)	2
	(b)	$\mathcal{E} \approx 1.5 \text{ V to } 0.01 \text{ V with unit}$ (1)	
		$V < \mathcal{E}$ to 0.01 V and sensible with unit (1) [Penalise unit error once only in (b) or (d)]	2
	(c)	Correct calculation of both k values (1) Correct unit seen in (c) or (d) (1)	2
	(d)	(i) Same $\mathcal{E} \pm 0.02$ V (1) $V_{\text{new}} < V_{\text{old}}$ and sensible (1) 2/3 significant figures for both k values (1) [Penalise unit errors unless already penalised]	3
		(ii) Smaller <i>l</i> gives smaller <i>R</i> (1) \therefore larger current drawn from cell (1) \therefore larger p.d. across <i>r</i> (1) \therefore Smaller terminal potential difference (1) \mathcal{E} should remain constant (1) <u>Can be reverse argument:</u> Larger $l \rightarrow$ larger <i>R</i> (1) \therefore smaller current drawn from cell (1) \therefore smaller p.d. across <i>r</i> (1) \therefore larger terminal p.d. (1) \mathcal{E} remains constant (1)	5
	(e)	(i) Correct calculation with average k as denominator (1) [Allow e.c.f.] Sensible conclusion related to experimental error (1)	-
		(ii) Correct substitution (including average k) (1) Correct calculation + unit and ≥ 2 significant figures (1)	4
	(f)	(i) Vary l (1) Measure V (1) (ii) Graph:	

Axes labelled (1) Straight line with positive intercept and positive slope (1)

(iii)
$$m = k/\mathcal{E}$$
 (1)
 $c = 1/\mathcal{E}$ (1)
 $\mathcal{E} = 1/\text{intercept}$ (1)
 $k = \mathcal{E} \times \text{gradient}$ (1)

[24]

Max 6

Sample results:

(a)
$$\mathcal{E} = 1.52 \text{ V}$$

 $V = 1.37 \text{ V}$
(b) $\frac{1.52}{1.37} = 1 + \frac{k}{0.800}$

$$k = 0.0876 \text{ m}$$

(d) (i)
$$\mathcal{E} = 1.52 \text{ V}$$

 $V = 1.25 \text{ V}$
 $\frac{1.52}{1.25} = 1 + \frac{k}{0.400}$
 $k = 0.0864 \text{ m}$

(e) (i) Percentage difference =
$$\frac{0.0012}{0.087} \times 100\%$$

Less than experimental uncertainty $\therefore k$ likely to be constant

(ii)
$$r = \frac{4 \rho k}{\pi d^2}$$

= $\frac{4 \times 4.9 \times 10^{-7} \times 0.087}{\pi (0.27 \times 10^{-3})^2}$
= 0.74 Ω

(iii)
$$\frac{\varepsilon}{V} = 1 + \frac{k}{l}$$
$$\frac{1}{V} = \frac{k}{\varepsilon} \times \frac{1}{l} + \frac{1}{\varepsilon}$$
$$y = mx + c$$
$$\varepsilon = l/intercept$$
$$k = \varepsilon \times \text{gradient}$$

79. Topic A – Astrophysics

(a)	Any 2 advantages from			
	No background lighting/street lighting/light pollution			
	• Less dust/clear air			
	• Less twinkling due to density variations/refraction (2) [Not distortion]	2		
(b)	Hertzsprung-Russell diagram			
	$x_{\rm A}, x_{\rm B} \text{ and } x_{\rm C} \text{ all marked}$ (1)	1		
	$ \begin{array}{l} \alpha \ {\rm Ori-red\ giant} & (1) \\ {\rm Procy\ B-white\ dwarf} & (1) \\ \beta \ {\rm Per-main\ sequence} & (1) \\ [{\rm e.c.f.\ wrong\ }x\ {\rm positions}] \end{array} $	3		
	[If no xs on diagram, 3/3 for identifying still possible]			
	$\frac{\text{Calculations}}{\text{Luminosity } \alpha \text{ Ori}} = 6 \times 10^4 \times 3.8 \times 10^{26} \text{ W} \qquad \textbf{(1)}$			
	$= 5.67 \times 10^{\circ} \text{ Wm}^{2} \text{ K}^{1} \times \text{A} \text{ m}^{2} \times (3500)^{\circ} \text{K}^{1} $ (1)			
	$A = 2.7 \times 10^{24} \mathrm{m^2} \qquad (1)$			
	$A = 4.7 \pi r^{2} $ (1) $R = 4.6 \times 10^{11} \text{ m [e.c.f. A]} $ (1)	5		
(c)	Light year Is the distance travelled by light in one year (1)	1		
	Show that ly is equivalent to Distance = speed × time [no mark] $(365 \times 24 \times 60 \times 60)$ s OR 3.15×10^7 s (1) $\times 3 \times 10^8$ m s ⁻¹ = 9.5×10^{15} (m) OR 9.4 (1)	2		
	[Accept "working backwards", i.e. distance \div speed \rightarrow time $\approx 3.15 \times 10^7$ s]			

	Explanation A distant star does not seem to move (1) against the background/with respect to a distant star (1)	
	OR	
	Angle between star and distant star (1) does not change/difference in angles, too small to measure (1)	
	As the Earth moves over 6 months/June & January (1) Max 3	
	[Do not accept "angle too small to measure"; do not award 1 mark from top and 1 mark from bottom pair]	
(d)	Supernova and description	
	• Quality of written communication (1)	
	• A star which <i>suddenly</i> becomes (1)	
	• very bright/luminous (1)	
	• Fusion/hydrogen burning ceases/runs out of hydrogen (1)	
	• Collapse of core/collapse of star/implosion (1)	
	• Outer layers bounce off core/shock wave/explosion (1)	
	• Blowing away outer layers (1)	
	• Nuclear reactions take place in outer layers/ejected material (1) Max 5	
	Fates for the central core remnantNeutron star(1)Black holes(1)2	
(e)	Use of Wien's law	
	$\lambda_{\max} \times T = \text{constant}$ (1)	
	$\lambda = 4 \times 10^{-6} \text{m} (3.86 \text{ m})$ (1)	
	4000 nm > 700 nm, OR 4×10^{-6} m > 7×10^{-7} (1) 3	
	Why brown dwarfs are difficult to detect Atmosphere opaque to infra-red/ground based instruments do not receive infra-red	
	OR	
	Radiation depends on T^4 , hence very dim/luminosity = $\sigma A T^4$ is low (1) 1	
	Difference A star converts hydrogen to helium/hydrogen burning/fusion of hydrogen OR p-p chain reactions (1)	
	Nuclear equation for reaction:[H is alternative to p](1) $Li + p \rightarrow 2$ He[symbols][H is alternative to p](1) $7/3 + 1/1 \rightarrow 4/21$ [As and Zs](1)2	
	Why young low mass star might be mistaken for brown dwarf:It has not existed long enough to consume all its lithium1	

[32]

80. Topic B – Solid Materials

Calculation (a) Stress = 8.0 N / $1.5 \times 10^{-7} \text{ m}^2$ (1) $= 5.3 \times 10^7 \text{ Pa/N m}^{-2}$ (1) 2 Graph: Extension = 0.67 mm [Accept 0.66 to 0.68] 1 Strain = $0.67 \text{ mm}/2.6 \times 10^3 \text{ mm}$ [e.c.f extension from above] [Ignore, 10ⁿ error] (1) $= 2.6 \times 10^{-4}$ [Do not penalise presence of unit] Substitute in Young modulus = stress/strain [e.c.f stress from above. e.c.f. strain, their value OR 3×10^{-4}] (1) 4 $[= 2 \times 10^{11} \text{ Pa/N m}^{-2} (200 \text{ Gpa})] \qquad (1)$ Calculation of work done Find area of triangle OR use $\frac{1}{2}kx^2$ (1)Substitute correct pair of values off line [ignore 10ⁿ errors] 4.8 N/4.7 N, 0.4 mm OR Determine k = gradient (1) $= 9.6 \times 10^{-4} \text{ J} \text{ [} \pm 0.2 \text{] [Accept N m]}$ 3 (1) [Allow e.c.f. ONLY for grid error 4.4 N – 8.8×10^{-4} J gets 2/3] Force-extension graph for wire of twice length: Add line $\frac{1}{2}$ as steep to graph [by eye] (2)[Less steep, but not approx $\frac{1}{2}$, 1 out of 2] 2 (b) Diagram of concrete beam No mass: OK Straight: OK No supports: OK Compression labelled inside/just above top surface (1)Tension labelled inside/just below bottom surface (1) 2 [Words or arrows] Look for a REGION being shown. If only one point top surface and one point lower surface give 1 out of 2] Explanation • Quality of written communication (1)• Concrete is strong in compression but weak in tension (must compare i.e. both) (1)• Upper surface cracks tend to close up AND/OR lower surface cracks tend to widen (1)• Further detail, e.g. reference to tension/compression, OR crack propagating across beam \rightarrow fracture OR stress at tips of cracks discussed OR there are no dislocations to blunt the cracks (1) Max 3 Bubble raft (c) Bubbles represent atoms OR ions (1) Dislocation identified by diagonal line, circle, dot (1)(d) Description of materials

		Material A is weak and stiff(1)Material B is strong (ish) and flexible(1)Material C is strong and stiff(1)	3
		[If none of the pairs are correct, possible 1 mark for one whole column correct, i.e. weak, strong, strong, weak OR stiff, flexible, stiff.]	
		<u>Identification of materials</u> A is <i>polythene</i> ; B is nylon C is CFRP	
		C correct (1)	
		Other two correct (1)	2
		CFRP is composite [ONLY] (1)	1
	(e)	Meaning of terms	
		(i) Ductile: can be drawn into a wire/rolled into a sheet/deforms plastically (1)	
		 (ii) Transition temperature: the temperature at which a material changes from brittle↔ ductile behaviour (1) 	2
		Steel at risk some figure between $+ 15 \text{ °C}$ and -20 °C (1)	1
		Not at risk	
		Copper	
		because it absorbs more/lots of energy at lower temperature OR graph slopes other way OR almost constant OR it has no transition temperature (1)	2
		[Do not penalise if zinc <i>also</i> described/chosen]	
		Add to graph A curve of similar shape as steel but shifted to the left (1)	1
		Sketch graph	
		Stress	
		Strain	
		Straight line, then plastic with plastic region at least $2 \times \text{linear region}$ (1) Kink(s) between linear and plastic curve (1)	2
81.	Торі	c C – Nuclear and Particle Physics	
	(a)	$\frac{\text{Calculation of kinetic energy}}{\Delta m = 1.008665 \text{ u} - (1.007276 + 0.000549) \text{ u}} $ (1) $\Delta E = \text{Any } m \text{ value } \times 930 $ (1)	2
		= 0./8 (MeV) [No e.c.f.] (1)	3

[32]

 $\frac{\text{Explanation}}{\text{Momentum proton} + \text{momentum electron} = 0}$

OR

Momentum proton is equal (and opposite) to momentum ele	ctron	(1)
Mass proton >> mass electron/protons are held in nucleus	(1)	

(1)

Graph Shape [not bell-shaped] (1) Cuts k.e. axis/nearly cuts axis [Not asymptotic] (1)

Scale (0) - 0.78 MeV [OR 0.8/e.c.f (1) value above] [u.e. on k.e. axis]

Explanation

- Quality of written communication (1)
- Energy per decay is constant (1)
- Protons take no energy/all energy to electrons/ β^- (1)
- All β^- particles should have same kinetic energy (1)
- β^{-} particles have a range of energies (1)
- so some other particle must take missing energy (1) Max 3

[Beware missing mass \rightarrow mass of neutrino]

(b) <u>Similarly</u> Same mass

Difference

Charge OR baryon number OR und quarks $\rightarrow \overline{uud}$ (1)

Any two lepton pairs from the following:

Particle and antiparticle annihilate/produce a burst of energy/of photons /of gamma rays (1) 2

3

2

(c)

(d)

Conservation	laws			
Δ^{++} : C	Charge:	$(+2) \rightarrow (+1) + (+1)$		
Baryon	number:	$(+1) \rightarrow (+1) + (0)$ (so possible)	(2)	2
Δ-: Ο	Charge:	$(-1) \rightarrow (0) + (-1)$		
Baryon	number:	$(+1) \rightarrow (+1) + (0)$ (so possible)	(2)	2
[If attempt is is charge or bary	in words ra yon number	ther than a balanced equation then r of each particle is mentioned eve	it is vital that the n if it is zero.	
Q or B conser	vation may	y be done in terms of $+\frac{1}{3}$ and $-\frac{1}{3}$	$\frac{1}{3}$ per quark.	
Do not give m Exchange part	harks for ju ticle respor	st tracking quarks.] ssible for decay is the gluon		1
Δ^+ is uud Δ^0 is udd				2
<u>Hadron</u> A hadron is a from quarks/a	heavy part particle w	icle/a baryon or a meson (both)/a p hich feels the strong force (1)	particle made	1
$\frac{\text{Leptons}}{e^{-} e^{+}, \mu^{-}}$ (+ [Accept muon	(1) as, electron	s, antielectrons. Any extra particle	s cancels the mark]	1 1
Why pions un They are the l	able to dec	rons (1)		1
Completion of Longer (1)	<u>f sentence</u>)			1
$\frac{\text{Quark composition}}{u\overline{u} \text{ OR } d\overline{d}}$	sition of pi (1)	<u>on</u>		1
Feynman diag	<u>gram</u>			
		p	u u u	

Shows n to p with something leaving junction (1) Shows e^- and $~\overline{\nu}~_e$ emerging from exchange particle (1)

2

1

Why weak

Because a d quark changes to a u quark/flavour change/v involved (1) <u>Label exchange particle</u> [Regardless of validity of diagram] (1)

[32]

1

82. Topic D -Medical Physics

Calculation

(a)	Most suitable isotope I-123 (1)		
	$\frac{\text{Explanation}}{\text{I-125 (OR they) has very/too long half life}} (1)$ I-131 emits β^- which damages tissue/cells/thyroid OR highly ionising	(1)	2
	Labelling on diagramPhotomultipliers(1)Scintillator/NaI(1)Collimator [Not antiscatter grid](1)		3
	<u>X-ray tube heat</u> Power = $V \times I$ (7800 W) To heat = 99.2/100 × (65 × 10 ³ V × 0. 12 A) [Ignore 10 ⁿ errors] (1) = 7.7 kW OR 7700 W OR J s ⁻¹ [no e.c.f] (1) [62.4 W OR 6240 W is 1/3 ✓ X X		3
	<u>Feature of X-ray tub</u> Rotating anode/anode part of large copper block/anode cooled with circulating fluid (1)		1
	X-ray use Diagnosis(1)Low voltage X-ray absorption depends on proton number (or mass/atomic)(1)so good contrast/distinguish bones and flesh/MeV needed to kill cells	(1)	3
	[If candidate chose therapy, maximum possible is 1/3 for statement, e.g. these X-rays are highly damaging to tissue/kill (cancerous) cells]		
(c)	Any two advantages from the following		
	• Can produce 3-D image/measure depth		
	Less damaging/does not destroy tissue/cells		
	Can distinguish different tissues		
	• Image immediately produced/real time imaging/can investigate moving surfaces (2)		2
	Explanation		
	• Quality of written communication (1)		
	• High f means low $f \propto 1/\lambda$ (1)		
	• High f gives better resolution for eye (1)		
	• Low <i>f</i> not absorbed/more penetrating better for abdomen (1) (or high <i>f</i> is absorbed so not useful for abdomen)	Μ	lax 3

		Choc See c 1.5 ×	be appropriate $\lambda (\leq 2 \text{ mm})$ (1) $z = f\lambda \text{ OR use of formula}$ (1) $z = 10^3 \text{ m s}^{-1} \div \text{ their } \lambda \text{ and worked out}$ (1)	3	
		<u>Grid</u> Two Sepa	peaks $2\frac{1}{2}$ squares wide at bottom (1) rated by 30 squares [6 big squares] (1)	2	
		<u>Well</u> So th	separated at reflected pulse does not overlap next incoming one (1)	1	
	(d)	<u>Photo</u> Most	ographic film t X-rays go straight through/not absorbed by film (1)	1	
		<u>Diag</u> Ray Ray Thes	$\frac{\text{ram}}{\text{A stops at OR in middle layer + "blob(s)" on end of it in middle layer}}$ B stops in bottom layer → circle + rays (1) e rays produce "blobs" on edge of film above (1)	(1) 1 2	
		[If A	and B interchanged and both correct, 1/3]		
		<u>Fluor</u> Abso	$\frac{1}{1}$	1	
		<u>Bene</u> Less so les	time exposed/lower exposure/lower dose (1) ss damage (1)	2	
		<u>Disac</u> Less	dvantage detail OR blurred image (1)	1	[32]
83.	(a)	(i) (ii)	$\pm 1 \text{ of Supervisor's value} (1)$ $l \pm 0.3 \text{ mm of Supervisor's value, with unit} (1)$ $[to 0. 1 \text{ mm precision or better}]$ Repeat (1) $d \text{ calculated correctly [e.c.f]}$ $2/3 \text{ significant figures + unit} (1)$ $[Unit \text{ penalty once only}]$ Table with quantities and units for <i>m</i> and <i>x</i> (1) $2 \text{ good values } < M (1)$ $2 \text{ good values } > M [Supervisor's M] (1)$ $[0/2 \text{ if systematic error, e.g. } l \text{ and not } x]$ $["Good" is \pm 2 \text{ mm from best fit line}]$	4	
			<i>M</i> read off graph correctly, with unit [<i>x</i> must be shown in table or graph] (1) ± 10 g of Supervisor's value (1) Graph: Scale: occupying at least ½ grid each way, avoiding 3s etc [Can ignore last point if off scale] (1) Plots: penalise a serious mis-plot or two or more inaccurate (1) Line: Good, sharp [Accept best straight line through points if not forced through origin] (1) No marks for calculation of mass at this point θ_1 and θ_f recorded with unit for both and $\Delta\theta$ 5 °C – 20 °C Stirred water and took highest steady temperature	8	
			Any one of the following:		

- both temperatures better than 1 °C
- thermometer not touching beaker
- eye level for thermometer or measuring cylinder (1)

Correct calculation with corresponding unit [allow J min⁻¹] (1) 2 s.f. [OR 1 s.f. if < 10 W] (1)

Masses all recorded to 0.0 1 g, including Δm (1) Δm found correctly and sensible unit [~ 0.1 - 0.5 g] (1) Suitable working that would lead to correct time (1) Hence, correct calculation of time + unit (1) Sensible comparison of power [5 W - 60 W for small lamp] (1) and time (1)

Sample results:

(a) (i)
$$N = 33$$

 $l = 23.7, 23.9$, average 23.8 mm.
 $d = \frac{23.8 \text{ mm}}{33} = 0.72 \text{ mm}$

(ii)

<i>m</i> /g	Scale rdg/mm	<i>x</i> /mm
0	46	0
50	50	4
100	68	22
150	88	42
200	108	62
250	126	80
300	144	98
Block	92	46

6

6

[24]

Stirred water and took highest steady temperature. Both temperatures better than 1 °C/thermometer not touching beaker/eye level for thermometer or measuring cylinder.

$$P = \frac{500 \times 11.8 \text{ J}}{5 \times 60 \text{ s}}$$
$$= 20 \text{W}$$

(b)

(ii)
$$m' = 18.37 - 3.86 = 14.51$$
 g
 $\Delta m = 14.72 - 14.51 = 0.21$ g

$$\frac{t}{5} = \frac{m}{\Delta m}$$
$$t = 5 \times \frac{14.72}{0.21} \text{ min,}$$

= 350 min

= 5 h 50 min

20 W is comparable to the power of a small lamp, but the experiment suggests the candle would burn for less than 6 h, which is not "all night".

	Correct circuit without help(3)Sensible values, to 0.1 mA precision(1)with units for both(1)5	
(ii)	Both V values sensible and recorded to 0.01 V with unit for both (1) R_1 correctly calculated with unit and ≥ 2 s.f (1) [e.c.f.] [e.c.f. including repeat of above error]	
	R ₂ correctly calculated and > 2 s.f. and $R_2 \ge R_1$ (1) [Ω seen at least once] <i>R</i> constant (1) so Ohm's law obeyed (1)	
	OR	
	R not constant(1)so Ohm's law not obeyed(1)	
	OR	
	Temperature changes(1)5so Ohm's law not relevant/not obeyed(1)5k found for each case(2)[Ignore units and ≥ 2 s.f]	
	% difference using either k or average as denominator [working must be shown] (1)	
	Related to meter uncertainty (1) 4	
(ii)	Correct circuit [-1 for each error or omission of components] (3) [0/3 if not a potential divider] (3) Any 4 points (1) $R \vee \sqrt{I}$ [OR $R^2 \vee I$] 1 Hence straight line through origin shown [or stated] [i e dependent mark] (1)	
	Gradient [$\sqrt{\text{gradient}}$] [Dependent mark on correct plots] (1) 10	

Sample results:

(a) (i) $I_{\text{max}} = 57.8 \text{ mA}, I_{\text{min}} = 52.3 \text{ mA}$ (ii) $V_{\text{min}} = 5.05 \text{ V}$ $R_1 = \frac{5.05 \text{ V}}{52.3 \times 10^{-3} \text{ A}}$ 96.6 Ω $V_{\text{max}} = 6.04 \text{ V}$ $R_2 = \frac{6.04 \text{ V}}{57.8 \times 10^{-3} \text{ A}}$ $= 104.5 \Omega$

The lamp does not obey Ohm's law because the resistance is not constant due to change in temperature.

(b) (i)
$$k_1 = \frac{96.6}{\sqrt{52.3 \times 10^{-3}}} = 422 \ \Omega A^{-\frac{1}{2}}$$

[24]

$$k_2 = \frac{104.5}{\sqrt{57.8 \times 10^{-3}}} = 422 \ \Omega A^{-\frac{1}{2}}$$

% difference = $\frac{435 - 422}{428.5} \times 100\%$

= 3%

So results confirm relationship within uncertainty of meters

Start with lowest I [or V]; vary I [or V] with resistor or potentiometer. Measure I and corresponding V. Calculate values of R.

Graph:

k would be the *gradient* of the graph

85.	(a)	(i)	d to. 0.01 cm precision or better and ± 0.03 cm of Supervisor's value,with unit(1)Repeat or zero error check(1)Correct V, with unit ≥ 2 s.f(1)	
			Correct calculation of ρ with unit (1) 1 00 \rightarrow 1 30 g cm ⁻³ and 3 s f (1)	5
		(ii)	Correct calculation of V' [Ignore missing unit] Hence volume of "space" + unit How answer could be checked experimentally (3 points) (3) [If a displacement method is not used $0/3$]	5
	(b)	(i)	Circuit correctly set up without help (3) [Help with potentiometer, -2; help with meter location -1; diode reversed -1 [Ignore meter polarity corrections]	3

(ii)	Table with units [Quantity and unit](1)3 sensible values for $I < 10 \text{ mA}$ [2 values $\rightarrow 1 \text{ mark}$](2)5 values for $I \ge 10 \text{ mA}$ [4 values $\rightarrow 1 \text{ mark}$ }(2)[No values for $I < 80 \text{ mA}, -1$ from last two marks][Ignore any I value > 100 mA]	5	
(iii)	Graph: Good smooth curve (2) [-1 if serious misplot; -1 if curve slightly "wobbly" or thickish; -1 if plots < 0.4 V not shown] [Ignore plots which are off the grid]	2	
(iii)	<i>I</i> read off correctly @ 0.70 V [Ignore missing unit] (1) Correct R + unit [e.c.f.] 1 Correct <i>I</i> by plotting " R = 5 0 Ω " line on graph, with unit. (2) [By trial and error can get 2 marks.] [Allow one mark if any <i>V</i> value between 0.7 V and 0.8 V is divided by 50 Ω to give correct <i>I</i> with unit.]	4	[24]

Sample results:

(a) (i) d/cm = 4.28, 4.28 [no zero error] $\overline{d} = 4.28 \text{ cm}$ $V = \frac{\pi \times (4.28)^3}{6} 41.1 \text{ cm}^3$ m = 45.3 g $\rho = \frac{45.3 \text{ g}}{41.1 \text{ cm}^3} = 1.10 \text{ g cm}^{-3}$ (ii) $V' = 3d \times d \times d = 3d^3$ $= 3 \times 4.28^3 = 235 \text{ cm}^3$ $\Delta V = 235 - 3 \times 41.1$ 112 cm^3

 \downarrow^{3d}

Either

- Record volume of water in measuring cylinder
- Add water until packet brimful
- Deduce volume of water added (= volume of "space")

Or

- Weigh with balls in packet
- Fill to brim with water
- Re-weigh. Hence mass (and volume) of water added (= "space")

(b) (ii)

V/V	<i>I</i> /mA	I/mA	V/V
0.00	0.0	10.0	0.668
0.10	0.0	20.0	0.702
0.20	0.1	30.0	0.719
0.30	0.1	40.0	0.732
0.40	0.2	50.0	0.740
0.50	0.2	60.0	0.745
0.55	1.1	70.0	0.753
0.60	2.8	80.0	0.757
0.65	7.3	90.0	0.760
		100.0	0.763

(iii) Graph:

(iv) When V = 0.70 V, I = 20.0 mA

$$R = \frac{0.70 \,\mathrm{V}}{20 \times 10^{-3} \,\mathrm{A}}$$

= 35 Ω

From graph I = 13.4 mA [Check: V = 0.68 V

$$\mathbf{R} = \frac{0.68}{0.0134} \, 0.0134 = 50.7 \, \Omega]$$
(a)	(i)	$b \pm 0.3 \text{ mm of Supervisor's value}$ (1) $d \pm 0.3 \text{ mm of Supervisor's value}$ (1)Both repeated(1) ≥ 3 values for each OR zero error(1)	4
		[Last two marks can score even if <i>b</i> and <i>d</i> values are incorrect. Penalise unit error once only.]	
	(ii)	Diagram showing symmetrical arrangement and mass suspended l shown correctly (1) x shown clearly to same point of rule OR stated (1) x by difference method [or seen below] (1) Correct use of set square for reading on vertical rule [or vertical rule close to depressed rule]	(1) 5
	(iii)	h_1 and h_2 shown and x found, with unit, correctly to nearest mm or better (1) Δx 1 or 2 mm and correct % with calculation shown (1)	2
	(iv)	Correct substitution in SI units (1) Correct calculation [ignore unit] (1) $2/3$ significant figures and $(1-3) \times 10^{10}$ Pa with unit	3
(b)	(i)	Take readings of x (1) for different values of l (1)	2
	(ii)	$x v l^3$ [or $l^3 v x$] [2 or 0] (2) Straight line through origin (1) would show that $x \propto l^3$ (1)	4
	(iii)	$\frac{l^3}{x}$ separated from $\frac{mg}{4bd^3}$ (1) Correct use of gradient of graph plotted Graph averages (1) a number of errors (1) OR reduces (4) random error (1) Reduces systematic error (1) Eliminates rogue values (1)	Max 4
San	nple res	ults:	
(a)	(i)	<i>b</i> /mm [·] 24 5 24 4 24 5 24 4	

(a) (i) *b*/mm: 24.5, 24.4, 24.5, 24.4 Average: 24.4(5) mm *d*/mm: 6.0, 6.0, 6.0, 6.0 Average = 6.0(0) min

Average = 6.0(0) mir [No zero error] [24]

(ii) Diagram:

x measured using set square against vertical rule as shown from bottom edge of rule when unloaded and then loaded. Difference in heights is x.

(iii) $h_1 = 283 \text{ mm}, h_2 = 273 \text{ mm}$ x = 10 mm

% uncertainty = $\frac{1 \text{ mm}}{10 \text{ mm}} \times 100 = 10\%$

(iv)
$$\frac{1.00 \times 9.81 \times 0.800^3}{4 \times 0.010 \times 0.02445 \times (6.0 \times 10^{-3})^3}$$

$$= 2.4 \times 10^{10} \text{ kg m}^{-1} \text{ s}^{-2}$$

(b) (i) Take readings of x for different values of l

(ii) Graph:

Straight line through origin would show that x is proportional to l^3

(iii)
$$E = \frac{mg}{4bd^3} \times \frac{l^3}{x}$$
$$= \frac{mg}{4bd^3} \times \frac{1}{\text{gradient}}$$

OR

If x against l plotted, take readings from graph

Any four from the following: Graph averages a number of values Reduces random error Reduces systematic error Eliminates rogue values **87.** (a) <u>Luminosity of Sun</u>

(b)

(c)

Attempt to use $I = L/4\pi D^2$	
$L = 4\pi \times (1.5 \times 10^{11} \text{m})^2 \times 1.4 \times 10^3 \text{ W m}^{-2} \text{ [Ignore } 10^3 \text{ error]}$ (1)	
= $3.96 [OR 4.0] \times 10^{26} W [at least 2 s.f.]$	3
Why intensity at top of atmosphere used	
Atmosphere absorbs/scatters (some radiation)/reflects/filters out/equivalent (1)	1
Estimate of energy released for each helium nucleus created	
$\Delta m = [4(1.67) - 6.64] \times 10^{-27} \text{ kg [Ignore } 10^{\text{n}} \text{ error}] (1)$ = 0.04 × 10 ⁻²⁷ kg (1)	
$\Delta E = \Delta m c^{2} (1)$ = 4 (OR 3.6) × 10 ⁻¹² j [e.c.f. Δm] (1)	4
[If only ONE hydrogen atom in Δm : ecf to possible 3/4)]	
Show number of nuclei	
Number = $\frac{4 \times 10^{26}}{4 \times 10^{-12}} (= 1 \times 10^{38})$ (1)	
[ecf energy above even though $\neq 1 \times 10^{38}$]	
Mass of hydrogen	
Mass = $1 \times 10^{38} \times 4 \times 1.67 \times 10^{-27}$ kg (1)	
OR $1 \times 10^{38} \times 6.64 \times 10^{-27} \text{ kg}$	
$= 7 \times 10^{11} \text{ kg} (6.6) (1)$	2
[Again ecf ONE hydrogen atom \rightarrow possible 1/2. If use their value for number of nuclei \rightarrow possible 1/2]	
Graphs: why photographic film less suitable than CCDs	
Film cuts off before end of red (1)	
so peak might be missed (1)	
OR reverse argument – CCD extends beyond red so OK	
Film not flat response OR CCD flat response/constant sensitivity (1)	
so film might register false peak OR so CCD true reading OR film readings need correction/equivalent (1)	Max 3
Advantage suggested by graphs	
CCDs will also record some infra-red/wider range (1)	1
Hydrogen burning process in a star	
Hydrogen burning/fusion ceases/slows down / reduces (1)	
Hydrogen burning occurs in the shell /in outer layers OR is replaced by helium burning/burning/fusion of other elements (1)	2

	Why a red giant is more luminous		
	Red giant has a larger area/larger volume/radius (1)	1	
(d)	Description of how observations of Cepheid variable stars are used to estimate distance to nearby galaxies		
	Any five from:		
	Quality of language (1)		
	Varying intensity/luminosity/brightness/CV pulsates (1)		
	Period is related to luminosity (1)		
	Find time period (1)		
	Determine luminosity		
	Measure intensity/flux at Earth (1)		
	Use of $I = L/4\pi D^2$ (1)		
(e)	Meaning of term binary system		
	Two stars/masses move in (circular) orbits about common centre/each other (1)	1	
	Diagrams		
	At A and E small star within shaded area (1)		
	At C small star behind labelled or implied (1)	2	
	Explain why dip in curve at A is smaller than dip at C		
	At A (or E) small star is in front of/blocks part of large star At C small star is behind or is blocked by large star (1)		
	Small star is a lot brighter (than large star) hence dip sizes (1)	2	
	Orbital period of binary		
	T = 22 hours (1)	1	
	How long it takes small star to cross disc of larger one		
	Value in range $0.7 - 1$ hour (1)	1	
	Addition to light curve		
	Continuous horizontal line (1)		
	at same level as precious line OR very close to (1)	2	[32]
(a)	Comparison of two metals A and B (stress-strain curves)		
	A is stiffer since steeper /bigger gradient/large Young modulus (1)	1	
	 (i) Stronger: A since UTS/it breaks at 300 Mpa (± 20) OR since B breaks at 190 (± 30) MPa (1) 		
	(ii) More ductile: B since strain 0.25 OR since A strain = 0.15 (1)	2	
	Identify A and B		
	A is mild steel; B is copper (1)	1	

88.

	Estimate of work done in stretching A to breaking point	
	Attempt at area [NB not just a triangle] (1)	
	300×10^6 Pa $\times 0.15$ [Ignore 10^n error] (same stress ranges) (1)	
	$4 \rightarrow + 5 \times 10^7 \mathrm{J m^{-3}} (1)$	3
	Quench hardening	
	Heat and cool (1)	
	Rapid cool/plunge into water (1)	2
(b)	Diagram of apparatus to determine Young modulus of copper	
	Were firmly fixed to ceiling/beam/end of bench (1)	
	Load and ruler/scale (1)	
	Means of reading small extensions e.g. pointer against scale/vernier (1)	3
	Length of wire being tested	
	Appropriate length ≥ 2 m [Less if vernier used] (1)	
	Cross-sectional area of wire	
	Micrometer (1)	
	Diameter in several places (1)	3
	Unit of k in Hooke's law	
	N m $^{-1}/kg$, s $^{-2}$ (1)	1
	Show that	
	$E = F/A \div e / l (1)$	
	= Fl/Ae (1)	
	but $F/e = k$ /substitute $F = ke$ (1)	3
(c)	Pre-stressed reinforced concrete beam	
	Any four from:	
	Quality of written communication (1)	
	Steel (1)	
	Wires/cables/rods in tension/stretched OR heated (1)	
	Pour concrete/cement over and leave to set (1)	
	Release tension OR leave to cool (1)	Max 4
(d)	Passage: diagrams of lattice	
	Extra half row of atoms	
	2-D attempt at a lattice [solid lines to represent rows/planes	

		acceptable] (1)		
		Extra half row of atoms/ions labelled (1)		
		Two diagrams OR clearly show that only one bond "flips" (1)	3	
		Differences		
		Filaments more closely spaced in new (1)		
		Filaments finer/thinner in new (1)	2	
		Calculation of ratio		
		Ratio = $\frac{\pi \times (0.5 \times 10^{-3} \text{ m})^2}{\pi \times (5 \times 10^{-9} \text{ m})^2}$ OR just ratio of (diameters) ² (1)		
		$[(5 \times 10^{-9} \text{ m})^2 \text{ is essential component OR } (10 \times 10^{-9} \text{ m})]$		
		$=10^{10}$ (1)	2	
		Advantages		
		They do not interfere with the movement of electrons/high conductivity retained/ do not increase resistance (1)		
		Ductility is retained/do not increase brittleness (1)	2	[20]
				႞ၟႄႜၟ႞
89.	(a)	Calculation of binding energy		
		$\Delta m = 8 (1.007276 + 1.008665) u - 15.990527 u (1)$		
		$\Delta E = \Delta m \times 930 \text{ [Their } \Delta m \text{ OR } 0.137001 \text{ u) (1)}$		
		= 127.4 MeV [130]		
		[Answer in joule, max 2 out of 3]	3	
		Binding energy per nucleon		
		= answer above/16 [ecf joule also]		
		$= 7.9 \rightarrow 8.1 \text{ MeV} [ecf] (1)$	1	
		<u>Graph</u>		
		Steep rise and less steep fall; starts close to 0,0 and falls no more than $\frac{1}{2}$ way to axis (1)		
		peaking in region 25 – 75 (1)	2	
		Positions on Graph		
		[for full marks. must be placed on or close to drawn line]		
		 (i) O labelled at approximately 16 (¹/₂ way to 50) (1) (ii) Fe labelled at peak, wherever it is (1) (iii) U labelled at just short of 250 (1) 	3	
	(b)	Feynman diagram: equation for interaction		
		$\overline{\nu}_{e}$ + p \rightarrow e ⁺ + n (1)	1	
		Charge conservation		
		$(0) + (+1) \rightarrow (+1) + (0)$ [ecf their equation] (1) Type of interaction responsible for inverse beta decay	1	
		Weak (1)	1	

Justification

(c)

(d)

Change of quark type/flavour/u \rightarrow d OR neutrino involved [OR justify BOTH not strong AND not electromagnetic] (1) Exchange particle	1
$W^- OR W^+ [Z^\circ \text{ or } W OR \text{ all three gets } 1 \text{ mark}] (1) (1)$	2
Why interaction is known as inverse beta decay	
In β (minus) decay $n \rightarrow p + e^- + \bar{v}_e$	
OR $n \rightarrow p$ OR d quark $\rightarrow u$ quark (1)	
In this interaction $p \rightarrow n$ OR u quark $\rightarrow d$ quark (1)	2
[Other explanations acceptable depending on interpretation of diagram: see equation given immediately below]	
Fundamental particle	
A particle which cannot be further divided/which has no "parts" inside it/one of the 12 particles of which all matter is made (1)	
[Not "one which cannot decay to another particle"]	
Circled fundamental particles in list (2)	
Positron and muon	
[If more than two circled, -1 for each extra one]	3
Explanation	
Any three from:	
Quality of written communication (1)	
Mesons are composed of a q and an \overline{q} (1)	
These have charges $\pm 2/3$ and $\pm 1/3$ (1)	
Shows all possibilities $(+1, 0, -1)$ OR other convincing arithmetic to show max $+1$ (1)	Max 3
Example of lepton	
Any one lepton from	
$e^{-}\mu^{-}\tau^{-}$, v_{e} , v_{μ} , v_{τ} , OR e+, \bar{v}_{e} etc [Words or symbols, or just "neutrino"] (1)	
Leptons carry no colour charge	
Leptons do not feel the strong force OR if they carried colour charge e^- would join with nuclei (1)	1
Coloured quark combination	
$u_R u_B d_G \ / \ u_R u_G d_B \ / \ u_B u_G d_R$	
uud (1)	
RBG (1)	2

Coloured quark combinations

$\overline{u}_{antigreen} d_{green}$ Charge: $-2/3 + -1/3 = -1$ possible		
Colour: antigreen + green = white/colourless/ colours cancel/possible		
$d_{\text{blue}} \overline{d}_{\text{antiblue}}$ Charge: $-1/3 + + 1/3 = 0$ not possible (1)		
$\overline{u}_{antired} d_{blue}$ Colour: antired + blue \neq white not possible (1)	4	
Particle type		
A gluon is an exchange particle/boson (1)	1	[32]

90. Nuclear equation (a)

 $Te \rightarrow I + \beta^{-} / e^{-} / {}^{0}_{-1}\beta / {}^{0}_{-1}e(+\gamma)$ (1) Mass and atomic numbers: Te 131/52 and I 131/53 and ${}^0_{-1}\beta$ (1) 2 [Second mark only available if equation correct] Where reaction can be carried out A (nuclear) reactor (1) 1 Three factors Should emit only/mainly γ radiation (1) Radioactive half-life long enough to complete investigation OR short enough not to damage patient (1) Suitable for take-up by organ concerned (1) 3 Calculation of effective half-life $1/t_e = 1/21 + 1/8$ (1) $t_e = 6$ days [5.8] (1) 2 Graph Neither graph cuts time axis; they start at same point and are falling concave curves (1) P below L throughout (1) Activity $P = \frac{1}{2}$ activity L in the region $15 \rightarrow 20$ days (1) 3 [If not decay shaped 0/3Possibility of ecf from wrongly calculated t_e] Labels on diagram A – vacuum (1)

(b)

B – anode (1)

C – electrons (1)

	Inten	sity calculation	
	Sens	ible attempt to use inverse square law (1)	
	Inten	sity = 0.21 MW m^{-2} (1)	2
(c)	Desc	ription	
	Any	five from:	
	Qual	ity of language (1)	
	Tran	sducer /probe plus coupling, medium (1)	
	Send	pulse in and detect reflection (1)	
	Find spike	Δt between sending, and receiving / find separation of es on cro (1)	
	Knov	wing speed calculate distance $/ d = s \times t$ (1)	
	Dept	$h = \frac{1}{2}$ distance (1)	Max 5
	Expla	anation	
	Air a	nd tissue have very different Zs/acoustic impedances (1)	
	Almo of bo	ost all ultrasound is reflected at boundary/Interface/surface dy (1)	2
	[OR medi	little crosses boundary OR argument in terms of coupling um and tissue have similar Zs]	
	<u>Suita</u>	ble substance	
	Jelly	/ oil / water,/ Vaseline / gel etc (1)	1
(d)	Reve	rsible relationship	
	A ger sumr stress	neral statement of the form $A \rightarrow B$ and $B \rightarrow A \text{ OR a}$ nary of this case, i.e. stress/strain $\rightarrow \pm \text{ pds}$ and $\pm \text{ pds} \rightarrow$ s/strain (1) (1)	2
	[NO	Γ tension \rightarrow + and compression \rightarrow -]	
	Diag	rams	
	(ii)	Either +s and -s scattered throughout middle OR equal nos + and – on each face OR blank as long as (iii) not also blank (1)	
	(iii)	-s on top face, +s on bottom (1)	2
	Calcu	ulation of thickness	
	$\lambda = 5$	$740 \text{ ms}^{-1} / 1.5 \times 10^6 \text{ Hz} \text{ [Ignore } 10^n \text{ error]} \text{ (1)}$	
	3.8 ×	$10^{-3} \text{ m} (1)$	
	1.9m	m [ecf $\frac{1}{2}$ their λ]	
	Bene	fit	
	Maxi	mum energy transfer at this frequency (1)	1

[32]

91.	(a)	(i)	Use of set square against side of foil to ensure rule is perpendicular to side	
			OR	
			Repeats at different point shown on the diagram (1)	
			Both recorded to nearest mm with unit, and sensible (1)	
			Both repeated and correctly averaged (1)	3
		(ii)	Minimum 3 readings with unit and to at least 0.01 mm (1)	
			$\bar{t} \pm 0.002 \text{ mm} [\text{of Supervisor's value}] (1)$	
			Δ (16 <i>t</i>) found [from range or $\frac{1}{2}$ range], hence correct calculation of percentage [but allow 0.01 mm if single readings or all readings the same] (1)	
			Advantage:	
			Measuring, <i>larger thickness/average</i> of several thicknesses/ enable centre thickness to be measured (1)	
			So that <i>percentage uncertaintly</i> is reduced (1)	
			Disadvantage:	
			May be <i>trapped air</i> between the layer/not compressed enough (1)	6
		(iii)	Correct calculation [ecf 16t for t or volume of folded foil]	
			≥ 2 significant figures + unit (1)	
			Correct calculation with unit [ecf] [rounded to 2 significant figures] (1)	
			Value $1.8 - 2.8$ g cm ⁻³ and 2/3 significant figures (1)	3
	(b)	(i)	Circuit set up correctly without help. [Ignore polarity errors] (1) (1)	2
		(ii)	$V \approx 3 \text{ mV}$ to 0.1 mV with unit (1)	
			$I \approx 6$ mA to 0.1 mA with unit (1)	
			Correct calculation with unit [Allow ecf] (1)	
			Two significant figures (1)	4
		(iii)	<i>Greater</i> than the resistance of the foil because of <i>resistance at the connections</i> between the plugs and the foil (2 or 0) (1) (1)	2
			[OR Greater because of resistance of connecting wires, 1 out of 2]	
		(iv)	Correct calculation ≥ 2 significant figures with unit [ecf 16 <i>t</i> for <i>t</i> or wrong <i>t</i>] (1)	
			Correct substitution (1) [If the candidates has attempted to convert to a consistent set of units, allow the mark.]	
			Correct calculation + unit (1)	
			Value $2.0 \rightarrow 5.0 \times 10^{-8} (\Omega m)$ (1)	4

Sample results:

[24]

(i) l = 30.0, 30.0 cm $\bar{l} = 30.0 \text{ cm}$ w = 20.0, 20.0 cm $\bar{w} = 20.0 \text{ cm}$ (ii) 16t = 0.24, 0.28, 0.25, 0.24, 0.19, 0.25 mm $\bar{1} \ \bar{6} \ \bar{t} = 0.24 \text{ mm}$ $\bar{t} = 0.015 \text{ mm}$ Range = 0.09 mm in 16t

Percentage uncertainty =
$$\frac{\frac{1}{2} \times 0.09}{0.24} \times 100 = 19\%$$

Advantage

(a)

(b)

Measuring *larger thickness* / average of several thicknesses/ enable centre thickness to be measured, so that *percentage uncertainty* is reduced.

Disadvantage:

May be trapped air between the layer/not compressed enough

(iii)
$$V = \bar{l} \ \overline{w} \ \bar{t} = 20 \times 30 \times \frac{0.015}{10}$$

= 0.90 cm³
 $m = 1.72$ g
Density = $\frac{1.72}{0.90}$
= 1.9 g cm⁻³
(ii) $V = 2.1$ mV
 $I = 6.37$ mA
 $R = V/I = 2.1/6.37$
= 0.33 Ω

(iii) Greater than the resistance of the foil because of resistance at the connections between the plus and the foil

(iv)
$$A = wt = 5 \times 10^{-3} \times 0.015 \times 10^{-3}$$

= 7.5 × 10⁻⁸ m²
 $\rho = \frac{RA}{l} = \frac{0.33 \times 7.5 \times 10^{-8}}{0.8}$
= 3.1 × 10⁻⁸ Ωm

92. (a) $t \approx 3$ s from ≥ 3 readings (1) (1) $[... \ge 2 \text{ readings}, (1)]$ [Misread stopwatch 0/2 Nearest second -1Unit omitted -1Incorrect average - 1] Correct calculation, more than two significant figures, + unit (1) 3 (b) Vertical rule checked with set square (1) Correct *h* shown (1) [Ball must be shown] Difference method shown with consistent heights, 1 m apart (1) Correct calculation of Ep (1) Correct calculation Of $E_{\rm K}$ [ecf incorrect m] (1) [Units seen at least once In parts (b) and (c), otherwise -1] *k*: $1.5 \rightarrow 3.0$ (1) 6 [ecf systematic error in E_p or E_K] (c) t < t from (a) and from ≥ 3 readings (1) (1) $[\geq 2 \text{ readings}, (1)]$ [Allow ecf for stopwatch Nearest second - 1 Units omitted -1Incorrect average - 1] Correct calculation of Ep (1) Correct calculation of $E_{\rm K}$ (1) [ecf for mass only] Value: $1.5 \rightarrow .2.5(1)$ 5 [Ignore units on K. ecf is a systematic error in E_p or E_K] (d) Correct calculation with average as denominator (1) Sensible conclusion related to experimental uncertainties (1) 2 (i) Use blocks of different height or lab jacks/use balls of different mass Several values of *h* or *m* indicated $[\ge 5 \text{ if numerical}]$ (1) (ii) Measure t (1) to travel a measured distance s (1) Calculate $E_{\rm P}$ and $E_{\rm K}$ (1) Use light gates to find $\overline{\upsilon}$ (1) v = 2v (1)

(iii) E_p against E_K OR E_K against E_p stated or sketched (1)Then straight line through origin shown with axes labelled (1)Correct. hence gradient (1)Max 8

(a)
$$t = 2.44, 2.56, 2.43, 2.40$$

 $\overline{t} = 2.46 \text{ s}$
 $\upsilon = \frac{2 \times 1.00}{2.46}$
 $= 0.814 \text{ m s}^{-1}$
(b) $h = 85 - 15 = 70 \text{ mm}$
 $m = 56 \text{ g}$
 $Ep = mgh = 0.056 \times 9.81 \times 0.070$
 $= 0.0385 \text{ J}$
 $E_k = \frac{V_2}{m\upsilon^2}$
 $= \frac{V_2}{2} \times 0.056 \times (0.814)^2 = 0.0186 \text{ J}$
 $k = \frac{E_p}{E_K} = \frac{0.0385}{0.0186} = 2.07$
(c) $t = 2.04, 2.04, 1.88, 1.94 \text{ s}$
 $\overline{t} = 1.98 \text{ s}$
 $\upsilon = \frac{2s}{t} = \frac{2}{1.98} = 1.01 \text{ ms}^{-1}$
 $h = 117 - 15 = 102 \text{ mm}$
 $E_p = 56 \times 10^{-3} \times 9.81 \times 0.102$
 $= 0.0560 \text{ J}$
 $E_K = \frac{V_2}{2} \times 56 \times 10^{-3} \times (1.01)^2$
 $= 0.0287 \text{ J}$
 $k = \frac{0.0560}{0.0187} = 1.95$
(d) Percentage difference $\frac{2.07 - 1.95}{1/2(2.07 + 1.95)} \times 100\%$

= 6.0%

Difference is less than 20% (or 40%), therefore k is likely to be constant

[24]

- (e) (i) Use blocks of different height or lab jacks / use balls of different mass
 - (ii) Several values of *h* or *m* indicated (\geq 5 if numerical) Measure *t* to travel a measured distance *s* Repeat values for each h *or m* Calculate *E*_p, or *E*_K

(iv) Gradient = k

93. Topic A – Astrophysics

(a) Diagram

(b)

21481411						
Nano and 10 ⁻⁹ Micro Kilo						1 1 1
Mega and 10 ⁶						1
[No	ote:					
•	Spellings m megga etc	ust be corre	ct, i.e. N	OT not	no, micra, kila, k	illa,
•	Upper or lo	wer case ac	cepted			
•	n µ	k	M)		
	10-9		106)	is max 2/4]	
	10		10)		
Red giant						
Quality of writte	n communica	ation [needs	s <u>></u> 2 pro	cesses]	1
Any three from:						
• <u>Hydrogen</u> bur	rning ceases <u>i</u>	n core				
• Core collapse	es/star collaps	es				
• Star swells up	p/star expands	8				
• other fusion p place <u>in 'shel</u>	brocesses occ 1' /outer layer	ur <u>in core</u> /hy rs	ydrogen	burnin	g takes	Max 3
Wien's law						
Star cooler/T less	S					1
Hence Wien' s la	aw means λ_m	_{ax} greater				1
[e.c.f. T increase	s, hence λ_{max}	decreases]				

Stefan's law

(c)

(d)

Law	states $L = \sigma A T^4$ OR $L \propto A T^4$	1
Larg	er (surface) area A/radius/diameter	1
Incre	pase in $A >$ decrease in T^4	1
OR I decre	nuge/massive increase in $A/r/d$ makes up for/compensates for ease in T T just A increases more than T decreases]	1
Puls	ar diagram labels	
(i)	axis of rotation/spinning/turning	1
(ii)	(beam of) radio waves/electromagnetic waves [Accept microwaves]	1
(iii)	magnetic field (lines) [Not e m field]	1
Type	e of star	
(Puls	sar is a) <u>neutron</u> (star)	1
<u>Expl</u>	anation of directions	
Dire	ctions A and C	1
Any	two from:	
• S	tar spins on its axis	
• B	eam sweeps round [allow ecf from label in (ii)]	
• (1	beam) must point towards Earth for signal to be received	2
Adva	antages of radio telescope	
Any	two from:	
• ra c	adio waves penetrate/not affected by the atmosphere or louds/dust/light/daylight	
• d	etect very weak signals/better resolution/detect distant objects/array	
• g ra	ives <u>different</u> information about star's <u>behaviour</u> /greater λ ange (e.g. can detect neutron stars/invisible objects)	2
[NO	T "can detect radio waves", nor "detect different λ "]	
Radi	<u>o luminosity</u>	
Use Corr Ansv	of $I = L / 4\pi D^2$ [Any attempted use] ect substitution of I and D [i.e. with D^2] wer = $9.3 \times 10^{+25}$ [no e.c.f.]	1 1 1
Unit	mark: watt/W/J s ^{-1}	1

(e) <u>Energy of photon of red light</u>

$2.8/2.9 \times 10^{-19}$ (J) [≥ 2 s.f. needed]	1			
OR reverse route to 6.7×10^{-7} m				
Estimate of number of photons				
Use of $ns^{-1} \times 3 \times 10^{-19} J = 2.3 \times 10^{31} J s^{-1}$	1			
$ns^{-1} = 7.6 \rightarrow 8.2 \times 10^{49} \text{ AND} \le 3 \text{ s.f.}$	1			
Explanation of why answer is an approximation				
Assumes only red photons are emitted OR range of $\lambda/E/f$ emitted				
Advantages of CCDs compared with photographic film				
Any two from:				
 More efficient/sensitive/detect fainter or more distant stars/quicker to build image ["Quicker" + reason] 				
More uniform response				
Can 'process' remotely/digitally/with computer				
• Use repeatedly/quicker to process/real-time images/more images per session Max 2				
[NOT "more accurate", "better resolution/detail"]				

94. Topic B -Solid Materials

(a) <u>Diagram</u>

(b)

(c)

Nano and 10 ⁻⁹ Micro Kilo Mega and 10 ⁶ [Note: • Spellings must be correct, i.e. NOT nono, micra, kila, killa, megga etc • Upper or lower case accepted • n u k M) is max 2/41	1 1 1
10^{-9} 10^{6})	
Stress-strain curves for two materials	
(i) Tougher: B because it has larger area/greater energy <u>density</u>	1
(ii) Stiffer: B because steeper slope/greater Young modulus	1
(iii) More ductile: B because greater strain in <u>plastic</u> region	1
Line added to graph for material C	
[Mark alongside graph]	
Straight with sudden loop/straight line with sudden stop	1
Smallest gradient	1
Greatest stress Force extension graph	1

[32]

[Mark alongside graph]

Shape correct, both start ±2 mm origin and no obvious dips Arrows or labels [correct]	1 1
Explanation of elastic hysteresis	
Quality of written communication	1
Areas/lines/energy/work different up-down/loading-unloading	1
<u>Area</u> of loop represents <u>energy</u> dissipated/heating/internal energy/increase temperature	1

(d) <u>Diagram</u>

Explanation

(e)

Plane labelled, horizontal layer with 1 less/1 more atom/in between Any reference to (interatomic) bonds Only one row of bonds needs to be broken (at a time) (compared with	1 1
whole plane of atoms at a time) [OR could be implied, e.g. carpet ruck analogy]	1
Work hardening	
Hammering/rolling/plastic deformation/hit repeatedly [NOT "putting under strain", "stretching", "repeated loading and unloading]	1
Completion of sentence by selection of word(s)	
Stronger More brittle	1 1
[One correct, one incorrect $\Rightarrow 1/2$; if \geq two circled apply -1 per error]	
Process of annealing and explanation in microscopic terms	
Metal is warmed/heated [NOT "melted"]	1
and cooled <u>slowly</u> /allowed or left to cool	1
getting rid of (log jammed) dislocations/recrystallises/creates larger crystals OR atoms become more ordered/organised	1
Use of graph to calculate energy stored by foam liner	
Find area of triangle or $1/2 Fx$ Read off value, 9000 N Correct value (81) [e.c.f. for value e.g. 8000 N \rightarrow 72 (J) Joules [Not Nm. Nmm]	1 1 1 1
Deceleration of a head of mass 5.8 kg	-
Use $F = ma$	1
Answer 1700 (1724) m S-2	1

Helmet design requirements

Yes, with figures to justify $< 200 \times 9.81 \text{ m s}^{-2}$ OR 1700/9.8 [Allow, gas 9.8 or 10] [e.c.f.]	1	
Reason why a cycle helmet should be replaced after impact		
Replaced because foam does not recover after crushing	1	
OR equivalent, e.g. not elastic e.g. <u>permanently</u> damaged / cracked / fractured [NOT "damaged" or "scratched" only]		
		[32]

95. Topic C – Particles

(a) <u>Diagram</u>

Nano and 10^{-9} Micro Kilo Mega and 10^{6} [Note:

- Spellings must be correct, i.e. NOT nono, micra, kila, killa, megga etc
- Upper or lower case accepted

•	n	μ	k	M)	
	10 ⁻⁹			10^{6})	is max 2/4]

(b) <u>Binding energy</u>

Quality of written communication	1
Energy required/ put IN to separate/break up a nucleus	1
Into protons + neutrons OR nucleons	1
OR in terms of energy given OUT when making a nucleus OR mass defect between nucleus and separate nucleons	
Graph	
Shape [not bell-shaped; steeper rise than fall; start near origin; fall less than half max height] Peak at around 50 [40 – 70]	1 1
Isotopes	
BE/nucleon [any reference] See working out, e.g. 7.72: 7.44 [no u.e.] Hence O-16I 1	1 1 1
[O-16 because O-17 is radioactive gets 1/3]	

1

1

1

(c) <u>Table</u>

(d)

(i) particle	(ii) quark content	(iii) antiparticle	(iv) quark content			
proton	uud	p	īūd	(2)		
π^-	dū	π^+	ud	(1)		
K ⁰	ds	$\overline{\mathbf{K}}^{0}$	sā	(2)		
Shaded boxes show	answers: circled te	rms count as one.				
Proton is uud				1		
antiproton or \mathbf{p} is	uud [allow p o	or p-bar]		1		
π'	1 120 1			1		
Anti \mathbf{K} is \mathbf{K} [all Ouark composition]	is ud and sd			1		
Stronge quark				1		
Show that $\pm 2/3 \pm -1$	/3 + -1/3 = 0 (= cha	arge on lambda)		1		
Snow that $+2/3 + -1/3 + -1/3 = 0$ (= charge on lamoda) [allow fractional charges for products if correct]						
Select words	or r					
Hadron meson One correct, one in	correct gets 1/2 ; if	≥ 2 circled, apply -	1 per error]	1, 1		
Type of particle						
W [–] is exchange par	ticle [Accept gauge	e boson]		1		
Equation for decay	of lambda particle					
$\Lambda \rightarrow p + \pi^{-} \operatorname{NOT} \operatorname{ca}$	pital P			1		
$OR \Lambda^{\circ} \rightarrow p + \pi^{-}$						
OR uds \rightarrow uud + $\frac{-}{u}$	d					
$\Lambda \xrightarrow{W} p + \pi^-$						
Conservation laws						
B: $+1 = +1 + 0$				1		
Q: $0 = (+1) + (-1)$)			1		
Explanation						
Not strong because OR because s quark	e) strangeness is not $\rightarrow d$ quark/change	conserved of quark (flavour)		1		
NOT because W ⁻ /1	no gluon]					

(e) <u>Equation</u>

 $^{14}_{7}\text{N} + ^{1}_{0}\text{n} \rightarrow ^{14}_{6}\text{C} + ^{1}_{1}\text{X}$

14/7 and 1/0 1/1 [no e.c.f.] Hence X is H atom/H nucleus/proton/H/hydrogen	1 1 1
Estimation of age	
Down to 1.9 cpm needs 3 half-lives 3×5730 $17.000/17244$ years/5.4 $\times 10^{11}$ s	1 1
Suggested problem in measuring	1
Background count mentioned/randomness significant	1
[OR need larger mass than one gram]	

96. Topic D -Medical Physics

(a) <u>Diagram</u>

(b)

Nano and 10 ⁻⁹ Micro Kilo		1 1 1
Mega and 10^6		1
[No	te:	
•	Spellings must be correct, i.e. NOT nono, micra, kila, killa megga etc	
•	Upper or lower case accepted	
•	$n \mu k M$)	
	10^{-9} 10^{6}) is max 2/4]	
Description		
Quality of writte	n communication	1
Any three from:		
• Give patient of	drink/inject with radionuclide [not just "take"]	
• In a suitable u chemical that	uptake medium/1abelling/radiopharmaceutical/ goes to thyroid	
• Use <u>gamma c</u>	amera to monitor activity of thyroid	
• Over several	hours/many times [i.e. ≥ 2 readings]	

• <u>Compare</u> with phantom/model neck/lab sample/healthy neck Max 4

[32]

	Three reasons why Technetium-99m is suitable for procedure	
	Any three from:	
	• (Gamma emitter so) detected outside body/by gamma camera	
	• gamma \Rightarrow low dose to <u>patient</u> OR no α , β damage/ionisation to <u>patient/tissue/cells</u>	
	• 6 hours is appropriate half-life for investigation: i.e. not too long to harm patient OR not to short so decays before study complete	
	• Tc can be produced in <u>portable</u> generator where required/locally/in hospital	
	• Decays to stable/very long $t_{1/2}$ daughter product/ ⁹⁹ Tc	Max 3
	Nuclear equation	
	$^{99}_{42}$ Mo $\rightarrow ^{99m}_{43}$ Tc $+^{0}_{-1}\beta$ [OR β^- or e^- or $^{0}_{-1}e$] [Ignore γ , Q, $\overline{\nu}$, ν]	
	Symbols Numbers [must be 99m, no e.c.f.]	1 1
(c)	Explanation of observation	
	It is excreted by/removed from the body [NOT just "biological half-life" or equation]	1
	Observed activity calculation	
	24 days is 4 half-lives OR four halvings indicated $1/16$ activity $/6\%/0.0625$ [OR 24 more days would be 5 half-lives $\rightarrow 1/32$ full ecf]	1 1
(d)	Reasons	
	Me V absorption independent of Z or e/same by bone and tissue [or inverse argument for ke V is dependent on Z]	1
	MeV more penetrating/can reach deeper tumour or less) dose to skin)	1
	OR MeV (higher energy) kills cells better [not treat]	
	Diagram and explanation	
	Diagram OR one beam rotated	1
	[Penalise if some beams miss target; ignore arrows]	
	(Many beams/beam rotated) cancer always gets dose Surrounding tissue shares dose	1 1
	Precautions	
	Any two from:	
	• behind <u>lead</u> screen/ glass	
	• operates from /different room [i.e. increase distance]	
	• X-ray tube shielded with lead	
	• wears film badge (to monitor exposure)/photographic film	Max 2

	X is Func surfa	coupling medium/gel/other example tion is to reduce reflection of u-sound at surface J/skin/body ce	1	
	[OR	make sure u-sound enters body at J/skin]		
	Time	e delay		
	Time	e = distance/speed [Attempted use of]	1	
	echo = 4	Idea: $d \times 2$ $(10^{-5} \text{ s [no e c f]})$	l 1	
	Fred	uency of nulses	1	
	5000		1	
	Hz/h	ertz [Not s^{-1} or $/s$]	1	
	Addi	tion to grid		
	Pulse	e at 40 and 240 μ s [± 1 mm]	1	
	• ir	itensity < emitted intensity [i.e. not taller]		
	• al	low wider peaks		
	• e.	c.f. 20 µs AND 220 µs /their value		
	Refle	ections from M		
	Will [i.e. [NO	be <u>mixed</u> up with (K) other <u>reflections</u> idea of overlap] Γ weaker/more attenuation/interference with emitted pulse will	1	
	retur	n after next pulse is emitted]		[32]
(a)	(i)	10 spheres used, in channel between rules	1	
		Close packed/touching	1	
		Correct use of set squares at end or correct use of set squares to measure single diameter	1	
		Scale readings shown, giving l/d to nearest mm	1	
		$d \pm 0.03$ cm of Supervisor's value to ≥ 3 s.f. + unit	1	
	(ii)	Δl between 0.5 mm and 2 mm with unit		
		OR		
		correct Δl from range or 1/2 range	1	
		Correct calculated percentage	1	
	(iii)	Correct calculated to more than 2 s.f. + unit	1	
		[Allow e.c.f.]		
	(iv)	Use of 10 marbles [Allow 10 single values]	1	
		$+0.10 \sigma$ of Supervisor's value	1	
			1	
		Correct calculation of ρ , 2/3 significant figures + unit	1	
		Correct calculation of ρ , 2/3 significant figures + unit Value 2.3 \rightarrow 2.7 g cm ⁻³ [Rounded to 2 s.f.]	1 1 1	

97.

(b)	(i)	Measure height above bench at two places	1
		Use vertical rule	1
		Vertical rule checked with set square OR set square against stand to show string horizontal	1
		Reasonable value to 0.1 N with unit	1
		[Between 4.0 N and 5.5.N]	
	(ii)	Three forces in correct orientation	1
		[May be mirror Image]	
		Arrows on all forces correct and lines meeting at a point	1
		[Dependent on first mark]	
		Correct labels or numerical values	1
	(iii)	Correct values shown	1
		[Allow 4 N or 0.4 g and e.c.f.] [Must be evidence of a unit]	
		Scale diagram or trigonometry or use of Pythagoras	1
		Correct calculation1	1
		2/3 s.f. + unit	1
		Value $1.5 \rightarrow 3.5 \text{ N}$	1

Sample results

(a) (i) 10 spheres used, in channel between rules Close packed and touching

$$l = 41.2 - 26.0 = 15.2 \text{ cm}$$
$$d = \frac{15.2}{10} = 1.52 \text{ cm}$$

(ii) $\Delta l = 0.2 \text{ cm}$

Percentage uncertainty = $\frac{0.2}{15.2} \times 100 = 1.3\%$

(iii)
$$V = \frac{\pi d^2}{6} = \frac{\pi \times 1.52^3}{6}$$

$$= 1.84 \text{ cm}^3$$

(iv) Mass of dish = 15.0 g Mass of 10 marbles + dish = 60.6 g Mass of 10 marbles = 45.6 g Mass of 1 marble = 4.56 g

Density =
$$\frac{4.56}{1.84}$$

$$= 2.48 \text{ g cm}^{-3}$$

[24]

(b) (i) Measure height above bench at two places; use vertical rule

Vertical rule checked with set square OR set square against stand to show string horizontal

....

98.	(a)	(1)	Incorrect polarity for T_{r} –1	
			Circuit set up correctly without help	2
			$I_1 \approx 80$ mA and read to 1 mA or better, with unit	1
			$V \approx 6$ V and read to 0.1 V or better, with unit	1
		(ii)	$I_2 \approx 27$ mA to 1 mA or better, with unit	1
			$V_2 > V_1$ to 0.1 V or better + unit	1
			[Unit penalty once only for each quantity]	
			[Allow results to be interchanged, but max 2/4 if two sets of identical results]	
	(b)	State	ed or implied	2
		Corr	rect calculation ≥ 2 s.f. + unit	1
		Valu	the 200 \rightarrow 240 Ω [dependent on correct calculation]	1
	(c)	(i)	Use of V_1	1
			Correct calculation of <i>I</i> through $R_2 \ge 2$ s.f. + unit	1
			[Allow VI, V2 or 6 V in calculation, OR I_2 and e.c.f. in R_2].	
		(ii)	Correct calculation of <i>I</i> through R_1 OR $I_1 - I_2 \ge 2$ s.f. + unit	1
			[Apply unit penalty once only]	

		*		[24]
		Explanation	1	
		Diode curve in forward quadrant	1	
		Similar line to 0.7 V shown in forward quadrant	1	
		Straight line of positive slope and through origin shown in reverse quadrant	1	
		Reverse quadrant shown	1	
	(ii)	I against V OR V against I	1	
		Repeat with connections to box reversed	1	
		Change V; measure I and V (with T positive)	1	
(d)	(i)	Circuit showing correctly drawn potential divider with correct positions for ammeter and voltmeter	1	
		Value $90 \rightarrow 110 \Omega$	1	
		Correct calculation of $R_1 \ge 2$ s.f. + unit	1	
	(iii)	Subtraction of 0.7	1	

Sample results

(a) (i)
$$I_1 = 80.5 \text{ mA}$$

 $V_1 = 6.11 \text{ V}$
(ii) $I_2 = 28 \text{ mA}$

$$V_2 = 6.20 \text{ V}$$

(b) When T negative only R_2 conducts, i.e. use results from (a)(ii)

$$R_2 = \frac{6.2}{0.028} = 221 \ \Omega$$

(c) (i) I through
$$R_2 = \frac{V_1}{R_2} = \frac{6.11}{221} = 0.0276 \text{ A} (=27.6 \text{ mA})$$

(ii) Current through R_1 and diode = 80.5 - 27.6 = 52.9 mA

(iii)
$$R_1 = V/I = \frac{6.11 - 0.7}{0.0529}$$

= 102.\Omega

(d) (i) Circuit with potential divider, ammeter and voltmeter in correct positionsChange *V*, measure *I* and *V*. Repeat with connections to box reversed.

(ii)

$$R_{2} = \frac{\Delta V}{\Delta I} \text{ or } \frac{V}{I} \text{ provided that linear section used}$$

99.	(a)	(i)	Three or more readings ± 0.2 s of Supervisor's value	2
			[Two readings – 1 mark]	
		(ii)	Mark, or correct use of metre rule [shown]	1
			Same point used on trolley	1
			Eye level with point on trolley	1
			[OR other good technique]	
		(iii)	Δt from range of $\frac{1}{2}$ range (> 0.05 s)	1
			Correct calculation [e.c.f]	1
		(iv)	Correct calculation ≥ 2 s.f. + unit	1
		(v)	Correct calculation [e.c.f.] + unit	1
			Positive value and l or 2 s.f.	1
	(b)	(i)	Potential divider set up correctly	2
			Ammeter, voltmeter and polarity of X correct	1
		(ii)	V_1 (4.0 \rightarrow 4.8) V to 0.1 V or better, with unit	1
		(iii)	V_2 (3.0 \rightarrow 3.5) V to 0.1 V or better, with unit	1
			[Unit penalty once only]	
		(iv)	Use of V_1 and 20 mA	1
			Calculation + unit	1
			Value $200 \rightarrow 240 \Omega$. [No e.c.f]	1
		(v)	Use of V_2R_2 [e.c.f.]	1
			Correct calculation ≥ 2 s.f. + unit [dependent mark]	1
			Correct calculation of I + unit	
			[Penalise omission of unit once only]	
			Correct calculation of $V[(V_2 - 0.7)$ seen anywhere]	1
			Correct calculation ≥ 2 s.f. [dependent mark] + unit	1
			Value $90 \rightarrow 110 \Omega$ [No e.c.f.]	

[24]

Sample results

- (a) (i) t = 1.82, 1.96, 1.94 s Average t = 1.91 s
 - (ii) Use marker which is 0.800 m from end of runway

Put in front of trolley level with marker

Release and start stopwatch, stop when front of trolley at end of runway

Keep eye level with front of trolley

(iii) Range of t = 0.14 s

Percentage uncertainty =
$$\frac{\frac{1}{2} \times 0.14}{1.91} \times 100 = 3.7\%$$

(iv)
$$a = \frac{2 \times 0.8}{1.91^2}$$

= 0.439 m s⁻²

(v)
$$\theta = 3.1^{\circ}, m = 1.00 \text{ kg}$$

 $F = 1 \times 9.81 \sin 3.1^{\circ} - 1 \times 0.439$
 $= 0.531 - 0.439 = 0.092 \text{ N}$

- (b) (i) Circuit set up correctly
 - (ii) $V_1 = 4.45 \text{ V}$
 - (iii) $V_2 = 3.25 \text{ V}$

(iv)
$$R_2 = \frac{4.45}{0.02} = 223 \,\Omega$$

(v) I through $R_2 = \frac{3.25}{223} = 0.0146 \text{ A} (= 14.6 \text{ mA})$

I through $R_1 = 40 - 14.6 = 25.4$ mA

$$R_1 = \frac{(3.25 - 0.7)}{0.0254} = 100 \ \Omega$$

100.	(a)	Measure height above bench at two places	1
		Use vertical rule	1
		Vertical rule checked with set square	1
		[OR set square used between stand and string]	
		Reasonable value to $0.1 \text{ N} (4.0 - 5.5 \text{ N})$ with unit	1

(b)	h and	d <i>I</i> recorded to nearest mm or better		1	
	Scale	e readings shown		1	
	Mea	sured height above the bench at Band	d C	1	
	with	vertical rule		1	
	Corr	ect calculation of $\cos\theta$ to 2/3 s.f.		1	
	Hene	ce value $0.70 \rightarrow 0.98$		1	
(c)	[Usi	ng $g = 9.8$]			
	Corr	ect calculation of <i>W/R</i>		1	
	2/3 s	.f. and NO unit [dependent mark]		1	
	W/R	and $\cos \theta$ within 0.05 [no e.c.f.]		1	
	Corr	ect calculation of percentage uncerta	uinty	1	
	Corr	ect calculation of percentage differer	nce [OR range of values]	1	
	Sens	ible comment [Must be quantitative]		1	
(d)	(i)				
		Method 1	Method 2		
		• Change <i>M</i>	• Keep <i>M</i> constant	1	
		• Adjust height of newton- meter until AB horizontal	• Adjust Separation of clamps until AB horizontal	1	
		• Record <i>R</i> and <i>h</i>	• Record R and h	1+1	
		• Evaluate $\cos\theta$ and W/R	• Evaluate $\cos\theta$ and I/R	1	
		[OR inferred from graph]			
	(ii)	Correct graph with axes labelled		1	
		Straight line through origin expected	ed)	1	
		Gradient) Dependent mark)	1	[24]

Sample results

- (a) Measure height above bench at two places Use vertical rule
 Vertical rule checked with set square [or set square used between stand and string] R = 4.7, 4.9 N Average R = 4.8 N
- (b) l = 30.0 cm

h = 44.5 - 19.0 = 25.5 cm

Measured height above the bench and B and C with vertical rule

$$\cos\theta = \frac{h}{l} = \frac{25.5}{30} = 0.85$$

(c) $\frac{W}{R} = \frac{0.4 \times 9.81}{4.8} = 0.82$

Percentage uncertainty in $R = \frac{0.2}{4.8} \times 100\% = 4.2\%$

Percentage difference between values =

$$\frac{0.85 - 0.82}{\frac{1}{2}(0.85 + 0.82)} \times 100\% = 3.6\%$$

Difference is less than percentage uncertainty, hence good agreement between $\cos\theta$ and W/R.

(d) (i)

Method 1

- Change M
- Adjust height of newtonmeter until AB horizontal
- Record *R* and *h*

• Evaluate
$$\cos\theta$$
 and W/R

Method 2

- Keep *M* constant
- Adjust Separation of clamps until AB horizontal
- Record R and h
- Evaluate $\cos\theta$ and 1/R

(ii)

Gradient = W

101.	(a)	Stefan-Boltzmann law	
		T = absolute or Kelvin temperature/K (1)	
		[Not °K or k]	
		of surface (1)	
		Unit luminosity: watt/W (1)	3
	(b)	Graph	
		State Wien's law OR see evidence of $\lambda_{max} \times T$ (1)	
		at two different points to give same product [Ignore 10^{-6}] (1)	
		More than two points and allow $2.8 - 3.0 \times 10^{-3}$ (mK) (1)	3
		[No ue]	

Surface temperature of star

(c)

(d)

Temperatur	re = 7300 [7000 to 7500] [No ue] (1)	1
Luminosity	<u>r calculation</u>	
Use of T^{-1}	7300 K^{-1} [e.c.f] (1)	
$A = 4\pi r \text{su}$ (5.67 × 10 ⁻⁸	$^{3} W m^{-2} K^{-4}) \sigma T^{4} \mu \text{ sed [ecf any } 4 T] (1)$	
$= (1 4 \rightarrow 1)$	$(1)^{25} (W) [No ecf] (1)$	4
(7000 K) (7	7500K) [No ue]	
Matter cons	sumed	
$\Delta E = c^2 \Delta n$	t(1)	
Substitute t Mass = 1.8	neir L and 9 × 10 m s [Beware $\Delta E = c\Delta m$ used] (1) × 10 ⁸ (kg s ⁻¹) [No ye] [ccf] [Range: 1.5 – 2.0 × 10 ⁸ allowed] (1)	3
Soloot word	$\sim 10^{\circ}$ (kg s ⁻) [10 ^o uc] [cc1] [Kange. 1.5 = 2.0 $\times 10^{\circ}$ and wed] (1)	5
Cool (1)	15	
High (1)		
Surface are	a (1)	1
Hertzsprun	g-Russell diagram	т
(i)	Temperature scale "4" (1)	
(1)	Values in range (20,000 K to 60,000 K) and (2000 K)	
	to 4000 K) and non-linear showing at least 3 values (1)	
	[e.c.f. scale in wrong direction]	
(ii)	Level with 10° marked Xs [Check with ruler if unsure] (1)	
(iii)	Region below MS marked W (1)	
(iv)	Region above MS marked R (1)	5
Recognition	n of supernova	
Extremely	bright star [not "explosion"] (1)	
Suddenly a	ppearing/time reference (1)	2
How superior	nova is formed	
Any three f	rom:	
• quality of	of written communication	
• when sta	ar collapses/implodes	
• shock <u>w</u>	rave / explosion blows outer layers away [both needed]	
• (H) fusi	on ceases/other fusion begins	
• protons	combine with electrons to form neutrons (1) (1) (1)	Max 3
	Temperature Luminosity Use of T ⁴ [$A = 4\pi r^2$ su $(5.67 \times 10^{-8})^2$ $= (1.4 \rightarrow 1.0)^2$ (7000 K) (7) Matter const $\Delta E = c^2 \Delta m$ Substitute to Mass = 1.8 <u>Select word</u> Cool (1) High (1) Surface are Off the main Hertzsprum (i) (ii) (iii) (iv) Recognition Extremely Suddenly at How supern Any three for \circ quality of \circ when stat \circ shock w \circ (H) fusit \circ protons	Temperature = 7300 [7000 to 7500] [No ue] (1) Luminosity calculation Use of T ⁴ [7300 K ⁴] [e.c.f] (1) $A = 4\pi r^2$ substitution correct (1) (5.67 ×10 ⁻⁸ W m ⁻² K ⁻⁴) σ T ⁴ A used [ecf any A, T] (1) = (1.4 \rightarrow 1.8) ×10 ²⁵ (W) [No ecf] (1) (7000 K) (7500K) [No ue] <u>Matter consumed</u> $\Delta E = c^2 \Delta m$ (1) Substitute their L and 9 × 10 ¹⁶ m ² s ⁻² [Beware $\Delta E = c\Delta m$ used] (1) Mass = 1.8 × 10 ⁸ (kg s ⁻¹) [No ue] [ecf] [Range: 1.5 – 2.0 ×10 ⁸ allowed] (1) <u>Select words</u> Cool (1) High (1) Surface area (1) Off the main sequence (1) Hertzsprung-Russell diagram (i) Temperature scale " \leftarrow " (1) Values in range (20 000 K to 60 000 K) and (2000 K to 4000 K) and non-linear showing at least 3 values (1) [e.c.f. scale in wrong direction] (ii) Level with 10° marked Xs [Check with ruler if unsure] (1) (iii) Region below MS marked W (1) (iv) Region above MS marked R (1) <u>Recognition of supernova</u> Extremely bright star [not "explosion"] (1) Suddenly appearing/time reference (1) <u>How supernova is formed</u> Any three from: • quality of written communication • when star collapses/implodes • shock wave / explosion blows <u>outer layers</u> away [both needed] • (H) fusion ceases/other fusion begins • <u>protons</u> combine with electrons to form neutrons (1) (1) (1)

	(e)	Light year Distance travelled by light in one year (1)	1	
		Show that 1600 light years = distance 1.5×10^{19} m		
		s/year $(365 \times 24 \times 60 \times 60 \text{ s})$ (1)		
		Method: multiply 1600 by 3×10^8 m s ⁻¹ × <i>t</i> (1)	2	
		Indirect evidence		
		No radiation/nothing can escape from them (1)	1	
		[Not just "no light" or "no matter"]		10.01
				[32]
102.	(a)	Expression		
		Energy density = joule/ m^3 (1)		
		Stress = N/m^2 (1)		
		Strain = m/m OR no unit stated (1)		
		$J = N m / kg m^2 s^{-2}$ (1)	4	
	(b)	Hooke's law		
		Tension/force proportional to extension OR formula with symbols defined (1)		
		Up to a certain limit/limit of proportionality (1) [Accept elastic limit]	2	
		Calculation of Young, modulus of brass		
		Stress = 34 N/1.5 × 10 ⁻⁷ m ² OR $E = \frac{Fl}{A\Delta l}$ used (1)		
		Strain = 5.3×10^{-3} m/2.8 m [ie substitution]		
		$[ignore 10^{n}]$ (1)		
		Young modulus = 1.2×10^{11} [No ecf] (1) Pa / N m ⁻² [Not kg m ⁻¹ s ⁻²] (1)	4	
		<u>Graph</u>		
		[Mark alongside]		
		Straight line from origin to 46 N (1)		
		going through 34 N, 5.3 mm (1)	2	
		Energy stored		
		By finding area/area shaded/ $\frac{1}{2}$ Fx up to 24 N (1)	1	
		Second wire		
		Less energy stored (1)		
		Less extension (1)		
		Smaller area under graph OR smaller $\frac{1}{2}$ Fx (1)	3	

(c) <u>Differences in behaviour</u>

Any five from:

	5	
	• Quality of written communication	
	• Perspex brittle	
	• Polythene large plastic deformation / tough	
	• Perspex stiffer/polythene smaller Young modulus [not just gradient]	
	• Perspex stronger/polythene smaller breaking stress / UTS	
	• Perspex higher limit of proportionality/obeys Hooke's law to higher stresses than polythene/similar or inverse (1) (1) (1) (1) (1)	Max 5
(d)	Diagram	
	A tangle of squiggles (1) with (long) molecule or atoms identified on a squiggle / polymer chain (1)	2
	Differences in molecular structure	
	Thermoset has strong cross links (1)	1
(e)	Tempering	
	Heat and (allow to) cool (1)	1
	How properties change	
	Make softer / less hard / less brittle (1)	1
	Completion of sentence	
	Stronger (1)	1
	Use of graph to determine tensile strength	
	$1/A = 8 \text{ (mm}^{-2})$ (1) Strength = $1.1 \times 10^9 \text{ Pa [ue]}$ (1)	2
	Strength of glass fibre and its safety	
	See or use $W = mg (196 \rightarrow 200 \text{ N}) (1)$	
	Stress = $200/0.125 \times 10^{-6}$ Pa [Ignore 10^{n} error] [No ue] (1)	
	1.6×10^9 compared with value above <i>and</i> yes/no (1)	3
	[OR reverse argument to 14 kg]	

103. (a) <u>Homogeneity</u>

 $p = \text{mass} \times \text{velocity (1)}$ $p \text{ units N s or kg m s}^{-1} \text{ [This alone implies above mark] (1)}$ $E \text{ unit (J) N m or kg m}^2 \text{ s}^{-2} \text{ (1)}$ $c \text{ unit m s}^{-1} \text{ (1)}$ [32]

(b)	$\frac{\text{Diagram}}{\beta^{-} \text{ close to line [mark by diagram] [+5 mm max] (1)}}$ $\frac{\text{Explanation of region choice}}{\beta^{-} \text{ close to line [mark by diagram] [+5 mm max] (1)}}$	1
	Any three from:	
	• quality of written communication	
	• in β^- decay neutron \rightarrow proton	
	• so moves downwards and to right OR	
	• closer to dotted line OR more stable (1) (1) (1)	Max 3
	[Discussion in terms of $N = Z$ line, max $1/3 + I$ QOWC]	
(c)	Classification of particles	
	Ξ^- is a baryon (1) A is a baryon (1) π^- is a meson (1) [Allow bbm]	3
	Charge of strange quark	
	Show that $-1 = -1/3(d) + -1/3(s) + -1/3(s)$ (1) <u>A particle</u>	1
	Λ is neutral (1) +2/3 + $-1/3$ + $-1/3$ = 0 and uds OR charge conservation (-1) = 0 + (-1) (1)	2
	Why decay is a weak interaction An s quark changes to a u quark / change of quark flavour / type (1)	
	Exchange particle is $W^{-}(1)(1)$ [W+, Z°, W or Z gets (1) (0)]	3

Electron and positron IN (1)

Quark and antiquark OUT (1)

[Type given, must be a pair, e.g. uū]

Calculation of mass Any 3 from:

- Total energy $Z^\circ = 91.2 \text{ GeV} / \times 2$
- 1000 ÷ 930 [or ÷ 0.93]
- \Rightarrow 98 u

(e)

(f)

 $u = 1.66 \times 10^{-27} \text{ kg [seen]}$ • 1.6×19^{-25} (kg) (1) (1) (1) Max 3 • How mass compares with that of a proton This is <u>approximately $100 \times \text{mass}$ proton [ecf] (1)</u> 1 Four fundamental interactions Three correct (1) Fourth correct (1) (Strong, weak, electromagnetic, gravitational] Strong does not act between electrons (1) Acts upon quarks and electrons Weak, gravitational, electromagnetic (1) (1) 5 [All 3 correct (1) (1); only 2 correct (1)] Identification of diagrams Left hand charged current interaction AND right hand neutral current interaction (1) Left hand W^+ OR W^- OR W (1) Right hand $Z^{\circ}(1)$ 3

Equation $n + v_{\mu} \rightarrow \mu^{-} + p(1)$

[32]

104.	(a)	eV to joules and speed of an electron	
		$20 \times 10^3 \times 1.6 \times 10^{-19} (= 3.2 \times 10^{-15})$ (1)	
		$E = \frac{1}{2} mv^2$ (1)	
		$= 3.2 \times 10^{-15} $ J (1)	
		$m = 9.11 \times 10^{-31} \mathrm{kg} \mathrm{(1)}$	
		$v = 8.4 \times 10^7 \mathrm{m \ s^{-1}}$ (1)	5
	(b)	How anti-scatter grid improves sharpness of an X-ray image	
		Quality of written communication (1)	
		X-rays scattered / deflected (by patient) (1)	
		cattered X-rays but are stopped by grid (1)	3
		Material of anti-scatter grid	
		Lead (1)	1

(c)	Description of ultrasound A-scan	
	send PULSE in (1) detect reflection (1) time between in and out / find Δt between reflections from opposite sides of hand	
	use distance = speed \times time (1) divide by 2 (1)	5
	Why ultrasound of 1.2 MHz not suitable for purpose	
	Use $c = f \times \lambda$ [i.e. see subs ignoring 10^n errors] (1)	
	$\lambda = 1.25 \times 10^{-3} \text{ m} (1)$	
	Too big to give detail/resolve eye (1)	3
(d)	Homogeneous	
	One wavelength only [or f or E] (1)	1
	HVT	
	1.5 mm – 1.6 mm (1)	1
	Use of graph to justify statement	
	Two drops compared correctly (1) (1)	2
	Calculation	
	$400 \rightarrow 50$ is 3 half thicknesses (1)	
	so 7.2 mm (1)	2
	Why absorbers of specific shapes and thicknesses needed	
	To allow high dose in desired place (1)	
	To protect healthy organs (1)	2
(e)	Nuclear equation	
	$^{131}_{53}I \rightarrow ^{131}_{54}Xe + ^{0}_{-1}\beta^{-} + \gamma \ [OR ^{0}_{-1}e]$	
	Symbols (1)	
	Numbers [×6] (1)	2
	Labelled diagram	
	Mark by diagram	
	Any five from:	
	• circuitry	
	• photomultipliers	
	• scintillator (NaI crystal) [not just crystal]	
	• collimator (grid)	
	• patient	
	• source inside patient (1) (1) (1) (1) (1)	Max 5

[32]

105.	(a)	(i)	Initial level of water below height of plasticene		
			Sensible trial and error shown		
			OR		
			Beaker used to collect correct volume of water		
			Plasticene removed with pencil explained (1)		
			Plasticene fully immersed (1)		
			Correct volume by difference method, with unit (1)		
			[Ignore incorrect conversion to m ²]		
			Two precautions given (1) (1)		
			Correct calculation, 2/3 significant figures + unit (1)		
			Value $1.6 - 2.0 \text{ g cm}^{-3}$ (1)	7	
			$[OR \pm 0.2 \text{ on centre value}]$		
		(ii)	Sensible $\Delta V(1)$		
			$[1 \text{ cm}^3 \text{ or } 2 \text{ cm}^3 \text{ or } \frac{1}{2} \text{ range or range of values}]$		
			Correct calculation of percentage from sensible ΔV (1) Correct calculation of percentage difference with 1800 (1.8)		
			as denominator (1)		
			Sensible comment based on their percentage difference and		
			the manufacturer's specification $[\pm 10\%]$ (1)	4	
	(b)	(i)	Circuit set up correctly without help (1) (1) [Ignore polarity errors]	2	
		(ii)	$V_{4c} \approx 3 \text{ V to } 0.1 \text{ V or better with unit (1)}$		
		(11)	$V_{BC} < V_{AC}$ to 0.1 V or better, with unit (1)		
			[Use unit penalty once only]		
			Correct difference <u>calculated</u> with unit (1)		
			Correct calculation to more than 2 significant figures + unit (1) Correct calculation to more than 2 significant figures + unit (1)	5	
		(iiii)	$V_{-} > V_{-}$ in part (ii) and > 2 V and to 0.1 V with unit (1)	5	
		(111)	[Allow $V_{BC} \approx V_{AC}$]		
			$V_{\rm BC}$ increases because (1)		
			resistance of LDR increases (1)		
			as light intensity reduced/when LDR is covered (1)		
			[dependent on previous mark because $\frac{V_{BC}}{V_{AB}} = \frac{R_{LDR}}{1k\Omega}$ (1)]		
			so share of voltage increases OR circuit current reduces so		
			p.d. (1) across 1 kO reduces : p.d. across I DP increases (1)	5	
			Connect aslaulation of D = mith it is a time OD	5	
			Correct calculation of K_{LDR} with unit, using ratios OK current method and ≥ 2 significant figures (1)	1	
			current method and ≤ 2 significant figures (1)	1	[24]
Sample results:

(b)

(a) (i) m = 75.0 g

All volumes must be measuring cylinder, else 0/2
Volume of water and Plasticene = 95 cm³
Volume of water = 53 cm³
Volume of Plasticene = 42 cm³
Any two precautions from:
Tilt the measuring cylinder/lower the Plasticene carefully to avoid splashing
Eye level with meniscus/when taking surface of water readings
Repeat readings seen
Carefully exclude air when shaping
Tap the measuring cylinder to remove air bubbles
Density =
$$\frac{75}{42}$$
 = 1.79 g cm⁻³
(ii) $\Delta V = 1$ cm³
Percentage uncertainty = 1+42 × 100 = 2.4%
Percentage difference = $\frac{0.01}{1.8} \times 100$
= 0.6%
Percentage difference is smaller than 10% \therefore well within manufacturer's specification
(i) Ignore polarity errors
(ii) $V_{AC} = 3.08$ V
 $V_{BC} = 0.95$ V
 $V_{AB} = 3.08 - 0.95 = 2.13$ V
 $I = \frac{V}{R} = \frac{2.13}{1000} = 2.13 \times 10^{-3}$ A
 $R = \frac{V}{I} = \frac{0.95}{2.13 \times 10^{-3}} = 446\Omega$
OR
 $\frac{V_{BC}}{V_{AB}} = \frac{R}{1000}$
 $I = \frac{V_{AC}}{R} = \frac{V_{AB}}{100} = \frac{V_{AC}}{R+1000}$

(iii) $V_{BC} = 2.68 \text{ V}$

V_{BC} increases because:

resistance of LDR increases as light intensity reduces/when the LDR is covered, so *either* share of voltage increases *or* circuit current reduces so p.d. across 1 k Ω reduces, therefore p.d. across LDR increases.

$$\frac{V_{BC}}{V_{AC}} = \frac{R_{LDR}}{1.0 + R_{LDR}}$$
$$\frac{2.68}{3.08} = 0.87 = \frac{R_{LDR}}{1.0 + R_{LDR}}$$
$$\therefore 0.87 + 0.87 R_{LDR} = R_{LDR}$$
$$0.13 R_{LDR} = 0.87$$
$$R_{LDR} = 6.7 \text{ k}\Omega$$

106.	(a)	Mean time ≈ 2 s and from ≥ 3 readings, with unit (1) (1) [≥ 2 readings, 1 only] Correct calculation ≥ 2 s.f + unit (1)	3
	(b)	Start and stop defined (1) Use of point on trolley for start and stop (1) Eye level with point on trolley at start or stop (1)	3
	(c)	[Calculation of $h - 0/2$] Height shown for length of 0.8 m (1) Use of set square to check rule vertical [Horizontal line needed] (1) Sensible height to the nearest mm with unit (1) Correct calculation of $E_p \ge 2$ s.f. + unit (1) Correct calculation of $E_k \ge 2$ s.f. + unit [allow ecf] (1) Correct calculation of k giving sensible positive k to 2 or 3 s.f. + unit (1)	6
	(d)	Use blocks of different height or release trolley from different points along runway or move block further under runway, or add masses to the trolley or use trolley of different mass (1) Use at least five different values for <i>h</i> /mass etc [May be evidence of this from table or graph.] (1) Measure <i>t</i> (1) to travel a distance <i>s</i> (1) Calculate v , E_p and E_k (1) E_p against E_k plotted (1) Straight line, positive gradient and intercept (1) Intercept when $E_k=0$ (1)	8
	<i>(</i>)		

(e)

Motion sensor	Light gate at end of 0.8 m	(1)
Description, e.g. ultra-	Card attached to trolley	
sonic waves reflected off metal plate attached to trolley		(1)

Output connected to datalogger/timer (1) Correct v by calculation or from computer (1)

4

[24]

Sample results:

(a)
$$t = 1.91, 1.91, 1.96, 1.90 \text{ s}$$

Mean $t = 1.92 \text{ s}$
 $\upsilon = \frac{2 \times 0.80}{1.92} = 0.83 \text{ m s}^{-1}$

(b) Start and stop definedUse of same point on trolley for start and stopEye level with point on trolley at start or stop

(c) h = 38 mm

 $E_{\rm p} = mg \Delta h = 1.0 \times 9.81 \times 38 \times 10^{-3} = 0.373 \text{ J}$ $E_{\rm k} = \frac{1}{2} \text{ m} \upsilon^2 = \frac{1}{2} \times 1.0 \times (0.83)^2 = 0.347 \text{ J}$ k = 0.373 - 0.347 = 0.026 J

(d) Use blocks of different height or release trolley from different points along runway or move block further under runway, or add masses to the trolley or use trolley of different mass

Use at least five different values for *h*/mass etc [May be evidence of this from table or graph.]

Measure *t* to travel a distance *s* Calculate v, E_p and E_k

Find *k* by intercept when $E_k = 0$

(e)

Motion sensor

Description, e.g. ultrasonic waves reflected off metal plate attached to trolley Light gate at end of 0.8 m Card attached to trolley

Output connected to datalogger/timer (1)

Correct v by calculation or from computer (1)

107. (a) <u>Higher efficiency</u>

	Idea of "less light to get image" / more useful energy out (1) Lower intensity light triggers a CCD Greater intensity needed to expose a grain of emulsion (1)	
	Advantage	
	Detect fainter/more distant objects	
	OR less time to get image/more images per session (1)	3
(b)	COBE	
	Apply Wien's law correctly [Ignore 10 ⁿ] (1) Temperature of space = 2.6 K [Not mK, °K, k] (1)	2
	Electromagnetic spectrum Microwaves/infra-red (1)	1
(c)	Ways in which white dwarf star differs from main seguence	
	Lower mass/volume/radius/(surface) area (1)	
	Fusion (burning) finished [Not luminosity] (1)	2
	Fate of star after it has become a white dwarf Cools (gradually) until no longer visible/becomes dimmer/changes colour (1)	2
	[Allow brown dwarf]	
	HR diagram	
	Any two from:	
	• temperature scale in reverse direction	
	• at least two <u>reasonable</u> <i>T</i> values shown/ eg 40 000, 10 000,4000)	
	• indication of log scale (1) (1)	Max 2
	(Single) star selected at $L/L_{\odot} = 1$ [$\approx \pm 2$ mm vertically by eye] (1) (Region) W clearly below MS [No ecf on <i>T</i>] (1) M to include top of MS (1)	1 1 1
	Explanation	
	Quality of written communication (1) Greater mass means greater luminosity or greater temperature or greater gravitational forces (1)	
	Burns hydrogen/fuel <u>much</u> faster (1) Runs out of fuel quicker (1)	4
(d)	Temperatures of the two stars	
	They are similar/same (1) because of Wien's law/same $\lambda/f(1)$	2
	Greater radius	
	Deneb (1) More luminous (1) Refer to σAT^4 and state <i>T</i> similar (1)	3

		Which star will appear brighter? Vega (1) Use of $I = L/4\pi D^2$ (1) One correct value: D = 8.8 OR V = 29 (× 10 ⁻⁹ W m ⁻²) (1) Second correct value with unit (1)	4	
	(e)	Show that Gemini has more than 10× the light gathering power		
		Substitutions in $\pi r^2 (8.0 \text{ m})^2 \div (2.4 \text{ m})^2 / 4^2 \div 1.2^2$ (1) Answer 11 times (1)	2	
		Situation Studying faint OR distant objects (1)	1	
		Suggested disadvantage Not steerable/exposed to weather (1)	1	2]
108.	(a)	Area under graph		
		It represents energy (stored) per unit volume/energy density (1)	1	
		Volume of seat belt		
		$1.8 \times 10^{-4} (\mathrm{m}^3) (1)$	1	
		Kinetic energy		
		Attempt to use $\frac{1}{2} mv^2$ (1) = 15.8 (kJ)/15 800 (J) (1)	2	
		Energy per unit volume		
		8 or 9×10^7 J m ⁻³ (88 MJ m ⁻³) OR 2 nd answer divided by 1 st with correct unit (1)	1	
		Belt satisfactory	1	
		Attempt to find area under graph $\frac{1}{2} \varepsilon \sigma$ used (1)		
		Value $\ge 9.6 \times 10^7 \text{ (J m}^{-3})$ (so total area is greater than above) (1)	2	
		Design change		
		Wider or thicker or harness shaped belt/more straps (1)		
		Need greater volume/need to reduce pressure on driver/need to absorb more kinetic energy [Not faster] (1)	2	
	(b)	<u>Graph</u>		
		Shape (hysteresis shown) (1) Arrow heads or labels (1)	2	
		Explanation		
		Quality of written communication (1)		
		Area indicates work done / energy (density) (1)		
		Relaxed area / work / energy density < stretched area / work / energy density OR area of loop (1)	3	

(c)	Fatigue	failure
· · ·	_	

	Fracture/cracking/breaking after many cycles of stress OR repeated tension/loading (1)	1
	Explanation for fatigue failure	
	Any THREE from:	
	aircraft subjected to repeated stresses	
	because of temperature/pressure changes (during flight)	
	stress concentrations at rivet holes/corners of windows	
	• these cause cracks (to propagate) (1) (1) (1)	Max 3
(d)	Composite material	
	Two materials combined to use the properties of both (1)	1
	Labelled diagrams	
	Any four from:	
	• Chipboard shows random bits (of wood) [Not unlabelled dots or line	es]
	• Label says 'glued' or 'in matrix' AND wood/chips	
	• Plywood shows layers (of wood)	
	• Label says 'crossed grain' AND (layers of) wood (1) (1)	
	• Particle composite = chipboard AND laminate = plywood (1) (1)	Max 4
(e)	Energy conversions	
	GPE to KE (1) to EPE or internal energy/strain/elastic (1)	2
	Three properties	
	Strength, toughness, elasticity	
	Any TWO correct (1)	
	Third property correct	2
	$[-1 \text{ per incorrect answer if } \geq \text{ three circles}]$	
	Calculation of theoretical extension of rope	
	Correct substitution in $A = \pi r^2 / 9.5 \times 10^{-5} \text{ m}^2$ (1)	
	Sensible <u>use</u> of any TWO from:	
	• Stress = $F \div A$ [Ignore 10 ⁿ , ecf A]	
	• $E = \text{stress} \div \text{strain}$	
	• Strain = $\Delta l \div l$ (1) (1)	
	Answer: 2.0 m [No ecf] [ue] (1)	4
	Suggested reason why rope should be replaced	
	May have exceeded its elastic limit or may have deformed plastically or may have been damaged on sharp rock/ fibres may be broken (1) [NOT rope has broken]	1

[32]

ã	109.	(a) <u>E</u>	<u>xperiments</u>
		(i) <u>Deep</u> inelastic scattering/SLAC 1969/Friedman, Taylor,Kendal (1))
		(ii) Rutherford (or alpha) scattering/Geiger and Marsden or Manchester1909/1910/1911 (1)	er 2
		Radius	
		Use of $r = r_0 \sqrt[3]{40}$ (1)	
		$r = (1.2 \times 10^{-15} \text{ m} \times \sqrt[3]{40} =) 4.1 \times 10^{-15} \text{ (m)} (1)$	2
		Density of calcium nucleus	
		Mass = $40 \times 1.66 \times 10^{-27}$ kg (1)	
		Volume = $4\pi/3 \times (4.1 \times 10^{-15} \text{ m})^3$	
		[OR $\frac{1.66 \times 10^{-27}}{4\pi/3 (1.2 \times 10^{-15})^3}$ for first two marks]	
		Use of $d = m/V$ to give answer (2.3 or 2.5) × 10 ¹⁷ kg m ⁻³ (1)	3
	(b)	Emission - written above arrows	
		$\alpha \beta^{-} \beta^{-} \alpha \alpha$ All five correct [Allow e ⁻ , ⁴ He ²⁺] (1) (1) [For each error -1] [$\alpha \beta \beta \alpha \alpha$ gets 1/2] Number of alpha particles emitted	2
		Five (1)	1
	(c)	Graph	
		Correct shape (y-axis – fall) [NOT bell shaped] (1) Meets KE axis (1)	2
		Explanation of how energy spectrum led to prediction of existence of the antineutrino	
		Quality of written communication (1)	
		Energy per decay is constant / conservation of energy (1)	
		β^{-} have a range of energies (1)	
		(anti)neutrino / other particle takes missing energy (1)	4

	(d)	Comparison b	etween antiparticle and its p	article pair			
		Similarity: san	ne <u>mass</u> as its particle pair (1	magnitude of charge) (1)			
		Difference: op	posite charge/baryon numbe	er/(Iepton number / spin) (1)		2	
		Quark compos	sition				
		ūū d [OR an	ti-down etc] (1)			1	
		Baryon numbe	<u>er</u>				
		-1 (1)				1	
		Why difficult	to store antiprotons				
		As soon as the	y <u>contact</u> protons/matter (1)				
		they annihilate	<u>e (1)</u>			2	
		Maximum pos	sible mass				
		×2 (1) ÷ 0.93 or equiv 96 (u) OR 97 ([48u x (1) (1)]	valent [OR by using $E = mc$ (u) (1)	² to 1.6×10^{-25} kg] (1)		3	
		Two reasons v	why interaction cannot take p	<u>place</u>			
		Q/charge not c B/baryon num	conserved (1) ber not conserved (1)			2	
	(e)	Completion of	table				
			Fundamental interaction	Exchange particle			
		Decay (i)	Strong	Gluon	(1)		
		Decay (ii)	Weak	W^{-}	(1)(1)		
		Decay (iii)	Electromagnetic	Photon / y / gamma	(1)		
		[Ignore "nucle	ar" or "ray" or "virtual" any	where]		4	
		Fundamental i	nteraction				
		Gravitational [[ecf] [NOT "gravity"] (1)			1	
							[32]
110.	(a)	Half lives					
		$8000 \rightarrow 4000$ 40 hours [ecf]	\rightarrow 2000 \rightarrow 1000 is 3 half liv 13.3 × number above] (1)	ves (1)		2	
		<u>Graph</u>					

Decay curve starting at 8000 (1) Decay curve not <u>cutting</u> time axis (1) One approx correct point e.g. 40, 1000 (1)

<u>Activity</u>

Less because some excreted or equivalent (1)

3

(b)	Equation
-----	----------

(c)

⁹⁹ ₄₂ M	$Io \rightarrow {}^{99m}_{43} \text{Tc} + \beta^{-} / {}^{0}_{-1} \beta / e^{-} / {}^{0}_{-1} e \text{ [+ anti-neutrino] (1)}$	1
Whe	ere produced	
Elut	ion cell/alumina beads (1)	1
Desc	cription of what happens when tap is opened	
<u>Salin</u> disso and	ne solution is <u>forced</u> through cell [NOT just goes] (1) olving any Tc AND not Mo (1) transferring Tc to collection bottle (1)	3
Suita	able material	
Lead	d/Pb (1)	1
Adv	antage	
Can OR	be produced on the spot OR is still active when required can produce fresh, single dose per patient OR portable (1)	1
Two	reasons	
Not	too long to wait for it to recharge (1)	
Reas too c	sonable time before needing a replacement/(Not so short that it decays quickly) (1)	2
Func	ction of parts of X-ray tube	
(i)	Filament releases electrons/thermionic emission (1)	
(ii)	High voltage accelerates electrons (1)	
(iii)	Tube enables a vacuum to be created (1)	3
Prot	ection of radiographer	
Any	TWO from:	
•	wears lead apron	
•	lead shield round tube/machine	
•	leaves room while on / operates from behind leaded window / lead shield	
•	wears <u>film</u> badge to monitor exposure (1) (1)	2
<u>Expl</u>	lanation of X – ray photograph	
Qua	lity of written communication (1)	
X-ra	y absorption depends on proton number/Z (1)	
X-ra	ys expose film / picture / image making it dark (1)	
Bon lung	e absorbs X-rays (so none reach film so not dark) AND s/air spaces/air does not absorb (so reach film so dark) (1)	4

	(d)	<u>Coup</u>	oling medium		
		To av	void (surface) reflections/more penetration (1)	1	
		Energ	gy loss		
		Scatt Heat	ering/absorption [NOT reflection] (1) / internal energy / molecular vibrations (1)	2	
		<u>Calcu</u>	alation of reflection coefficient		
		$(Z_1 -$	$Z_2)^2 \div (Z_1 + Z_2)^2$ (1)		
		(7.8 - = 0.4	$(-1.7)^2 \div (7.8 + 1.7)^2$ (1) 1/41% (1)	3	
		How	much of intensity enters bone		
		0.6 <i>I</i> 0.6 ×	is not reflected [ecf] (1) 0.5 I enters (= 0.3 I) (1)	2	[32]
111.	(a)	(i)	Diameter to 0.01 mm precision and \pm 0.4 mm of Supervisor's value (1) Three values with unit (1) Checked at points along length (1) and in two perpendicular (different) directions (1) [Can get both the last two marks from diagram]	4	
		(ii)	Height of rod above bench near each end measured (1) [Allow "different points"]	1	
		(iii)	x and y to mm precision and unit <i>and</i> T to 0.1 N or better, with unit (1) W correctly calculated to $2/3$ significant figures plus unit (1) $W \pm 2$ N of Supervisor's value $[W \pm 3$ N gets 1 mark] (1) (1)	4	
		(iv)	$\Delta y \pm 1 \text{ mm or } \pm 2\text{mm (1)}$ [or > 2 mm if from range] Correct calculation of percentage [ecf] (1) Difficult to know the exact point about which the base pivots OR		
			levels of A and C (1)	3	
	(b)	(i)	 1 if polarity of cell was changed for candidate [No penalty if "polarity of meter(s)"] Circuit set up correctly without help (1) (1) 	2	
		(ii)	All units correct (1) $V \approx 1.5$ V to 0.01 V or better and $I_{AB} \approx 20$ mA and $I_{BA} \approx 15$ mA, both to 0.1 mA or better (1) Correct calculation of <i>R</i> to 2/3 significant figures [ecf] (1) $R_{BA} = 100 \Omega \pm 5 \Omega$ [No ecf] (1) As $R_{BA} \approx 100 \Omega$ (1) it is circuit K [dependent mark] (1) No current through diode in reverse OR why other circuits	4	
			are eliminated (1)	3	

(iv) Correct numerical parallel formula (1) Indication somewhere that diode arm = R_D + 200 (1) Correct calculation (1) OR *I* in diode arm = $I_{AB} - I_{BA}$ (1) Calculation of resistance of diode arm (using either *V*) (1) $R_D = R - 200$ (1) [In both cases, ecf from part (iii), even if answer negative or silly]

Sample results

- (a) (i) Diameter/mm = 12.65, 12.67; 12.67, 12.67; 12.67, 12.66 Checked at points along length and in two perpendicular directions
 - (ii) Height of rod above bench near each end measured

(iii)
$$x = 16.6 \text{ cm}$$

 $y = 59.5 \text{ cm}$
 $T = 3.7 \text{ N}$
 $W = \frac{3.7(16.6 + 59.5)}{16.6} = 17.0 \text{ N}$

(iv)
$$\Delta y = 0.2 \text{ cm}$$

% uncertainty = $\frac{0.2}{59.5} \times 100 = 0.3\%$

- (b) (i) Circuit set up correctly
 - (ii)

X connected	Y connected	Current/mA	Voltage/V	Resistance/ Ω
to	to			
А	В	19.6	1.51	77.0
В	А	15.3	1.52	99.3

(iii) As $R_{BA} \approx 100 \Omega$ it is circuit K No current through diode in reverse

(iv)
$$\frac{1}{x} + \frac{1}{99.3} = \frac{1}{77}$$

 $\Rightarrow X = 343 \Omega$
 $R_{\rm D} = 343 - 200 \Omega$
 $= 143 \Omega$

3

3

[24]

. (a)	All to ∆θ ≈ Some Preca	emperatures recorded with units (1) (5 \rightarrow 15) K [Need not be calculated] (1) e attempt at temperatures better than 1°C (1) autions (Max 2): (1) (1)	5	
	•	stirred water		
	•	took θ_i just before water added		
	•	recorded θ_f immediately after rapid fall		
	•	equilibrium between water and thermometer		
(b)	Corre Corre Valu	ect re-arrangement and substitution (1) ect calculation, $2/3$ significant figures and no unit (1) e 0.15 to 0.30 or centre value if > 0.30 (1)	3	
(c)	Disca Add Temj Corre Valu [Dep	ard 20 cm ³ into the waste beaker (1) further 20 cm ³ into the hot/warm water (1) peratures recorded, with units and $\theta_i < \theta_f$ from previous value (1) ect calculation ≥ 2 significant figures and no unit (1) $e \pm 0.04$ of previous k (1) endent mark]	5	
(d)	Corre Sens Sens	ect calculation with average as denominator (1) ible comparison with 10% (1) ible conclusion [Dependent mark] (1)	3	
(e)	(i)	Description:		
		• Keep volume of hot water constant at 100 ml (1)		
		• Volume of added water constant at 20 ml (1)		
		• Discard (20 ml) each time so that initial volume remains co	onstant (1)	
		• (Measure $\Delta \theta$) by measuring θ_i and θ_f (1)		
		• for several values of θ_i (1)		
		Any two sensible precautions (eg lagging/lid/larger volumes/check θ_0 (1) (1)	(Max 5)	
	(ii)	Axes labelled correctly (1) Straight line through origin (1) OR if $\Delta \theta$ against θ_f straight line negative intercept (1)		
	(iii)	k = gradient [Dependent mark] (1)	Max 8	
Sa	nnlo rom	ults		[24]
(a)	$\theta_{a} =$	18.5 °C		
(u)	0 - 9	2010 0		

 $\theta_i = 85.0 \text{ °C}$ $\theta_f = 75.0 \text{ °C}$ $\Delta \theta = 10.0 \text{ °C}$

(b)
$$k = \frac{\Delta \theta}{\theta_f - \theta_0} = \frac{10.0}{75.0 - 18.5}$$

= 0.177

(c) Discard 20 cm³ into the wastebeaker Add further 20 cm³ into the hot/warm water $\theta_i = 57.5 \text{ °C}$ $\theta_f = 51.5 \text{ °C}$ $\Delta \theta = 6.0 \text{ °C}$ $k = \frac{6}{51.5 - 18.5} = 0.182$

(d) % difference =
$$\frac{0.182 - 0.177}{1/2(0.182 + 0.177)} \times 100\%$$

=3.6%

Difference is less than 10% ∴ relationship is supported

- (i) Keep volume of hot water constant at 100 ml
 - Volume of added water constant at 20 ml
 - Discard (20 ml) each time so that initial volume remains constant
 - (Measure $\Delta \theta$) by measuring θ_{I} and θ
 - for several values of θ_{I}

Any two sensible precautions: eg lagging/lid/larger volumes/check θ_0

(e)

(iii) k = gradient

- **113.** (a) (i) $W \pm 0.3 \text{ mm}$ of Supervisor's value, with unit (1) $t \pm 0.3 \text{ mm}$ of Supervisor's value, with unit (1) [W and t both to 0.1 mm or better]Both from ≥ 3 readings (1) at different points along the rule (1) [May score mark from diagram][Use unit penalty once only]
 - (ii) x and y to mm precision, with unit seen at least once (1) y by difference method (1) W correct, 2/3 significant figures, + unit (1) ± 0.1 N of Supervisor's value (1) (1) [± 0.2 N gets 1 mark only]

4

	(iii)	Check heights vertical by using set square on bench [may be on diagram] (For x place rule on bench and note positions vertically below X and Y (1) Statement of how it was ensured that positions were vertically below X and Y (1) [Last two marks can by scored by using Pythagoras with $XY = 80$ cm]	1) 3	
(b)	(i)	Circuit set up correctly without help (1) (1) [Ignore meter polarity errors. Polarity of cell -1]	2	
	(ii)	All units correct (1) $V \approx 1.5$ V both to 0.01 V or better and $I_{AB} \approx 16$ mA and $I_{BA} \approx 8$ mA, both to 0.1 mA or better (1) Correct calculation of <i>R</i> 2/3 significant figures [ecf] (1) $R_{BA} = 200 \ \Omega \pm 10 \ \Omega$ [no ecf] (1)	4	
	(iii)	$R_{\rm BA} \approx 200 \ \Omega$ (1) Hence circuit L (1) <i>Either</i> Diode arm does not conduct when B positive (1) <i>Or</i> For circuit J, $R_{\rm BA} = 50 \ \Omega$ and circuit K $R_{\rm BA} = 100 \ \Omega$ (1)	3	
	(iv)	Correct formula (1) Diode arm resistance = R_D + 100 Ω (1) [Allow ecf from wrong circuit] Correct calculation of diode resistance [ecf] (1)	3	[24]

Sample results

- (a) (i) W = 28.4, 28.1, 28.1, 28.2 mm $\overline{W} = 28.2 \text{ mm}$ t = 6.3, 6.3, 6.0, 6.2 mm $\overline{t} = 6.2 \text{ mm}$
 - (ii) x = 797 30 = 767 mm y = 400 - 196 = 204 mm $W = 2 \times 0.2 \times 9.81 \times \frac{204}{767}$ = 1.04 N
 - (iii) Check heights vertical by using set square on bench. For x place rule on bench and note positions vertically below X and Y.Statement of how it was ensured that positions were vertically below X and Y.
- (b) (i) Circuit set up correctly without help.
 - (ii)

X connected	Y connected	Current/mA	Voltage/V	Resistance/ Ω
to	to			
А	В	16.5	1.55	93.9
В	А	7.9	1.57	199

(iii) $R_{BA} \approx 200 \ \Omega$ Hence circuit L *Either* Diode arm does not conduct when B positive *Or* For circuit J, $R_{BA} = 50 \ \Omega$ and circuit K $R_{BA} = 100 \ \Omega$

(iv)
$$\frac{1}{X} + \frac{1}{199} = \frac{1}{93.9}$$

[Candidates may write 1/200 for second term]
$$X = 178 \Omega$$

Resistance of diode = X - 100
= 178 - 100
= 78 \Omega

114.	(a)	Sensible volume with unit, from difference method or a series of small additions (1) Temperature recorded to better dm 1°C with unit (1)	2
	(b)	Sensible values to at least 1 d.p. plus units (1) Table with units (1) Readings at least every 30 s/0.5 min Some attempt at better than 1°C (1) Straight line of S shaped curve (1)	5
	(c)	Sensible scale with data occupying more than half page in both directions (1) Labelled and units (1) Plots and straight line (1)	3
	(d)	$\Delta x > 6 \text{ cm (1)}$ Correct calculation 2/3 s.f. + unit (1) Correct calculation $\ge 2 \text{ s.f. + unit (1)}$ Correct re-arrangement [ignore units] (1) Correct conversion of $\frac{\Delta \theta}{\Delta t}$ to °C s ⁻¹ here or above (1) Correct calculation 2/3 s f + unit	6
	(e)	Not all of the power supplied by the heater goes to the water (ie p to water is smaller than above value) OR heat is lost to the surroundings (1) Hence, value is too high (1) Improved accuracy, any two from:	0
		• Lag the beaker	
		• Cover the beaker	
		• Increase the power supply voltage to give larger temperature rise	
		• Take account of s.h.c. of beaker	
		• Increase the time of the experiment (1) (1)	4

(f) All of circuit diagram correct (1) (1)
[-1 each error or omission]
[No penalty if thermistor and resistor are reversed]
Block diagram:
Temperature sensor [Do not accept thermometer] (1)
Datalogger and computer (1)

Sample results

(a) V=100-57=43 ml Filled cylinder to 100 ml and poured water into beaker until wire just covered. Recorded amount of water left in the cylinder. $\theta_0 = 19.0$ °C

(b)
$$I = 1.07 \text{ A} V = 6.72 \text{ V}$$

t/s	θ/°C
0	19.0
20	19.5
40	20.0
60	20.5
80	21.0
100	21.0
120	21.5
140	22.0
160	22.5
180	23.0
200	23.5
220	24.0
240	24.3
260	24.6
280	25.0
300	25.5

[24]

(d)
$$\frac{\Delta\theta}{\Delta t} = \frac{25.675 - 19.0}{300}$$
$$= 2.23 \times 10^{-2} \text{ °C s}^{-1}$$
$$P = IV = 1.07 \times 6.72$$
$$= 7.19 \text{ W}$$
$$c_W = \frac{P}{m_W \frac{\Delta\theta}{\Delta t}} = \frac{7.19}{43 \times 10^{-3} \times 2.23 \times 10^{-2}}$$
$$= 7500 \text{ J kg}^{-1} \text{ °C}^{-1}$$

- (e) Not all of the power supplied by the heater goes to the water (ie P to water is smaller than above value) or heat is lost to the surroundings. Hence value is too high
 - Lag the beaker
 - Cover the beaker
 - Increase the power supply voltage to give larger temperature rise
 - Take account of s.h.c. of beaker
 - Increase the time of the experiment
- (f) Block diagram:

115. (a) <u>Graph</u>

(b)

Falling concave curve (1)	
Not intercepting x-axis or y-axis (1)	2
<u>Two reasons</u>	
 light is <u>scattered</u> by dust (or air molecules)/refraction (1) [allow twinkling] 	
• some wavelengths are absorbed by atmosphere (1)	2
<u>Two spectra</u>	
β_{car} is bluish; β_{And} is reddish [not just different colours] (1)	1
Read off $\lambda_{\text{max}} \approx (760 - 770)$ nm [Beware 680 nm] (1)	
Use of Wien's law (1)	
Answer $T = 3800 \text{ K}$ [allow 3600 K to 4000 K] (1)	3
Calculation	
Use $L = \sigma A T^4$ (1)	
$A = 2.0 \times 10^{28} \text{ W} \div (9300 \text{ K}^4 \times 5.67 \times 10^{-8} \text{ W} \text{ m}^{-2} \text{ K}^{-4})$ (1)	
$=4.7 \times 10^{19} \mathrm{m}^2 \mathrm{(1)}$	3
Estimate	
Attempt at areas giving $\sim 7 \times [(\times 5 - \times 8) \text{ allowed}]$ (1)	
= 1.4×10^{29} W [(1.0 - 1.6) × 10^{29} W allowed] (1)	2

(c)	What is mean by MS star	
	One burning/fusing (H as fuel) (1)	1
	Outline	
	Quality of written communication (1)	1
	• fuses He/other elements AND becomes red giant (1)	
	$[OR \leq 0.4 \ M_{\odot} \text{ not red giant/becomes white dwarf}]$	
	• ceases fusion AND becomes white dwarf (1)	
	• white dwarf fades to cold lump/becomes (specified colour) dwarf/no longer visible (1)	Max 3
	What determines whether ms star becomes a white dwarf	
	The mass of the star (1)	
	if mass star < 8 M_{\odot} OR if mass core remnant < 1.4 M_{\odot} (1)	2
(d)	Calculation of rate	
	$\Delta E = c^2 \Delta m \ (1)$	
	$\frac{\Delta m}{t} = \frac{9.96 \times 10^{27} \text{ W}}{(3 \times 10^8 \text{ m s}^{-1})^2} $ (1)	
	$= 1.1 \times 10^{11} (1)$	
	$kg s^{-1}$ (1)	4
(e)	Determine period of pulsation of star A	
	2.4 to 2.7 days (1)	
	with evidence of averaging (1)	2
	Addition to graph	
	B is approximately the same height (1) B has a longer period (1) Shape – more steeply up than down (1)	3
	Description	
	Measure period and hence work out luminosity (1)	
	Measure intensity (1)	
	Use $I = L/4\pi D^2$ (1)	3

116. (a) <u>Graph</u>

Use of $\sqrt[3]{A}$ for $A \ge 50$ / use of $(r/r_0)^3$ for $A \ge 50$ (1)	
Comparison with corresponding value [$\pm 1 \text{ mm of } r/r_0 \text{ or } A$] (1)	
Repeat of this comparison, also $A \ge 50$ (1)	3

[32]

(b)	Calculation of density of this nucleus of tin	
	$\rho = m/\upsilon$ (1)	
	Mass = $119 \times 1.66 \times 10^{-27} \text{ kg}$ (1)	
	Volume = $4/3\pi \times (6 \times 10^{-15} \text{ m})^3$ (1)	
	$= 2.2 \times 10^{17} \text{ kg m}^{-3}$ (1)	4
(c)	Explanation of binding energy	
	Energy required to separate a nucleus (1)	
	into nucleons (1)	
	What this tells about an iron nucleus	
	Iron is the most stable nucleus (1)	3
(d)	Nuclear equation for decay	
	${}^{14}_{6}C \rightarrow {}^{14}_{7}N + {}^{0}_{-1}\beta / {}^{0}_{-1}e + \overline{\nu}$	
	Symbols $[C \rightarrow N + \beta]$ (1) Numbers $[14, 6, 14, 7, 0, -1]$ (1)	
	Antineutrino / $\overline{v}/\overline{v}_{e}$ (1)	3
	Estimate of age of a fossil	
	3 half–lives (1)	
	giving 17 000 years to 18 000 years (1)	2
(e)	Diagram	
	Weak interaction (1) because neutrino involved OR must be charged particle (1)	2
	W ⁻ on diagram on or near dotted line (1)	1
(f)	Particle X	
	Positive (1)	1
	Is a baryon (1)	1
	Quark compositions	
	Proton uud; neutron udd BOTH (1)	1
	Explanation and deduction of identity of X	
	Quality of written communication (1)	
	Strong / not weak interaction (1)	
	One strange quark on each side / no flavour change (1)	
	X is a proton (1)	4

(g) <u>Name particles</u>

Hadron: neutron or (1)	
Lepton: muon or neutrino or (1)	2
Whether hadrons are fundamental particles	
No because more than one quark/made of quarks (1)	
Quark + antiquark combinations: $3 \text{ or } 2$ (1)	2
[OR a discussion of fractional nature of quark charge 1/3 means 3 or 2 to make +1, 0, +2 etc]	
Calculation of minimum value of E	
Use of $1u = 930 \text{ MeV}(1)$	
Multiply by 98 (1)	
45 600 (MeV) / 46 000 (MeV) (1)	3
[OR by $E = mc^2$ to 45 800 MeV]	

117. (a) <u>Graph</u>

Falling concave curve (1)
Not touching either axis (1)
Calculation of intensity
Use of inverse square law (1)
Correct substitution(s) (1)
$= 0.07 \text{ MW m}^{-2}$ (1)

(b) <u>Table</u>

	α	β	γ	
Useful for imaging			~	(1)
Useful for therapy	(🗸)	\checkmark	~	(1)
Most damaging to tissue	~			(1
Least penetrating	\checkmark			(1)

Equations

$${}^{32}_{15}P \rightarrow {}^{32}_{16}S + \beta^{-}$$

$${}^{24}_{11}Na \rightarrow {}^{24}_{10}Ne + \beta^{+} (1)$$

$${}^{32} \text{ and } 64 (1)$$

$${}^{16}_{10} \qquad \Big\} \qquad [14, 12 \text{ scores } {}^{1/2}_{2}] (1)$$

3

4

3

2

(c) <u>Patient's blood volume</u>

118.

Quality of written communication (1)

	• after > ten minutes / allow dilution (1)		
	• remove known quantity of blood from patient (1)		
	• make comparison sample (= quantity mixed with water) (1)		
	• take same volume sample for comparison and compare activitie	es (1) 5	
(d)	Calculation of wavelength		
	Use of $c = f \times \lambda$ (1)		
	= 2.6 [Ignore power of ten] (1)		
	$\lambda = 0.26 \text{ mm} / 2.6 \times 10^{-4} \text{ m}$ (1)	3	
	Whether suitable		
	Yes, because small enough λ for detail/resolution (1) [ecf "no" if wavelength calculated > 1 mm]	1	
	Reflection coefficient		
	$(Z_1 - Z_2)^2 / (Z_1 + Z_2)^2$ (1)		
	Substitute 1.70 and 1.59 (1) = 1.12×10^{-3} (1)	3	
	Investigation of blood flow in muscle		
	<u>Almost</u> no reflection between brain and blood/ <u>much</u> smaller reflec than muscle and blood (1)	tion	
	Detectable reflection between muscle and blood (1)	2	
(e)	Operating voltage		
	120 000 V (1)	1	
	What happens to most of the energy of these electrons		
	Becomes heat energy in target anode (1)	1	
	Two features of anode in an X-ray tube		
	Any two of: rotates / is cooled / shaped to focus X rays / made of tungsten / copper heat sink (1) (1)	2	
	Use of X-rays		
	Diagnostic (1)		
	Therapy needs MV / <u>much</u> higher voltage/MeV electrons (1)	2	[32]
(a)	(i) Masses recorded to 0.1 g or better with unit seen at least one and $m \approx 5$ g	ce (1)	
	Total \ge 190 cm ³ with unit and \le 200 cm ³ (1) Correct calculation of density to 3/4 significant figures + un	it (1) 3	

	(ii)	Use of $\ge 90 \text{ cm}^3$ from correct volume measured using measuring cylinder (1)		
		Mass difference clear [balance can be tared] (1)		
		Correct substitution and calculation leading to density (1)		
		Correct density (ii) < correct density (i) (1)		
		Density difference between 1% and 2% with (ii) \leq (i) (1)	5	
	(iii)	Sensible $\Delta V(1)$ [0.5 ml or 2.0 ml per fill]		
		Correct calculation of percentage [allow e.c.f.] (1) Correct calculation with average as denominator (1)		
		Sensible comment related to their uncertainty (1)	4	
(b)	(i)	Circuit set up correctly without help	2	
	(ii)	$V \approx 3$ V measured to 0.1 V or better + unit (1) $I \approx 0.6$ mA measured to 0.01 mA or better + unit (1) Correct calculation ≥ 2 significant figures + unit Allow e.c.f. from wrong <i>I</i> , or <i>V</i> (1)	3	
	(iii)	$V_{\rm f} \approx V$ to 0.1 V or better + unit Change in <i>I</i> to 0.01 mA or better + unit [e.c.f. wrong unit] (1) Correct calculation ≥ 2 significant figures + unit [e.c.f. wrong unit] (1) Both <i>R</i> sensible and 2/3 significant figures (1)		
		0.865 mA 0.63 mA 0.63 mA t Rise or fall depending on results (1) Correct curve of <i>I</i> against t (1) Reaching a steady value (1) Non-zero intercept (1) [<i>I</i> against <i>V</i> mark on scheme then -2 for error of physics]	7	[24]
Sam	ple resi	ults		
(a)	(i)	$m_{\rm b} = 97.1 \text{ g}$ $m_{\rm t} = 102.9 \text{ g}$ m = 102.9 - 97.1 = 5.8 g		
		First volume transferred to beaker = 99 cm^3 Second volume transferred to beaker = 99 cm^3 Total volume transferred to beaker = $99 + 99 = 198 \text{ cm}^3$		
		Total mass = $198 + 5.8 = 203.8$ g Total volume = 198 cm ³		
		Therefore density = $\frac{203.8}{198}$ = 1.029 g cm ⁻³		
	(ii)	Mass of measuring cylinder + 100 cm ³ of solution = 229.4 g Mass of measuring cylinder = 128.1 g		

Mass of measuring cylinder + 100 cm⁻ Mass of measuring cylinder = 128.1 g

(iii)
$$\Delta V = 0.5 \text{ cm}^3$$

Percentage uncertainty $= \frac{0.5}{100} \times 100\%$
 $= 0.5\%$
Percentage difference $= \frac{1.029 - 1.013}{1/2(1.029 + 1.013)} \times 100\%$
 $= 1.6\%$

Greater than experimental uncertainty which suggests that there is a change in volume when the salt dissolves.

(b) (i) Circuit set up correctly without help

(ii)
$$V = 3.08 \text{ V}$$

 $I = 0.63 \text{ mA}$
 $R = V / I = \frac{3.08}{0.63 \times 10^{-3}}$
 $= 4890 \Omega$

_

(iii)
$$V_{\rm f} = 3.08 \text{ V}$$

 $I_{\rm f} = 0.865 \text{ mA}$
 $R_{\rm f} = \frac{3.08}{0.865 \times 10^{-3}}$
 $= 3560 \Omega$
0.865 mA
0.63 mA
0.63 mA

119. (a) (i) Table with units (1)
Temperature to better than 1 °C (1)
Readings every 0.5 minutes or less up to 5 minutes (1)
Cooling curve established (1)
8 points
$$\pm$$
 0.5 °C from your best curve (1)

- (ii) Data must occupy more than ½ page in both directions Scale [Allow scale of 1 cm ≡ 30 s] (1) Axes labelled + unit (1) Plots (1) Line (1)
- (iii) $\Delta x \Delta y \ge 64 \text{ cm}^2$ or as large as possible (1) Correct calculation ≥ 2 significant figures (1) [Tangent at the correct point and sides read correctly] [Ignore sign and unit] Correct calculation [allow J/min] [allow e.c.f. from gradient] (1) 2/3 significant figures + unit from calculation (1)

(b) (i)

Correct arrangement with collar (1) Collar and air gap labelled (1)

- (ii) Same volume of water (1) Same place on bench (1) Same starting temperature (1) Stir water (1) Extend the time range/same temperature range (1) Compare temperature falls after 5 minutes/compare times to reach same temperature (1) Max 3
- (iii) Correctly labelled and double cup curve above single cup curve (1)
 Concave curves (1)
 Single curve always steeper than double curve (1)

(iv) Take gradient of the curves at the same temperature (1) (1) [OR Time for same temperature fall measured / temperature fall for the same time measured (1)] EITHER Gradient of the double cup should be half (or less) than the single cup (1) OR For same starting temperature [stated or seen] the time for a given $\Delta\theta$ will be twice as big for the double cup (1) 3

[24]

4

4

2

(a) (i)

θ/°C	<i>t</i> /min
80.0	0.0
77.7	0.5
75.7	1.0
74.0	1.5
72.0	2.0
70.5	2.5
69.3	3.0
67.8	3.5
66.5	4.0
65.2	4.5
64.0	5.0

(ii) Graph

(iii)
$$\frac{\Delta\theta}{\Delta t} = \frac{62.0 - 77.9}{5.48 - 0}$$
$$= -2.90^{\circ} \text{C min}^{-1}$$
$$\frac{\Delta Q}{\Delta t} = mC \frac{\Delta\theta}{\Delta t}$$
$$= 100 \times 4.2 \times 2.9$$
$$= 1220 \text{ J min}^{-1}$$
$$= 20.3 \text{ W}$$

(b) (i)

 (ii) Same volume of water Same place on bench Same starting temperature Stir water Extend the time range/same temperature range Compare temperature falls after 5 minutes/compare times to reach same temperature

(iv) Take gradient of the curves at <u>the same temperature</u>
 [OR Time for same temperature fall measured / temperature fall for the same time measured]
 EITHER
 Gradient of the double cup should be half (or less) than the single cup

Gradient of the double cup should be half (or less) than the single cup OR For same starting temperature [stated or seen] the time for a given $\Delta\theta$ will be twice as big for the double cup

120. (a) <u>Base units of intensity</u>

(i)
$$W = J s^{-1} / N m s^{-1}$$
 or $P = E / t$ or $P = F v$ (1)
 $J = kg m^2 s^{-2}$ or kg m s⁻² m (1)
Algebra to kg s⁻³ shown (e.g. kg m² s⁻² s⁻¹ m⁻²) (1) 3
Luminosity calculation

	(ii)	Correct substitution (1) 3.82 or 3.8 [ignore 10^n] (1) hence $3.8(2) \times 10^{26}$ W [ue] [allow 3.9 or 4] (1)	3
(b)	<u>CCD</u>	<u>advantages</u>	
	(i)	Any three from:	
		 Higher (quantum) efficiency / more sensitive Detect fainter or more distant stars More linear response Digital / link to computer / remote imaging No processing time / use repeatedly / real-time imaging Quicker image collection (i.e. quicker & reason) (1) (1) (1) Greater range of wavelengths 	
	(ii)	CCD disadvantage	
		Resolution / pixel size larger (1)	Max 4
(c)	Satell	lite advantages	
	Quali	ty of written communication (1)	
	No <u>at</u>	mosphere (for radiation to pass through / above atmosphere) (1)	
	Idea o	of no absorption (of i.r.) (1)	3
(d)	Force	es within star	
	(i)	1. Fusion forces [allow 'pressure from nuclear reactions' or (1) 'hydrogen burning'] or radiation / photon pressure	
		2. Gravitational / Weight (not just gravity) (1)	
	(ii)	Equal (1)	3
	(iii)	White dwarf & red giant differences	
		Any three from:	
		$\begin{array}{ll} & \text{Temperature: } T_{\rm wd} \left(6000\mathrm{K} - 30000\mathrm{K} \right) > T_{\rm rg} \left(2000\mathrm{K} - 5000\mathrm{K} \right) \\ & \text{Volume: } V_{\rm rg} > V_{\rm wd} - \mathrm{allow } A / d / r / \mathrm{bigger} \\ & \text{Mass: e.g. } M_{\rm wd} < 1.4 M_{\odot} \mathrm{AND} \left(0.4M_{\odot} < \right) M_{\rm rg} < 8m_{\odot} \\ & \text{Fusion (of He / heavier elements) in rg / no fusion in wd} \\ & \text{Luminosity: } L_{\rm rg} \left[10^2 - 10^6 \right] > L_{\rm wd} \left[10^{-2} - 10^{-4} \right] \text{ in terms of } L_{\odot} \\ & \text{Wd is (core) remnant of rg / rg before wd stage} \\ & \text{Density: } \rho_{\rm wd} > \rho_{\rm rg} \left(1 \right) \left(1 \right) \end{array}$	Max 3
		[no numerical values for any property – max 2/3]	
	(iv)	Neutron star	
		Core remnants' mass (1)	
		Must be $> 1.4 M_{\odot}$ or $< 2.5 M_{\odot}$ (1)	2
(e)	Wher	n Sun was formed	
	(i)	Attempted use of $L_{\odot} = 1.4 L$ (1) 2.8 × 10 ²⁶ W (1)	
	(ii)	1.06 ² used (1) 5.5 × 10 ¹⁸ m ² / 5.5 × 10 ¹² km ² (1)	4
	(iii)	Show temperature change $L = \sigma T^4 A$ (or implied) (1)	

 Correct substitution [ecf] (1)

 Hence 5500 (K) [no ecf] (1)

 Hence 5800 - 5500 [or 330, 308, 310] (1)

 <u>Wien's law</u>

 (iv)
 Use of $\lambda_{(max)}T = 2.90 \times 10^{-3}$ m K (1)

 530 nm or 500 nm [no ue] (1)

 $\Delta\lambda = 30$ nm (when rounded to 1 s.f.) (1)

 3

121. (a) <u>Base units of energy density</u>

(b)

(i)	$J m^{-3} $ or $N m^{-2} (1)$	
	$J = kg m^2 s^{-2}$ or $N = kg m s^{-2}$ (1)	
	Algebra to kg m ⁻¹ s ⁻² shown (i.e. kg m ² s ⁻² m ⁻³ or kg m s ⁻² m ⁻²) (1)	3
(ii)	Energy density calculation	
	200×10^6 used (1)	
	Energy density = $\frac{1}{2} \sigma \varepsilon$ (or implied) (1)	
	Correct substitution to 95 000 [no ue] (1)	3
Rubb	ber band graph	
(i)	Clear labels (or arrows up <u>&</u> down) (1)	1
(ii)	Hysteresis (1)	1
	Maximum stress	
(iii)	Use of F/A with 12 (N) (1)	
	$2 \times 10^{6} \text{ Pa} / \text{N m}^{-2}$ [ue, no ecf] (1)	2
(iv)	Internal energy gain	
	Any attempt at area / $0.5 F x$ (1)	
	Correct values approximated [ignore 10 ⁿ] [allow counting squares] (1) [ecf]	
	$(\frac{1}{2} \times)$ 12 N × 500 × 10 ⁻³ or counted squares conversion to energy (1) (1cm ² : 0.2 J)	
	3 J [when rounded to 1sf, ue, no ecf] (1)	4
(v)	Hence show loop area	
	Attempt at loop area / attempt at area under unloading line (1)	
	Hence working to show 1 J (1)	2
	Mechanism	

	(vi)	Creep (1) <u>Hooke's law</u>	1	
	(vii)	(Loading) force is proportional to extension OR may be $F = k\Delta x$ with symbols defined] (1) Force-extension apparatus	1	
	(viii)	Valid diagram (1) Clamp and rubber band, both labelled (1) Ruler and masses/weights, both labelled (1) Accuracy technique (eye-level, clamp ruler, use set-square) (1)	4	
(c)	(i)	Glass properties		
		Brittle (1)		
		Stiff (1)	2	
		[-1 per error if more than two properties circled]		
	(ii)	Extension calculation		
		Any three from:		
		 S.I. conversion of d and l σ = F / A and ε = Δl / l [or E = F l / A Δl (may be implied)] Any use of E = σ / ε [or use of E = F l / A Δl, allow incorrect A] Correct use of πr² / ¼πd² (no 10ⁿ penalty) (1) (1) (1) 		
		$3.0 \times 10^{-4} \text{ m}$ (1)	4	
(d)	Cross	-linked polymers		
	Quali	ty of written communication (1)		
	Diag	ram showing cross-links (1)		
	Polyt [may	hene / Polymer chains / long molecules (1) be as a label in diagram]		
	Desci	ribe bonds between chains (1)	4	[32]
(a)	Base	units of eV		
	(i)	Reference to joule (1)		
		Useful energy equation / units shown [e.g. $\frac{1}{2}mv^2$, mgh, mc ² , Fd, not (1) QV or Pt]		
		Algebra to $J = kg m^2 s^{-2}$ shown (e.g. kg (m s ⁻¹) ² or kg m s ⁻² m) (1)	3	
	(ii)	Energy released		
		146 shown or used (1)		
		Δm calculation [1.9415, ecf] (1)		
		Δm calculation [1.9415, ecf] (1) Multiply by 930 [allow $E = mc^2$ with mass in kg] (1) 1800 MeV [no ue] (1)	4	

122.

(b) <u>Nuclear forces</u>

	Stron	g (nuclear) (1)			
	Electromagnetic (not electrostatic) (1)				
	Nucle elcetr	eons or neutrons and protons for strong AND protons for (1) romagnetic			
	Withi	in nucleus, infinite/beyond nucleus [allow inverse square law] (1)	4		
(c)	(i)	<u>N–Z plot</u>			
		α – top right [above and to right of N=100 intersect with plot] (1)			
		β^- – above plots AND β^+ – below plots (1)			
		Both β regions near [< 5 mm] stability line [ecf if β swapped] (1)	3		
	(ii)	Central region			
		Quality of written communication (1)			
		Region of <u>stability</u> / nuclei do not decay in stable region (1) Nuclei decay to / move to this region (1)	3		
(d)	(i)	Decay numbers			
		${}^{1}_{1}p \text{ and } {}^{1}_{0}n (1)$			
		${}^{0}_{1}\beta^{+} \text{ and } {}^{0}_{0}\nu$ (1)	2		
	(ii)	Tick the boxes			
		Proton: baryon and hadron only (1)			
		neutron: baryon and hadron only (1)			
		β^+ : lepton and antimatter only (1)			
		v: lepton only (1)	4		
		[only penalise once for including meson] [if both baryon correct but no hadrons 1 mark out of 2 and vice versa]			
(e)	(i)	Conservation laws			
		B: $1 = 1 + 0$ (1) Q: $1 = 1 + 0$ (1)	2		
		Diagram			
	(ii)	First u and W ⁻ (1) d and \overline{u} (1)	2		
	(iii)	proton / H^+ / hydrogen nucleus / Δ^+ [mark is dependent on seeing (1) uud on X in diagram]	1		
		<u>W⁻ particle</u>			

		(iv)	Exchange particle (1)	1	
		(v)	Change in quark flavour / strangeness not conserved (1) Charge conservation requires negative particle (1)	2	
		(vi)	$\underline{\Sigma}^+$ decay		
			3. due to charge conservation (1)	1	[32]
123.	(a)	Base	units of intensity		
		(i)	$W = J s^{-1} / N m s^{-1} \text{ or } P = E / t \text{ or } P = F v (1)$ J = kg m ² s ⁻² or kg m s ⁻² m (1) Algebra to kg s ⁻³ shown (e.g. kg m ² s ⁻² s ⁻¹ m ⁻²) (1)	3	
		(ii)	(Use of) Id^2 = constant (1) Substitution correct (1) 1.1 m (1.07 m) OR calculate P [11.5] (1) 2 nd substitution correct (1) 1.1 m (1.07 m) (1)	3	
	(b)	Elect	tron energy and speed		
		(i)	Use of $W = QV$ and 1.60×10^{-19} C (1) 1.04×10^{-14} [no ue] (1)	2	
		(ii)	Use of $\frac{1}{2}mv^2$ (1) Correct substitution with 9.11 × 10 ⁻³¹ kg (1) 1.51 × 10 ⁸ m s ⁻¹ [or 1.48 or 1.5] (1)	3	
		(iii)	Electron energy		
			Heat / Internal energy (1) X-rays (1)	2	
		(iv)	Target features		
			Rotates / Made of tungsten / Copper heat sink / oil-cooled (1) (1)	2	
	(c)	<u>Ultra</u>	isound image		
		(i)	B-scan (1)	1	
		(ii)	Quality of written communication (1)		
			Any four from:		
			 (B =) brightness <u>Transducer</u> and gel/oil/coupling medium <u>Pulse</u> goes in and comes out (Transducer) rocked / array 		
			• Image: brighter areas (white areas) = (more) reflections (1) (1) (1) (1)	5	

(d) (i) <u>Radioactive tracer terms</u>

	(u)	(1)			
			 (Average) time for activity to half / half the radioactive atoms to disintegrate/decay (1) Time for biological processes / excretion to remove half of the (1) tracer from body [not organ] Time for activity to half due to (combination of) other two half (1) lives / within patient [organ acceptable] <u>OR</u> equation and definition in word 	3 İs	
		(ii)	Biological half life calculation		
			$1/t_e = 1/t_r + 1/t_b \text{ [seen or implied] (1)}$ Correct substitution (1) 22 (21.8) days (2 × 10 ⁶ s) (1)	3	
		(iii)	Decay curves		
			Two curves – start together on <i>y</i> -axis, do not cut <i>x</i> -axis [\geq 50 days needed Decay curve P below decay curve L (1) Half-lives of \approx 16 and 60 days attempted (not 22 days) (1)] (1) 3	
		(iv)	Radiation type for tracer	5	
		(17)	(γ) to penetrate <u>skin</u> / be detected <u>outside body</u> / by gamma camera (1) to minimise dose / damage / least ionisation <u>to</u> patient / cells / (1) tissue	2	
			ussue		[32]
124	(\mathbf{a})	(i)	Approximately 1.5 V manufactor 0.01 V or better \pm unit (1)	1	
124,	(a)	(I) (ii)	Circuit set up correctly without help	1	
		(11)	circuit set up correctly without help	2	
		(111)	≈ 0.8 V to 0.01 V or better + unit (1) 7.0 mA → 12.0 mA to 0.1 mA or better + unit (1) Correct calculation to 2 to 4 significant figures + unit (1) [allow ecf]	3	
			[Apply unit penalty once only for each quantity (<i>I</i> , <i>V</i> and <i>R</i>) in part (a)] [<i>R</i> values to 2 to 4 significant figures else –1 once only]		
		(iv)	Value + unit (1) Correct percentage difference with expected value as denominator (1)	2	
		(v)	Sensible values $(V_2 < V_1, I_2 > I_1)$ with <i>V</i> to 0.01 V or better (1) and <i>I</i> to 0.1 mA or better + units Correct calculation to 2 to 4 significant figures + unit (1) [allow ecf from wrong <i>I</i> and <i>V</i> or R_1]		
			Value + unit (1)	3	

	(vi)	Any 3 of: Resistor values will have a tolerance; Potential difference across connecting wires / wires in the circuit will have resistance; Ammeter will have resistance / potential difference across ammeter; Cell has / potential difference across <u>internal resistance of</u> <u>cell;</u> Error in meters including not accurate; Voltmeter has finite resistance / current in voltmeter (1) (1) (1) [Do not accept resistors heating up]	Max 3	
(b)	(i)	$d_i = \pm 0.03$ cm from Supervisor's value from repeat measurements (1) (1) $[\pm 0.05$ cm from repeats (1) or ± 0.03 cm from single reading (1)] $d_e = \pm 0.03$ cm from Supervisor's value from repeat		
		measurements (1) (1) (1)		
		$[\pm 0.05 \text{ cm from repeats (1) or } \pm 0.03 \text{ cm from single reading (1)}]$ Checked in perpendicular directions (1) Max		
		[Allow different directions])1Zero error check here or in (ii) (1))	5	
		[Allow centre average value if no Supervisor's data]		
	(ii)	\pm 0.03 mm from Supervisor's value from repeat measurements (1) (1) [\pm 0.05 mm from repeats (1) or \pm 0.03 mm from single reading (1)]	2	
	(iii)	Correct calculation ≥ 2 significant figures + unit (1) Correct substitution into mass / volume, (1) Value ≥ 2 significant figures + unit and in range		
		$6.0 \rightarrow 10.0 \text{ g cm}^{-3} \text{ or} \pm 2.0 \text{ g cm}^{-3} \text{ of Supervisor's density (1)}$	3	[24]

Sample results

(a) (i)
$$E = 1.52 \text{ V}$$

(iii) $V_1 = 0.76 \text{ V}$
 $I_1 = 10.62 \text{ mA}$
 $R_1 = 0.76 / 10.62 \times 10^{-3}$
 $= 71.6 \Omega$

(iv) Expected value = 68Ω (71.6 - 68 / 68) × 100% = 5.3%

(v)
$$V_2 = 0.38 \text{ V}$$

 $I_2 = 15.93 \text{ mA}$
 $R_2 = 0.38 / 15.93 \times 10^{-3}$
 $= 23.9 \Omega$
Expected value
 $= 1/3 \times 68 = 22.7 \Omega$

- (b) (i) $d_i = 1.66$ cm, 1.66 cm average $d_i = 1.66$ cm $d_e = 3.47$ cm, 3.47 cm average $d_e = 3.47$ cm
 - (ii) Thickness 1.81 mm, 1.79 mm, 1.85 mm average t = 1.81 mm
 - (iii) $V = \frac{1}{4} \pi (3.47^2 1.66^2) \times 0.181$ = 1.32 cm³ m = 10.32 g Density = 10.32 / 1.32 = 7.8 g cm⁻³

125. (a) Box suspended [allow box on rule] and 10 g used [on diagram or in calculation] (1) Lengths to centres of mass (1) b found (490 mm to 510 mm) (245 mm to 255 mm for $\frac{1}{2}$ (1) metre rule) $x \ge 400$ mm (≥ 200 mm for $\frac{1}{2}$ metre rule) (1) Repeat (1) Correct moments used to give (1) m_0 + unit (1)

(b)

h shown accurately from bench to bottom of ramp (1)

l or *x* shown accurately (1)

Set square shown (1)

h and l (or x) recorded to mm or better (1)

Repeat / eye level with reading (1)

Correct calculation of μ and μ in range $0.20 \rightarrow 0.50$ and ≥ 2 significant figures + no unit (1)

Correct calculation (1)

- (c) Values of m_s found with unit (1) Repeat or attempt at interpolation(1) Correct calculation of μ and μ in range $0.20 \rightarrow 0.50$ and ≥ 2 significant figures + no unit [allow ecf] (1)
- (d) Sensible Δm_s (2 g \rightarrow 10 g) (1) Correct calculation of percentage (1)

7

3
- (e) (i) Change M (by adding a further 10 g mass to the box) (1) Find (corresponding) \underline{m}_{s} (for box to slide) (1)
 - (ii) Plot m_s against M (1) <u>Or</u> <u>F against R</u> Calculate F from $F = m_s g$ and calculate R from R = Mg and (1) plot F against R Straight line through origin stated or shown (1)
 - (iii) Gradient = μ (1)

[24]

5

Sample results

(b)

h = 169 mm, 155 mm average h = 162 mml = 458 mm, 458 mm

 $\sin\alpha = 162 / 458$

$$= 0.354$$

 $\therefore \tan \alpha = 0.38$

Percentage uncertainty = $\frac{0.02}{0.38} \times 100 = 5.3 \%$

(c) $m_s = 20 \text{ g} - \text{no movement}$ $m_s = 30 \text{ g} - \text{slides easily}$ $\therefore m_s = 25 \text{ g}$ $\mu = \frac{25}{(60+2.3)}$ = 0.40

(d) Percentage uncertainty =
$$\frac{5}{25} \times 100 = 20 \%$$

(e) (i) Change M (by adding a further 10 g mass to the box)
Find (corresponding)
$$\underline{m_s}$$
 (for box to slide)

(iii) Gradient = μ

126. (a)	(i)	Circuit set up correctly without help (1) (1)	2
	(ii)	\approx 1.8 V to 0.01 V or better + unit (1) Sensible values to 0.1 mA or better + unit (1) Correct calculation to 2 to 4 significant figures + unit (1) [allow ecf]	3
	(iii)	$V_{g} > V_{r}$ and ≈ 2 V to 0.01 V or better + unit (1) $I_{g} < I_{r}$ and sensible value to 0.1 mA or better + unit (1) Correct calculation to 2 to 4 significant figures + unit and $R_{g} > R_{r}$ (1) [Apply V unit penalty, I unit penalty, R unit penalty and significant figure penalty once only in part(a)]	3

(iv) $V_r' \rightarrow V_r$ and $\approx 2 \text{ V to } 0.01 \text{ V + unit (1)}$ $I_r ' \approx 2I_r$ and to 0.1 mA + unit (1) $V_{\rm g}$ ' > $V_{\rm g}$ and ≈ 2 V to 0.01 V + unit (1) $I_{g}' < I_{r}'$ and $\approx 2 I_{g}$ to 0.1 mA or better + unit (1) Correct trend in R values $R_{\rm r}' < R_{\rm r}, R_{\rm g}' < R_{\rm g} \text{ and } R_{\rm r}' < R_{\rm g}$ (1) 5 (v) Any 3 of: Resistance of LED changes; It decreases as current in it increases (or vice versa); Resistance of a green LED is greater than resistance of a red LED ; - at a given current; As current doubles: resistance of LED approximately halves / voltage across LED remains \approx constant; Brightness of LED increases as current through it / voltage Max 3 across it increases (1) (1) (1) (b) (i) \pm 0.03 cm of Supervisor's value to 0.1 mm from repeat (1) (1) measurements + unit $[\pm 0.05 \text{ cm from Supervisor's value (1)}]$ At least two perpendicular directions or zero error check (1) 3 (ii) All measurements to nearest mm or better (allow 5 cm) (1) Centre of mass Marble Slotted mass □ Metre rule Bench Pivot 5.0^Icm 49.9 cm 72.1 cm (iii) Centres of mass clearly shown on diagram (1) Scale readings shown (1) Correct calculation giving $m \pm 0.3$ g of Supervisor's value (1) (1) $[\pm 0.05 \text{ g from Supervisor's value (1)}]$ [No ecf, -1 if no unit] 5

[24]

(a) (i) Circuit set up correctly without help

(ii)
$$V_{\rm r} = 1.87 \text{ V}$$

 $I_{\rm r} = 8.48 \text{ mA}$
 $R_{\rm r} = 1.87 / 8.48 \times 10^{-3}$
 $= 221 \Omega$

(iii)
$$V_{\rm g} = 1.96 \text{ V}$$

 $I_{\rm g} = 8.28 \text{ mA}$
 $R_{\rm g} = 1.96 / 8.28 \times 10^{-3}$
 $= 237 \Omega$

(iv)
$$V_{\rm r}' = 2.00 \text{ V}$$

 $I_{\rm r}' = 17.0 \text{ mA}$
 $R_{\rm r}' = 2.0 / 17 \times 10^{-3}$
 $= 118 \Omega$
 $V_{\rm g}' = 2.06 \text{ V}$
 $I_{\rm g}' = 16.77 \text{ mA}$
 $R_{\rm g}' = 2.06 / 16.77 \times 10^{-3}$
 $= 123 \Omega$

(b) (i)

d = 1.55 cm, 1.54 cm, 1.545 cm average d = 1.545 cm Measured in at least 2 perpendicular directions

$$d_1$$

(ii) Scale reading at centre of mass = 49.9 cm

127. (a) Correct use of set squares (1) (1) d to mm and in range $36 \rightarrow 40$ mm from at least 2 values + (1) unit Correct calculation 2/3 significant figures + unit (1)

(b)	1.00 m shown from same point on ball (or lower stop) (1) Use of rules as runway or use of set squares or eye level (1) Two <i>h</i> (values) shown to top surface on diagram correctly (1) $t = 2.5 - 3.5$ s from ≥ 3 values (1) (1) $[\ge 2$ values (1)][-1 mark if no unit] 43 mm \rightarrow 47 mm (1)				
	Correct value (1)	7			
(c)	For <i>v</i> correct calculation ≥ 2 significant figures + unit (1) For E_k correct calculation ≥ 2 significant figures + unit (1) Correct calculation ≥ 2 significant figures + unit and $E_p > E_k$ (1) [allow ecf if <i>m</i> in g in both energies]	3			
(d)	Correct calculation ≥ 2 significant figures + unit (1) [allow ecf on sin α only] Correct calculation of percentage difference (1)				

[accept either *t* or average as denominator]

Sensible comment (1)

- expect straight line through origin (1)
- gradient = 10 / 3g(1)

(a)

(b)

t = 2.74, 2.79, 2.80, 2.84 saverage t = 2.79 sh = 69-24 mm= 45 mm $\sin \alpha = 45 / 1000$ = 0.045 [24]

(c)
$$v = 2 \times 1.00 / 2.79$$

 $= 0.72 \text{ m s}^{-1}$
 $E_{\text{k}} = \frac{1}{2} \times 2.37 \times 10^{-3} \times (0.72)^2$
 $= 6.1 \times 10^{-4} \text{ J}$
 $E_{\text{p}} = mgh = 2.37 \times 10^{-3} \times 9.81 \times 45 \times 10^{-3}$
 $= 1.05 \times 10^{-3}$
(d) $t^2 = \frac{10 \times 10}{3 \times 9.81 \times 0.045}$
 $= 7.55$
 $t = 2.75 \text{ s}$
Percentage difference $= \frac{(2.79 - 2.75)}{2.75} \times 100$
 2.75
 $= 1.5 \%$
This is acceptable experimental error, confirming the relationship.
(10% or less confirms relationship)
128. (a) Background wavelength
Use of $\lambda_{\text{max}} T = 2.90 \times 10^{-3} \text{ m K (1)}$
Correct substitution (1)

 $1.06 \text{ (or } 1.1) \times 10^{-3} \text{m} (1)$ 3 Part of spectrum Microwave or infra-red (1) (1) Main sequence star definition (b) (Fusion of) hydrogen (nuclei) / protons to helium (nuclei) (1) stably / in equilibrium / in core (1) 2 Hertzsprung-Russell diagram Diagonal falling line (1) Correct curvature above 20 000 K and below 5000 K (1) 2 X on line and level with 10^0 (to ± 1 mm) [must be clearly indicated] (1) 1 Dwarfs and Giants (i) bottom left quadrant (1) 1 (ii) top right quadrant (1) 1 [no region indicated max. (1) x] T consistent with diagram at centre of region and 2500 < T/K < 10000 (1) 3

(c) <u>More MS stars</u>

(\mathbf{c})	More Wis stars		
	(i) $\gamma \operatorname{Cas}(1)$		
	(ii) α Cen B (1)	2	
	Diameter of Sirius A		
	$26 \times 3.9 \times 10^{26}$ (1)		
	1.0×10^{28} W (ue) (1)	2	
	$L = \sigma T^4 A$ (or implied by substitution) (1)		
	A = 2.46 (or 2.43 or 2.45) × 10 ¹⁹ (m ²) (1)	2	
	Use of $\pi d^2/4\pi r^2/1.4 \times 10^9$ m (1)		
	$2.8 \times 10^9 \text{ m[no ecf]}$ (1)	2	
(d)	Supernova processes		
	Quality of written communication (1)		
	Heavier elements fused / fusion occurs in outer shells (around core) (1)		
	Runs out of fuel to fuse/fusion ceases thus implosion / core collapse (1)		
	Protons + electrons form neutrons OR Shock wave (or explosion) blows (1) away outer layers		
	Neutron star / pulsar / black hole (1)	5	
(e)	Hydrogen fusion		
	Mass subtraction of 4p – He (1)		
	4.7×10^{-29} (kg) (1)	2	
	$E = mc^2$ seen/implied (1)		
	4.2 (or 4.5) × 10^{-12} J (1)	2	
	Percentage mass loss		
	4.7×10^{-29} divided by $4 \times 1.673 \times 10^{-27}$ (allow 5×10^{-29} or 6.645×10^{-27}) (1)		
	7×10^{-3} (1)		
	% conversion: 0.7% / 0.75% (ecf) (1)	3	[20]
			[32]

129. (a) (i) <u>Young modulus</u>

Any reference to gradient or E = stress / strain [or implied] (1)Substitution of correct values for either straight line [to $\pm 1 \text{ mm}$] (1) $1.25 - 1.45 \times 10^{11} \text{ and} > 3.\text{s.f} (1)$ 3

	(ii)	Energy density	
		Any area attempted (1)	
		Triangle area: $\frac{1}{2} \times 300 \times 1.5$ or 13.5 cm ² squares [or equivalent area chosen (1)]	
		Rectangle area: 300×1.5 or each of 100 (MPa) (1)	
		$6.5 - 7.0$ and $10^5 (J m^{-3})$ (1)	4
		Strongest material	
		A (1)	
		Highest UTS / tensile stress (1)	2
(b)	Cros	ses and materials	
	Thre	e crosses at end of straight line regions (1)	
	A =	high carbon steel	
	$\mathbf{B} = \mathbf{I}$	mild steel	
	$\mathbf{C} = 0$	copper	
	All c	correct [1 or 2 correct score (1) x]	2
	High	h carbon steel /A [if A = h.c.s.] (1)	4
	Mole	ecular structure of metals	
	Qual	lity of written communication (1)	
	Elast chan	tic – atomic separation increases and reversible / atoms do not (1) ge (relative) position	
	Plast chan	tic – bonds between atoms broken / dislocations move / atoms (1) ge position permanently / relatively	
	Frac	ture – <u>plane</u> of bonds break (1)	4
	Rubl	ber line to scale	
	(Hor	izontal) line starting from origin (max 40 MPa at 3.0×10^{-3}) (1) (1)	
(c)	Pre-s	stressed reinforced concrete beam	
	Steel	l / iron and rod / cable / wire (1)	
	Tens	sion / loaded / stressed (1)	
	Cond	crete cast / poured over (not cement) and allowed to set / solidify (1)	
	Tens	sion forces removed [NOT rods contract] (1)	
	(Lea	ving) steel in tension and concrete in compression (1)	5
(d)	Elast	tomer	
	Mate ANE	erials which can be stretched <u>considerably / to high strain</u> (or >100%) (1) O still return to their original length when stress is removed	1
	Mole	ecular structure of rubber	
	Tang	gled <u>chain</u> molecules (1)	
	(Eas (Har	y to stretch at start) chains are straightened out der to stretch when) straight chains (or bonds) being stretched (1)	3

(e) <u>Castle drawbridge</u>

$W = 19\ 620\ \text{N}/20\ 000\ \text{N}$ (1)	
Weight acting at 1.5 m, vertically downwards (1)	2
Principle of moments stated or implied ["in equilibrium" not required] (1)	
Substitution with $\cos 45^\circ$ or $\sin 45^\circ$ (allow 2 <i>T</i> here, ecf) (1)	
7 kN (no ecf) (1)	3

130. (a) Neutron Capture Equation

 $^{238}_{92}\text{U}+^{1}_{0}\text{n}\rightarrow ^{239}_{92}\text{U}$ (1) (1) Beta minus decay ${}^{239}_{92}\text{U} \longrightarrow {}^{239}_{93}\text{Np} + {}^{0}_{-1}\beta + \overline{\nu}$ $U \rightarrow Np + \beta^{-}(1)$ Hence all six numbers correct (1) antineutrino (1) 3 (b) Binding energy per nucleon graph (i) Nucleon number / mass number (1) (1) (ii) Nuclei on graph H at start of curve (< 3 MeV), Fe at peak of curve (at 56), U at end of curve (at 235) [to ± 1 mm] any two (1) all three (1) 3 (iii) Fe (ecf) (1)Binding energy of U (iv) 7.5/7.6(ecf)(1)× 235 (1) 1.8 (GeV) [allow 1.76 - 1.80, no e.c.f] (1) 3 Positronium charge and mass (c) neutral / zero (1) charges of + 1 AND - 1 cancel (1) 2 Electron and positron are antimatter versions of each other (1) 1 Antimatter interaction Annihilation (1) γ / energy /photon (1) 2 [32]

Possible interactions

		Quality of written communication (1)		
		Electromagnetic force affects charged particles – hence yes (1)		
		Weak force affects <u>all</u> particles C hence yes (1)		
		Gravitational force negligible / affects masses hence yes OR strong (1) force affects quarks / hadrons only hence no	4	
		Similarities and differences		
		Any two from: Made of matter and antimatter / short lifetime / unstable / neutral charge [not made of fundamental particles]	2	
		Lepton vs. quarks / different mass / meson affected by strong force (1)	3	
	(d)	Conservation laws		
		Baryon (1)		
		-1(1)		
		Q: $(-1) + (+1) = (0) + (+1) + (X)$ (1)		
		B: $(0) + (+1) = (0) + (0) + (X) (1)$	4	
		Quark content		
		uud (1)		
		us (1)	2	
		Particle X		
		Quark equation $(s\overline{u} + uud \rightarrow d\overline{s} + u\overline{s} + X)$ [allow ecf] (1)		
		Correct cancelling of quark flavours (1)		
		sss ['sss' alone scores 3/3] (1)	3	[20]
				[32]
131.	(a)	Radiation effects on cells		
		Destruction / kills cells [not just damage] (1)		
		Mutation (1)	2	
	(b)	Nuclear equation		
		Correct symbols: $I \rightarrow Xe + \beta + \gamma$ (1)		
		0 and -1 for β (1)		
		131, 53 and 131, 54 correct for I and Xe (1)	3	

(c)	Technetium symbols	
	metastable / excited state (1)	
	will emit γ / energy / photon (1)	2
	<u>Time scale</u>	
	One day per cycle (1)	1
	Elution graph shape	
	Quality of written communication (1)	
	(Rise:) Mo decays to generate Tc (1)	
	(Fall:) "milking" of cell / elution process / Tc flushed out / Tc removed from cell (1)	
	Peak height falls as Mo decays (1)	4
(d)	Nature of ultrasound	
	High <u>frequency</u> (wave / sound) / <u>frequency</u> above human hearing (1)	
	Above 20 000 Hz [or correct example given] (1)	2
	Sonar principle	
	Pulse / short ultrasound wave sent (1)	
	Detect echo / reflection (1)	
	(Information gained from) time delay / signal amplitude (1)	3
	Specific acoustic impedance of soft tissue	
	Use of $c = f \lambda$ and $\times 10^6$, 10^{-3} conversion (1)	
	$1545/1550 \text{ (m s}^{-1}\text{) (1)}$	2
	Correct substitution in $Z = cp(1)$	
	$1.64 \times 10^{6} \text{ kg m}^{-2} \text{s}^{-1} \text{ [allow } 1.59 \times 10^{6} \text{ kg m}^{-2} \text{ s}^{-1} \text{] (1)}$	2
	Percentage transmission	
	Use of α (1)	
	Substitution (should be $(4.9/8.1)^2$, ecf their Z) (1)	
	0.36 / 0.37 [no ecf, beware 60% from incorrect equation] (1)	
	64% / 63% [ecf on reflected value] (1)	4

(e) <u>X-ray energy</u>

		Diag	nosis keV AND therapy MeV (1)		
		Any j absor	point from: keV: Preferential absorption / Z dependent] (1)	ndence for	
		MeV	More penetrating / kill cells (1)		3
		<u>X-ray</u>	image explanation		
		Whit	e = bone and grey (allow black or darker areas) =	soft tissue (1)	
		Whit reach	e = no X-rays reach film (to darken it) / Grey = so film (to darken some of it)	ome X-rays (1)	
		Atter	uation / absorption (strongly) dependent on proto	on number (1)	
		20 >	9 (or implied) means greater attenuation for bone	than tissue (1)	4 [32]
132.	(a)	(i)	\overline{t} 1.8 to 2.1 mm [when rounded to 2 significant better with unit to 0.1 mm	nt figures] or (1)	
			\overline{nt} 14.4 to 16.8 mm with unit to 0.1 mm or bett [unit penalty once only. Ecf unit]	er (1)	
			Repeat of both [recorded] (1)		
			Sensible <i>n</i> between 6 and 10 [integer value] from [ecf wrong values]	m correct calculation (1)	4
		(ii)	Correct arrangement including centre (of mass of marked distances	of rule) and sensible (1)	
			Centre of mass found to nearest mm or better in with unit [can be seen in calculation]	range 490 to 510 mm (1)	
			x and y (shown) to centre of coins and recorded	to the nearest mm (1)	
			Method for x and y e.g. readings at side of coins	s (1)	
			Correct calculation from correct method giving	$n 7.5 \rightarrow 8.4$	
			Hence $n = 8$ (1)		6
		(iii)	Error in method (i): Variable thickness of coin/	coins	
			<u>Rim</u> at edge Thickness of overlapping t	ape Any one (1)	
			Error in method (ii): <i>x</i> is a very short distance mass of tape	Any one (1)	2
	(b)	(i)	Circuit set up correctly without help (2)		2
			ε and V recorded to 0.01 V or better, with $V < \varepsilon$, order of magnitude, with unit seen on at least or $V \ge 1.0 \text{ V}$, and correct ne value and (1)	
			Correct calculation with unit and 2/3 significant	figures [not negative] (1)	2
		(ii)	R0 0.5 \rightarrow 5.0Ω with unit to a precision of 0.1 Ω range by Supervisor	without help on (2)	2
		(iii)	[If help given by Supervisor only 1 mark out of Circuit set up correctly without help (1)	2 for correct R_0]	

I to 0.01 A or better with unit and in the range 0.12 A to 0.18 A (1) [No penalty for mA] Correct calculation [candidate $V \div$ candidate I] with unit and 2/3 significant figures [No penalty for mA] (1) Comparison with *R* and sensible conclusion (1) 4 Correct calculation of ratio with no unit and > 2 significant figures (1) (iv) T read off correctly within $\frac{1}{2}$ square with unit (1) <u>OR</u> 2 A sensible comment on ratio provided R_0 is in range (2)

[24]

Sample results

(a) (i)
$$t = 2.0, 1.9 \text{ mm}$$
 $t = 1.95 \text{ mm}$
 $nt = 15.9, 15.9 \text{ mm}$ $\overline{nt} = 15.9 \text{ mm}$

$$n = \frac{15.9}{1.95} = 8.15$$

$$\therefore n = 8 \text{ coins}$$

(ii)

Centre of gravity at 496 mm mark

$$x = 496 - 437 = 59 \text{ mm}$$

$$y = 987 - 496 = 491 \text{ mm}$$

$$n = \frac{491}{59} = 8.3 = 8$$

(b)

(ii)

(i) Error in method (i): Variable thickness of coin/coins Rim at edge Thickness of overlapping tape

Error in method (ii): x is a very short distance mass of tape

(i) Circuit set up correctly without help

$$\varepsilon = 1.48 \text{ V}$$

$$V = 1.44 \text{ V}$$

$$r = \left[\frac{1.48}{1.44} - 1\right] 10$$

$$= 0.28 \Omega$$

$$R_0 = 1.1 \Omega$$

.

Circuit set up correctly without help (iii) I = 0.162 A

$$R_{\rm T} = \frac{1.44}{0.162} = 8.89 \ \Omega$$

It is reasonable to use V = 1.44 V because the <u>resistance of the lamp is</u> <u>approximately equal to R in</u> the first circuit

(iv)
$$\frac{R_{1}}{R_{0}} = \frac{8.89}{1.1} = 8.1$$

$$= 1585 \text{ K} = 1590 \text{ K} (\text{to 3 significant figures})$$
133. (a) (iⅈ) Units shown in table or on graph axes (1)
Temperatures taken every 0.5 mins or more frequently (1)
At least one attempt at better than 1 °C in each run (1)
Overall fall in temperature greater for 250 ml beaker (1)
6 good points for ϑ_{2} (1)
[Good \pm 0.5 °C of examiners curve] 66
(b) Sensible scales [Allow 2 cm = 60 s] (1)
Axes and curves labelled (1)
Plots [check the plot furthest from each curve] (1)
At least one best fit smooth curve (1)
At least one best fit smooth curve (1)
(c) Good tangent at common temperature with at least 2 points either side of tangent. (1)
Correct reading of sides of triangle (1)
Hence correct calculation to 2/3 significant figures (1)
(d) (i) Use more than 2 beakers (1)
Measure diameter of beakers (1)
Measure diameter of beakers (1)
Measure diameter of beakers (1)
Measure gradient at same temperature for all beakers used
Plot gradient against area OR calculate $\frac{\text{gradient}}{\text{area}}$
 $= \text{constant (1)}$
[Must have more than 2 beakers] 10

[24]

(a) (i&ii)

Time <i>t</i> / mins	Temperature θ_1 of the water in the 250 ml beaker / °C	Temperature θ_2 of the water in the 100 ml beaker/°C
0.0	82.0	88.0
0.5	77.0	85.0
1.0	74.5	82.5
1.5	72.0	80.5
2.0	69.5	78.5
2.5	67.8	76.5
3.0	65.5	74.5
3.5	64.0	73.0
4.0	62.5	71.0
4.5	60.8	69.5
5.0	59.5	68.5

Note: When the experiment was being trialled the 100 ml beaker was used first.

(c) 72 °C chosen because at least 3 points either side of this on both curves Gradient = $\frac{79.1-56}{4.95}$ = 4.67 °C/min

	(d)	(i)	Use more than 2 beakers
			Of different <u>diameter</u>
			Which are lagged/insulated
			Use same volume of water in each beaker
			Measure temperature as a function of time
			Measure diameter of beakers to find area
			Same starting temperature
		(ii)	Plot θ against t for each beaker
			Measure gradient at same temperatures for all beakers used
			Plot gradient against area / calculate $\frac{\text{gradient}}{\text{area}}$
		(iii)	Graph should be a straight line through origin / $\frac{\text{gradient}}{\text{area}}$
			area constant [Must have more than 2 beakers]
134.	(a)	<u>H–R</u>	Diagram
		(i)	L and T (1) L_{\odot} and K (1)
			or L and L_{\odot} (1), T and K (1), not W]
		(ii)	Any 2 correct [of 10^2 , 1 or 10° , 10^{-2}] (1) All 3 correct (1)
		(iii)	20 000 and 5 000 (1)
			Identify stars
		(iv)	Red giant = (B and) C (1) Low mass ms star = E [ignore X] (1)
			Zeta Tauri Luminosity
		(v)	Use of $L = 4 \pi D^2 I(1)$ Correct substitution (1) $3.8(2) \times 10^{30}$ (W) (1)
			Zeta Tauri identification (ecf)
		(vi)	$3.8(2) \times 10^{30} \text{ W} \div 3.9 \times 10^{26} \text{ W} \text{ [or } 4 \times 10^{30} \text{ W used]}$ (1)
			Correct ratio [e.g. 9700, 9800, 10300 or 10^4 , etc.] (1) Hence A [from answer in range 9700 to 10300] (1)
	(b)	(i)	<u>Fusion calculations</u> Mass difference substitution $[(2 \times 5.0055) - (6.6447 + 2 \times 1.6726)]$ (1) 2.11×10^{-29} kg [or 0.0211×10^{-27} kg] (1)
		(ii)	$E = mc^2$ seen (1) 1.9 × 10 ⁻¹² J[ecf] (1)

		(i)	Neutron star (1) Core remnant (1) Supernova (1) 1.4 [accept 0.4 and 1.4] (1)	4	
			Binary pulsar system		
		(ii)	Quality of written communication (1) (Varying) <u>radio</u> signals (1) (Regular) pulses detected [like lighthouse] (1) Idea of two overlapping pulses (from same location) (1)	4	
		(iii)	Black hole (1)	1	
	(d)	White	e dwarf density		
		(i)	$M \div \frac{4}{3} \pi r^3$ [allow M, m, R, r] (1)	1	
		(ii)	Any pair of values correctly read [may be implied, ignore 10^6] (1) Any correct substitution [with 2.0×10^{30} and 10^6 , ecf on (i)] (1) Two correct answers [in kg m ⁻³ , no statement required] (1)	3	
			White dwarf future		
		(iii)	Cools / temperature decreases (1) Becomes dimmer / changes colour [not brown dwarf] (1)	2	[32]
135.	(a)	Stress	s – strain graph		
		(i)	Stress (1)		
			$Pa/MPa/GPa/Nm^{-2}$ (1)	2	
		(ii)	Use of $E = \sigma \div \varepsilon / E$ = gradient (1) Any correct substitution [for linear region] (1) Suitable scale: 1, 2, 3, 4, 5 and × 10 ⁹ / G (1)	3	
			UTS and yield stress		
		(iii)	5GPa [ecf] (1)	1	
		(iv)	The stress at which plastic deformation begins / beyond elastic region [not just 'beyond Hooke's law'] (1)	1	
		(v)	Y at or just beyond end of straight line on graph $[0.03 < \varepsilon < 0.04]$ (1)	1	
			Second material		
		(vi)	Lower gradient initially (1) Straight line to right-hand edge of graph (1)	2	
			Energy density and Work done		
		(vii)	Any reference to area [may be implied] (1) Correct technique: rectangle (and triangle) or counting squares (1) $7.5 - 8.5 \times 10^8$ J m ⁻³ [no ecf] (1)	3	
		(viii)	8×10^8 J m ⁻³ $\times 3.8 \times 10^{-7}$ m ³ [ecf on energy density from (vii)] (1) Correct answer [300 J, ecf] (1)	2	

(b)	Crystal	lattice	dislocations
< / /	_		

136.

	(i)	XY = Slip plane (1)	1	
	(ii)	Quality of written communication (1) Layers / planes (of atoms) slip over each other / move (1) Bonds break one at a time (along XY / slip plane) (1) Less force (or stress) required (to do this) (1)	4	
(c)	Pole v	vault energy		
	(i)	AB: chemical to (1)BC: kinetic to elastic / strain / g.p.e. (1)		
		CD:to gravitational potential / g.p.e. (1)	3	
	(ii)	8.0 m s^{-1} (1)	1	
	(iii)	m g h = 2100 (J) [or 3.3 seen] (1)		
		(3.3 + 0.9 + 1.2 =) 5.4 (m) (1)	2	
(d)	Pole 1	material		
	(i)	Made of more than one material [ignore benefits here] (1) (1)		
	(ii)	to gain (beneficial) properties of each material [not just 'stronger'] (1)	1	
	(iii)	Pole properties Elastic (1) Flexible (1) Strong (1)	3	
		[-1 penalty per error if > 3 circled]		
	(iv)	No plastic deformation (or almost none) / only deforms elastically [not just 'breaks easily'] (1)	1	[32]
(a)	Energ	gy spectrum graph		
	(i)	Number of β^- / particles (1) <u>Kinetic</u> energy [accept k.e.] (1) MeV (1)	3	
		Antineutrino evidence		
	(ii)	Quality of written communication (1) $0.78 = \text{maximum energy} / \Delta E$ of reaction (1) Expect single energy for β^- / energy conservation (1) (Anti)neutrino / other particle takes away missing energy (1)	4	
(b)	$\beta - d\epsilon$	ecay equations		
	(i)	n = udd and p = uud (1)		
		β^- and $\overline{\nu}$ have no quarks / are leptons / are fundamental (1)	2	
	(ii)	$p \rightarrow n (1)$		
		β^+ and v [on RHS, allow e^+] (1)	2	

Weak interaction

137.

	(iii)	Change of quark flavour / type (1) $d \rightarrow u$ (in β^-) AND $u \rightarrow d$ (in β^+) [accept "vice versa"] (1) (anti) neutrino only affected by weak interaction (1)	3
	(iv)	$\beta^{-} = W^{-} (1)$ $\beta^{+} = W^{+} (1)$	2
		[just W's, or $W^- W^+$ swapped gets (1) (0)]	
(c)	Nucl	ear density	
	(i)	use of $\rho = \mathbf{m} \div V(1)$	
		$\frac{4}{3}\pi(5.34\times10^{-15}\mathrm{m})^3/6.38\times10^{-43}\mathrm{(m^3)} \textbf{(1)}$	
		$1.46 \times 10^{-25} \text{ kg} (1)$	3
		Nucleon number and radius	
	(ii)	$1.46 \times 10^{-25} \text{ kg} \div 1.66 \times 10^{-27} \text{ kg} [\text{ecf}] [\text{or } 88 \times 1.66 \times 10^{-27} \text{ kg}] (1)$ hence 87.99 / 88 [accept integer 88] [or hence $1.46 \times 10^{-25} \text{ kg}] (1)$	2
	(iii)	$r = r_0 A^{\frac{1}{3}}$ [sen or implied by substitution, or $\frac{4}{3}\pi r^3$ route] (1)	
		$5.34 \times 10^{-15} \text{ m} \div 88^{\frac{1}{3}} \text{ [must be shown] (1)}$ $1.2 \times 10^{-15} \text{ m (1)}$	3
(d)	<u>Hydr</u> baryd lepto	rogen on and hadron (1) n (1)	2
(e)	Antil	nydrogen	
	(i)	Antiproton [or anti-up quark, anti-down quark] and positron (1)	1
	(ii)	$\overline{p} = -1$ and $e^+ = +1$ [accept correct \overline{u} , \overline{d} charges for \overline{p}] (1)	
		$\overline{u} \ \overline{u} \ \overline{d}$ (e ⁺ fundamental / no quarks) [ecf from (b), credit if in (i)] (1)	2
	(iii)	zero / neutral (1)	1
		Antimatter storage	
	(iv)	<u>Annihilates</u> (1) (On contact) with matter / container / protons / H OR Not charged: not affected by magnetic fields (1)	2
(a)	Deca	iy graph	
	(i)	Time / t (1)	1
	(ii)	Use of t_r line shown on graph (1)	
		5, 10, 15, 20 at marks / 6, 12, 18 clearly marked AND hours / h [at least 2 added values required from one set shown here] (1)	2

[32]

Biological half-life

	(iii)	Correct reading of $t_e = 4$ hours [ecf] (1)	
		Use of $1/t_e = 1/t_r + 1/t_b$ [only this, i.e. not $\lambda t_{\frac{1}{2}} = 0.69$] (1)	
		12 hours [no ecf, accept 720 min or 43200 s] (1)	3
(b)	<u>Moly</u>	bdenum	
	(i)	${}^{99}_{42}\text{Mo} \rightarrow {}^{99m}_{43}\text{Tc} + {}^{0}_{-1}\beta \text{ [accept } {}^{0}_{-1}\text{e}, \text{ ignore } \overline{\upsilon}, \gamma \text{ or } Q \text{] (1)}$	1
	(ii)	(nuclear) reactor (1)	1
		Elution method	
	(iii)	Quality of written communication (1)	
		(saline) solution washed / flushed / pushed through (elution cell) (1)	
		Tc dissolves / is removed (from cell) (1)	
		Mo insoluble (1)	4
		Technetium daughter	
	(iv)	${}^{99m}_{43}\text{Tc} \rightarrow {}^{99}_{43}\text{Tc} + \gamma \text{ [ecf on proton number] (1)}$	1
	(v)	Minimise dose / damage / radiation to patient / cells (1)	
		(Very) low activity / relatively stable / excreted before it can cause damage (1)	2
(c)	Proto	n number Z	
	(i)	Z = proton number (or atomic number) (1)	1
	(ii)	$Z_{\text{bones}} > Z_{\text{tissue / air}}$ [comparison required, may be non-specific] (1) Bones absorb more X-rays due to high(er) Z (1)	2
		X-ray tube	
	(iii)	 1 = Vacuum (1) Allows <u>electrons</u> to pass through tube (1) 2 = High voltage (supply) (1) To accelerate electrons (from cathode to anode) [not attracts] (1) 3 = (Rotating tungsten) <u>anode</u> [accept positive electrode] (1) Emits X-rays (when struck by electrons) (1) 	6
(d)	<u>Ultra</u>	sound Z's	
	(i)	(specific) acoustic impedance (1) of two materials / media [conditional on SAI] (1)	2
	(ii)	$[\rho] = \text{kg m}^{-3} \text{ or } [c] = \text{m s}^{-1} (1)$ kg m ⁻³ × m s ⁻¹ (1)	2
		Reflection coefficient calculation	
	(iii)	Correct substitution (1) $1.1 \times 10^{-3}/0.0011/0.11\%$ AND no unit (1)	2

Transmitted percentage

(iv)
$$1 - \alpha / 100\% - 0.11\%$$
 [ecf] (1)
99.9% [ecf] (1)

[32]

ã	138.	(a)	(i) $l 65.0 \text{ cm}$ to 75.0 cm and recorded to nearest mm or better w 29.0 cm to 31.0 cm and recorded to nearest mm or better (1)	: (1)
			[Ignore <i>l</i> and <i>w</i> reversed] [Unit error once only] [For precision of l and <i>w</i> over half of the reading must be to correct precision]	
			Both repeated (1)	
			Measurements taken perpendicular/parallel to the <u>edge</u> of the foil / eye vertically above <u>edge of</u> foil (1)	4
		(ii)	16t recorded to 0.01 mm or better + unit and 0.15 mm to 0.30 mm	
			Repeat readings shown (1)	
			Zero error checked (1) Other precaution e.g. smoothed foil at each fold to <u>exclude</u> <u>air/careful folding to avoid wrinkles</u>	4
		(iii)	Sensible $\Delta(16t)$	
			Sensible Δ (16 <i>t</i>). Expect range or half range of values. If identical reading or only one reading allow scale division or half scale division of instrument.	
			$\begin{bmatrix} 1^{tr} & \text{mark can be obtained if } \Delta t = \frac{1}{16} \text{ shown.} \\ 2\text{nd mark can be obtained if } \frac{\Delta t}{t} \text{ used.} \end{bmatrix}$	
			Correct calculation of percentage (1)	2
		(iv)	Attempt at density = $\frac{\text{mass}}{\text{volume}}$ (1)	
			Correct substitution into volume formula with consistent and correct l , w , and t (1)	
			Value 2.3 to 3.0 g/cm ³ and > 2.s.f. + unit (1) [$2.3 \times 10^{-3} \rightarrow 3.0 \times 10^{-3}$ g/mm ³ or 2300 \rightarrow 3000 kg/m ³]	3
	(b)	(i)	Circuit set up correctly without help (2)	2
		(ii)	<i>I</i> to nearest mA or better and 40 mA to 55 mA with units (1) <i>V</i> repeated for same x (1)	2
		<i></i>	V to 0.1 mV or better with unit (1)	3
		(111)	Correct substitution into $R(I)$ Correct calculation, 2/3 s.f. + unit (1)	2

(iv) b to nearest mm or better and 8.0 mm to 12.0 mm with unit (1) b repeated (1)
Correct substitution with consistent units for b, t, and x (1)
Correct calculation, consistent and correct unit (1)

[24]

4

Sample results

- (a) (i) l = 67.0,67.2, 66.8 cm l = 67.0 cm w = 29.7, 29.7, 29.7 cm w = 29.7 cm(ii) 16t = 0.15, 0.16, 0.15, 0.16 mm
 - $\overline{16t} = 0.155 \text{ mm}$ $\overline{t} = \frac{0.155 \text{ mm}}{16} = 0.0097 \text{ mm}$

(iii)
$$\Delta$$
 (16*t*) = 0.01 (mm)

Percentage uncertainty = $\frac{0.01 \text{ mm}}{0.155 \text{ mm}} \times 100\%$

=

(iv) Mass =
$$5.68 \text{ g}$$

Density = $\frac{5.68g}{67.0 \text{ cm} \times 29.7 \text{ cm} \times 0.00097 \text{ cm}}$ = 2.94 g/cm³

(b) (ii)
$$I = 50 \text{ mA}$$

 $V = 6.5, 6.7, 6.9 \text{ mV}$ $\overline{V} = 6.7 \text{ mV}$

(iii)
$$R = V / I = \frac{6.7 \text{ mV}}{50 \text{ mA}}$$

$$= 0.134 \ \Omega$$

(iv) b = 1.0, 0.8, 1.2 cmb = 1.0 cm

$$\rho = \frac{Rbt}{x} = \frac{0.134 \times 0.01 \times 9.7 \times 10^{-6}}{0.3}$$

= 4.3 × 10⁻⁸ Ω m

- (a) Measure <u>the height of</u> the string above the <u>bench in two places</u> (1) Use right angle of set square against bench to ensure vertical height measured <u>or</u> correct use of set square alone (1)
 (b) h₁ and h₂ recorded to nearest mm or better with unit seen once (1)
 - l = 0.80 am ± 0.5 am and height difference between 22 and 62 am (1)

 $l = 98.0 \text{ cm} \pm 0.5 \text{ cm}$ and height difference between 33 and 63 cm (1) Correct calculation of sin θ (1) θ found with unit (1)

4

(c)	T rec	orded to 0.1 N and in range 3.5 N to 8.0 N (1)		
	Corre	ect substitution [allow $g = 10 \text{ N/kg}$] (1)		
	Corre	ect calculation 2/3 s.f. + unit		
	Supe	rvisor's value ± 0.5 N	4	
(d)	100 g	g mass > 20 cm from pivot (1)		
	2 dist one r	tances or 3 scale readings shown on diagram with at least eading to nearest mm (1)		
	Distances or scale readings shown to the centres of the mass and the rule (1)			
	Corre	ect calculation of W or m [ignore units] (1)		
	Valu	$e \pm 0.10$ N of Supervisor's value with unit and > 2s.f. (1)	5	
(e)	(i)	Vary m		
		Increase separation of the clamps/change height of the newtonmeter/change the height of the nail (1)		
		String (BC) horizontal (1)		
		Record the reading on the newtonmeter/ $T(1)$		
		Record the heights h_1 and h_2 (1)		
		Find/measure θ or sin θ (1)	Max 5	
	(ii)	Using several/many/ 5 or more/ range readings (1) [5 or more can be scored from table or graph]		
		Plot suitable graph e.g. $T \tan \theta$ against $mg(1)$		
		Straight line with positive gradient and with positive intercept [or intercept consistent with expected graph] (1)		
	(iii)	Intercept = $1/2$ W or consistent with graph (1)	9	
		$ \begin{pmatrix} \text{If experiment in part(d) used. (1)} \\ \text{Vary } m & (mgx = Wy) \text{ (1)} \\ \text{Plot suitable graph e.g. } m \text{ against } y/x \text{ (1)} \\ \text{Straight line through origin (1)} \\ \text{Suitable gradient e.g. } W/g \text{ (1)} \end{pmatrix} $		
				[24]

(b) $h_1 = 68.5 \text{ cm}$ $h_2 = 10.5 \text{ cm}$ l = 98.0 cm $\sin \theta = (68.5 - 10.5)/98.0$ = 0.592 $\therefore \theta = 36.3^{\circ}$

(c) T = 4.3 N $W = 2 \times 4.3 \text{ N} \times \tan(36.3) - 0.5 \text{ kg} \times 9.81 \text{ m s}^{-2}$ = 1.41 N

(iv) $I \le I_1$, to nearest mA or better + unit (1)

 $V = 3 \times \text{to } 4 \times V_1$ to nearest mV or better + unit (1) Correct calculation of $R \ge 2$ s.f. + unit (1)

[Only penalise a particular unit error once in (ii), (iii) and (iv)]

(v) Correct calculation of *R* (1) Correct substitution for ρ with consistent length units (1) Unit of ρ (1) Value $4.2 \rightarrow 5.2 \times 10^{-7} \Omega$ m and ≥ 2 s.f. (1)

[24]

3

4

Sample results

(a) (i)
$$m = 2.74 \text{ g}$$

 $d = 0.31, 0.31, 0.31 \text{ mm}$
 $\overline{d} = 0.31 \text{ mm}$
(ii) $\Delta d = 0.01 \text{ (mm)}$
Percentage uncertainty $= \frac{0.01 \text{ mm}}{0.31 \text{ mm}} \times 100\%$
 $= 3.2(\%)$
(iii) $V = \frac{\pi (0.31 \times 10^{-3} \text{ m})^2 \times 4.0 \text{ m}}{4}$
 $= 3.02 \times 10^{-7} \text{m}^3$
 $\rho = \frac{2.74 \times 10^{-3} \text{ kg}}{3.02 \times 10^{-7} \text{ m}^3}$
 $= 9080 \text{ kg m}^{-3}$
(b) (ii) $I = 49 \text{ mA}$
 $V = 89, 90, 88 \text{ mV}$
 $\overline{V} = 89 \text{ mV}$
(iii) $R_1 = \frac{89 \text{ mV}}{49 \text{ mA}}$
 $= 1.82 \Omega \text{ m}$
(iv) $I = 48 \text{ mA}$
 $V = 266, 265, 267 \text{ mV}$
 $\overline{V} = 266 \text{ mV}$
 $R_2 = \frac{V}{I} = \frac{266 \text{ mV}}{48 \text{ mA}} = 5.54 \Omega$
(v) $R = 5.54 \Omega - 1.82 \Omega = 3.72 \Omega$
 $\rho = \frac{3.72\Omega \times \pi \times (0.31 \times 10^{-3} \text{ m})^2}{4 \times 0.6 \text{ m}}$
 $= 4.7 \times 10^{-7} \Omega \text{ m}$

141. (a) Recorded to the nearest mm with unit (1)
(b) 100 g mass > 20 cm from pivot (1)
3 scale readings or 2 clear distances shown on diagram [at least one to nearest mm] (1)

	Dista	ances or scale readings shown to centres (1)	
	Corr Valu [If ±	ect calculations of W with unit (1) e \pm 0.05 N of Supervisor's value and > 2 s.f. (1) (1) 0.10 N (1)]	6
	[If m appro	ass unit used for <i>W</i> , penalise calculation of W but give range marks opriate to value]	
	[Allo	$pw g = 10 \text{ m s}^{-2} \text{ in (b)}$	
(c)	Meas Use heigl	sure the <u>height</u> of the rule above the bench in 2 places (1) the right angle of the set square against the bench to ensure the vertical at is measured (1)	2
(d)	T rec [and	corded to 0.1 N or better with unit and 2/3 s.f. (1) approximately 6 N]	
	x and	1y recorded to nearest mm or better + unit (1)	
	Corr	ect calculation of W with unit and $2/3$ s.f. (1)	
	Valu	$e \pm 0.5$ N of Supervisor's value (1)	4
(e)	Correct calculation of percentage difference (1) First value is more accurate (1) because newtonmeter uncertainty is likely to be large (1)		
	<u>Or</u>		
	beca newt	use the effect of the suspended 1 kg mass on the (1) onmeter reading >>effect of mass of rule	3
(f)	(i)	Keep m and x constant (1)	
	(ii)	Move position of newtonmeter (1)	
		Obtain different values of y (1)	
		Ensure newtonmeter is vertical (1)	
		Adjust height of newtonmeter/clamp to make rule horizontal (1)	
		Record reading on newtonmeter (1)	
		(Obtain) several/many/5 or more/ range of reading (1) [5 or more can be scored from table or graph]	
		Adjust newtonmeter to set zero correctly (1)	
	(iii)	Plot T against $1/y$ (1)	
	(iv)	Straight line through origin expected (1) Slope = $(W + mg) x$ (1) [Wrong experiment max 5]	8
G	1		

(a) Position of centre of mass = 50.0 cm

[24]

