Winter 1999 CH3

1.	(a)	(i)	Describe what would be seen if dilute sodium hydroxide solution was added, until in excess, to aqueous solutions of magnesium nitrate and barium nitrate.	
			Magnesium nitrate	
			Barium nitrate	
				(2)
		(ii)	Account for the observations given in (i) and write any relevant ionic equations.	
				(3)
	(b)	(i)	State, and explain, the trend in the thermal stability of Group 2 carbonates.	
				(3)
		(ii)	Suggest, with a reason, how the thermal stability of sodium carbonate differs from that of magnesium carbonate.	
			(Total 10 m	(2) arks)

2. The standard reduction potentials, $E_{298}^{•}/V$ for some electrodes are listed below. This data should be used, where appropriate, to help answer the questions that follow.

					E ⁶ 298/V	
		Mg ²⁺ (aq) + 2e ⁻	$\stackrel{\longrightarrow}{\leftarrow}$	Mg(s)	-2.38	
		Fe ²⁺ (aq) + 2e ⁻	\leftarrow	Fe(s)	-0.44	
		$I_2(aq) + 2e^-$	\rightleftharpoons	2I-(aq)	+0.54	
		$Fe^{3+}(aq) + e^{-}$	$\overline{}$	Fe ²⁺ (aq)	+0.77	
		$Br_2(aq) + 2e^-$	\rightleftharpoons	2Br-(aq)	+1.07	
		$Cl_2(aq) + 2e^-$	\rightleftharpoons	2Cl-(aq)	+1.36	
(a)	Give (i) (ii)	the formula of the the most powerf	e speci iul redu iul oxid	es given in th ucing agent; 	ne data which, under standard conditions, is	(1)
(b)	Whie cond	ch of the halogens litions?	listed	would oxidis	se Fe ²⁺ (aq) to Fe ³⁺ (aq) under standard	(1)
(c)	(i)	Write an equation solution contain you suggest.	on to sl ing bro	now the react omide ions. C	ion that occurs when chlorine is bubbled into a Give a reason why you would expect the reaction	
	(iii)	Give an industri	al appl	lication of thi	s reaction.	(2)
(d)	The	redox potential for	r the fo	ollowing reac	tion at pH 7 is +0.42 V.	

 $2H_2O(1) + 2e^- \rightleftharpoons H_2(g) + 2OH^-(aq)$

When magnesium is added to water at room temperature, little apparent reaction occurs. Give two reasons to account for this.

(2) (Total 8 marks)

- **3.** Iron is extracted from its oxides in a blast furnace. Carbon, in the form of coke, is one of the raw materials mixed with the iron ore.
 - (a) The reaction between iron(III) oxide and carbon monoxide to produce iron occurs in many stages; one stage might be represented by the equation

$$Fe_2O_3(s) + CO(g) \rightleftharpoons 2FeO(s) + CO_2(g)$$

Write the expression for the equilibrium constant, K_p , for this reaction.

(1)

- (b) When an acidified solution of potassium dichromate(VI), K₂Cr₂O₇, is added to a solution of an iron(II) compound the dichromate(VI) ions are reduced to chromium(III) ions and the iron(II) ions are oxidised to iron(III) ions.
 - (i) Write an ionic half equation for the reduction of dichromate(VI) ions in acidic solution.

		(1)
(ii)	Write an equation for the reaction between dichromate(VI) and iron(II) ions.	
		(2)

(c) A 0.204 g sample of steel was reacted with excess dilute sulphuric acid. The resulting solution required 27.4 cm³ of 0.0220 mol dm⁻³ potassium dichromate(VI) solution for complete reaction.

Calculate the percentage of iron in the sample of steel.

(4) (Total 8 marks)

Winter 1999 CH3

	Sourum nanue	Lattice enthalpy/kJ mol-1	
	NaF	-902	
	NaCl	-771	
	NaBr	—733	
	NaI	-684	
i)	Define the term <i>lattice enthe</i>	<i>alpy</i> , given the data shown above.	
ii)	Suggest an explanation for t sodium halides.	the trend shown in the lattice enthalp	y values of the
Desc odiu	ribe how you would distingui m iodide.	sh between aqueous solutions of sod	ium chloride and
Desc odiu	ribe how you would distingui m iodide. ain why silicon tetrachloride ion tetrachloride by the hyd	ish between aqueous solutions of sod	ium chloride and
Desc. odiu	ribe how you would distingui m iodide. ain why silicon tetrachloride i on tetrachloride cannot be hyd	ish between aqueous solutions of sod	ium chloride and
Desc. odiu	ribe how you would distingui m iodide. ain why silicon tetrachloride i on tetrachloride cannot be hyd	ish between aqueous solutions of sod	ium chloride and
Desc odiu	ribe how you would distingui m iodide. ain why silicon tetrachloride i n tetrachloride cannot be hyd	ish between aqueous solutions of sod	ium chloride and
Desc odiu	ribe how you would distingui m iodide.	ish between aqueous solutions of sod	ium chloride and

4. (a) Values for the lattice enthalpy of some sodium halides are listed below.

(d) Dichlorodifluoromethane, CCl_2F_2 , has been widely used as a refrigerant but it is now being phased out. Identify the feature of the molecule that leads both to its widespread use and to its decline.

.....

(1) (Total 12 marks)