

GCE Salters Horners Physics (6756/01)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

6756 Unit Test PSA6

1.	(a)	Current = charge/time (any arrangement/accept symbols (d) ($^{\circ}$) Q, I and t) [E= VIt is also valid]	1
	(b)	Use of speed = distance/time [accept any arrangement and symbols] / Statement that the distance travelled by light in 1 second is 3×10^{8} So 1 m is the distance travelled by light in $1/3 \times 10^{8} (3.3 \times 10^{-9})$ s	√ √
	(c)(i)	Use of E = hf To E = $4.97 / 5.0 \times 10^{-19}$ (J)	\checkmark
	(ii)	Use of E = mc^2 To E = 9 × 10 ¹⁶ (J) Number of photons required = 1.8×10^{35}	√ √ √
	(d)	Analogue - continuous(ly) varying/changing Digital - two states / values / 0 + 1	\checkmark
	(e)	Arrow pointing south west Arrow pointing north east	\checkmark
	(f)	Force horizontal to left/to centre of circle Force always at right angles to direction of motion Causes acceleration at right angles/in this direction	√ √ √
	(g)	Energy level lines Arrow going up [must start and finish at a line]	√ √
	(h)(i)	Recall v = $f\lambda$ f = 3 × 10 ⁸ / 282 (× 10 ⁻⁹) 1.(06) × 10 ¹⁵ (Hz (s ⁻¹))	\checkmark \checkmark
	(ii)	1 /1.06 × 10^{15} (ecf) Accuracy is (±) 9(.43) × 10^{-16} s	\checkmark

Total 22

2.	(a)	Time 10 oscillations then divide by 10 / keep eye in the same position each time [do not accept light gates etc]	~	
	(b)	Nearest 0.01 m / 1 cm Either suitable because a 1 m length is sensibly measured to nearest 1 cm Or could measure to nearest mm with a metre rule	√ √ √	2 max
	(c)(i)	Column headed $T^2 / 1^{0.5} / loglog or lnln$ Units $s^2 / m^{0.5} / no units$ Correct values [T^2 check last fig 5.02 / $1^{0.5}$ 0.60 row = 0.78 Log 0.6 row : -0.22 0.210] Scales: points occupy more than half page Points Best fit straight line [not thro origin] [$T v l$ graph marks 4 and 5 only 2 max]	$\begin{array}{c} \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \end{array}$	
	(ii)	Line does not go through origin Therefore T ² not proportional to l / T not proportional to l ^{1/2} [LogLog : Need to find gradient Round off = 0.5]	$\begin{array}{c} \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \end{array}$	
	(d)	Line does not go thro origin / When T = 0 there appears to be a value of length Intercept is about cm this shows an error in l The actual length of pendulum is longer than measured The intercept is long enough to be a possible (systematic) error [No marks for log log graphs]		3 max
	(e)	Gradient from large triangle = $3.9 - 4.1$ for $T^2 / = 1.9 - 2.05$ for root l Equate with either $4\pi^2/g / 2\pi$ / root g value $9.6 - 10.5$ ms ⁻² [log log intercept = log $(2\pi / \text{ root g})$ value $9.6 - 10.5$ ms ⁻²]	$ \begin{array}{c} \checkmark\\ \checkmark $	
				····· ·

Total 18

 \times 9.81 = 1.04 \times 10⁷ N (a)(i)

- $F \cos 25 = 1.04 \times 10^7 + T \cos 45$ (ii) $F\cos 65 = T\cos 45$ Attempt to eliminate F Combine to get T = $1.3 / 1.28 \times 10^7$ N
- Area = $\pi.095^2$ = 0.0284 (b) Use of either stress = F/A or strain = e/l Calculation of length by trig = 95.5 m Extension = .27 m Energy = $\frac{1}{2}$ FX = 1.28 × 10⁷ .0.27/2 = 1730 kJ / 1.7 x 10⁶ J [if 10⁷ N used answer = 1 x 10⁶ J]
- (C) Resonance When forcing/driving frequency = natural frequency Wind causes oscillations/vibrations

Total 13

 \checkmark

3.

Tension relates to speed of wave on string/ ν = $(T/\mu)^{1/2}$

So frequency (related to speed) is related to tension/ as

$v = f\lambda / f = \frac{1}{2l} \sqrt{\frac{T}{\nu}}$ Higher tension - higher frequency	✓ ✓	
Warming current: electrical energy converted to heat I ² R Expands string reducing frequency	\checkmark	
AC current in first coil produces alternating magnetic field Magnetic field plus current in string leads to force/F=BIL Standing wave on string	√ √ √	
String generates its own magnetic field as current in it Moving/ oscillating/ changing magnetic field / cutting flux induces current in second coil Frequency of induced current = freq of string	* * *	(max 7)

Total 7

Total for Paper = 60

 \checkmark

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publications@linneydirect.com</u>

Order Code UA 018157 Summer 2006

For more information on Edexcel qualifications, please visit <u>www.edexcel.org.uk/qualifications</u> Alternatively, you can contact Customer Services at <u>www.edexcel.org.uk/ask</u> or on 0870 240 9800

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH

edexcel advancing learning, changing lives A PEARSON COMPANY