

Mark Scheme Summer 2007

GCE

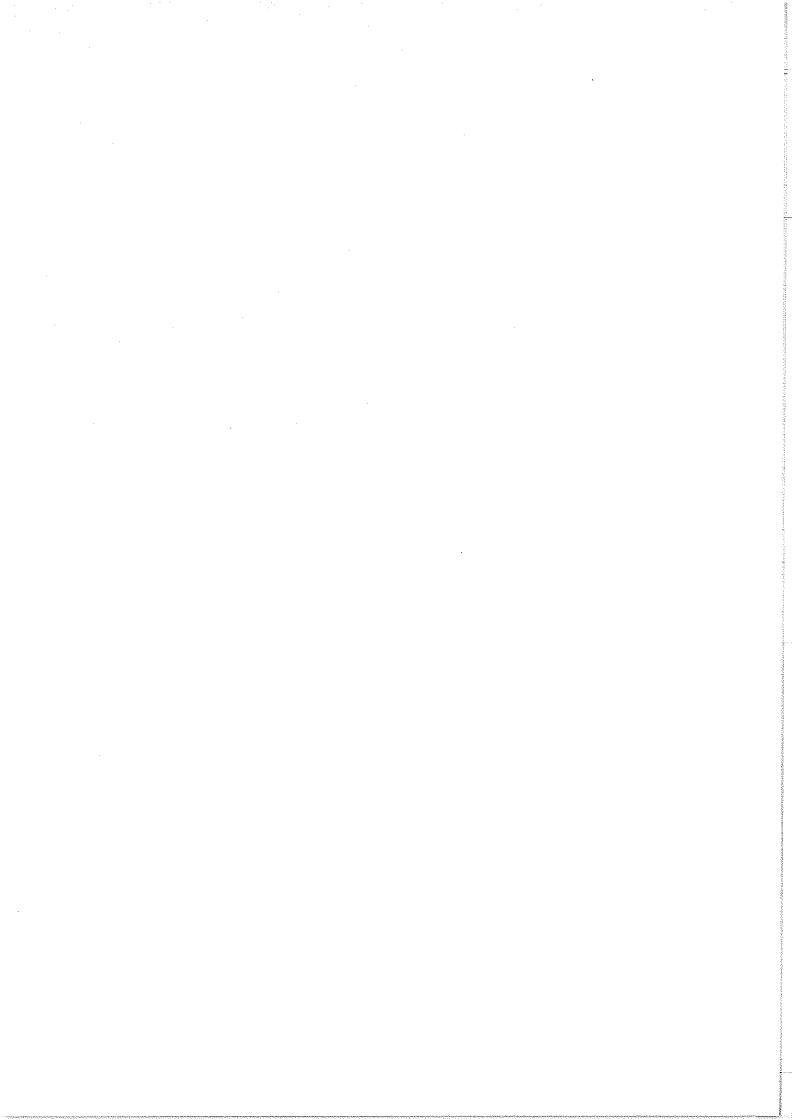
GCE Salters Horners Physics (6752/01)

6752 Unit Test PSA2

		6752 Unit lest PSAZ		
1.	(a)	Material properties: Strength - Force/ load/stress required to break / Strong - large force required to break	✓	
		Brittle - shatters/snaps/fractures / cracks (under force) / breaks with no/little plastic deformation/breaks with little strain [ignore reference to size of force needed eg. cracks easily - mark awarded for 'cracks']	✓	
		Plastic - does not return to original length (when load removed) / deformation is permanent	✓	3
	(b)	Maximum force: Use of $A = \pi r^2$ Use of $F = \sigma \times A$ Correct answer [193 (N)] [accept 190 - 193 N to allow for rounding errors] [no u.e] [2 out of 3 for correct reverse working out]	✓ ✓	3
		Example: $F = \sigma \times A$ $A = \pi r^2 = (0.127 \times 10^{-3})^2 \times \pi$ = 5.07 x 10 ⁻⁸ m ² $F = 3.8 \times 10^9 \text{ Pa x 5.07 x } 10^{-8} \text{ m}^2$ = 193 N		
	(c)	Extension calculation: Use of $\varepsilon = \sigma/E$ Correct answer for ε [0.015] Correct answer for extension [0.017 m] [allow 0.016 - 0.017 m to allow for rounding errors] [allow 1 st 2 marks for correct substitution into E= Fl/xA]	✓ ✓ ✓	3
		Example: $\varepsilon = \sigma / E$ = 2.00 x 10 ⁹ Pa / 1.31 x 10 ¹¹ Pa = 0.015 extension = ε x length = 0.015 x 1.1m = 0.017 m (1.7 cm)		
	(d)	Polymer: Long chain Of repeating units / of monomers / molecule /atoms [1 mark only for long chain of molecules]	√ ✓	2 Total 11

2.	(a)	Greatest power: A real image is formed / image is seen on screen /combined f is positive Converging lens [mark dependant on 1st mark being correct] [allow covex]		2
	(b)	Equation of line: Gradient = -1 Intercept = 10 (m ⁻¹) $1/v = -1/u + 10$ OR knowledge that $y = 1/v$ and $x = 1/u$	√ √ √	3
	(c)	Power of lens combination: Intercept = $1/f$ OR use of $1/f = 1/u + 1/v$ 1/f = P = 10D	√ √	2
	(d)	Power of diverging lens: P = 10 - 20 = -10D [allow ecf from (c)]	Ţ	1
	(e)	Ray diagram: Ray through centre of lens from light source Correct position of F (1 large square from lens - need not be labelled)	✓	
		Ray parallel with axis to lens then through F / through F then parallel to axis from light source	✓	
		Distance between lens and screen = 6.5 - 7 cm [both ray marks may be awarded for any 2 of the	✓	4
		possible 3 correctly drawn. Allow ecf for incorrect F position]	✓	.
				Total 12

3.	(a)	Work function: Energy needed for an electron to escape the surface / to be released (from the metal)	✓	1
	(b)	How current produced: Any 3 from: Photon of light passes energy to an electron If energy above the work function/frequency above threshold Electron released as a photoelectron / photoelectron released / surface electron released Moving electrons produce a current	√ ✓	Max 3
	(c)(i)	Intensity of light increased: More electrons released	✓	
	(ii)	Frequency of light increased: Electrons gain more (kinetic) energy	✓	2
	(d)	Photon energy: Use of $f = v/\lambda$ or $E = hc/\lambda$ Correct answer for E (4.7 x 10 ⁻¹⁹ J or 2.96 eV) [allow 3.0 eV]	√ √	2
		Example: $f = v/\lambda = 3x10^8 / 4.2 \times 10^{-7} = 7.1 \times 10^{14} \text{ Hz}$ $E = hf = 4.7 \times 10^{-19} \text{ J or } 2.96 \text{ eV}$ OR $E = hc/\lambda = 3x10^8 \times 6.63 \times 10^{-34} / 4.2 \times 10^{-7}$ $= 4.7 \times 10^{-19} \text{ J or } 2.96 \text{ eV}$		
	(e)	Max kinetic energy: Knowledge that ke_{max} = energy calculated in (d) - ϕ Correct answer for ke_{max} (0.26 eV or 4.2 x 10^{-20} J) [allow 0.25-0.26 eV or 4.1 - 4.2 x 10^{-20} J and allow ecf from (d)]	√ √	2
		Example: ke _{max} = 2.96 eV - 2.7 eV = 0.26 eV		
	(f)(i)	Why current reduced: Many / some electrons will not have enough (kinetic) energy to reach the anode / only electrons with large (kinetic) energy will reach the anode	✓	1
	(ii)	Stopping potential: eV = (-) ke $V = \text{ke} / e = \underline{0.26V}$	✓	1


1.	(a)	Plane polarised: Vibrations / oscillations in one plane OR double-headed arrow diagram with vibrations / oscillations labelled	✓ ✓ ✓	2
	(b)	 Polarising filter: Intensity goes from maximum to minimum Twice per rotation / after 90° As filter only lets through vibrations in a particular plane [marks may be gained from a clearly labelled diagram] 	* * *	3
	(c)	Response of beetle: Changed direction by 90° / turned through a right-angle	✓	1
	(d)	No moon: Beetle moves in a random direction / in circles / appears disorientated	√	1
				Total

5.	(a)	<u>Circuit:</u> Potential divider	√	1
	(b)	Relay potential difference: 4 V	✓	. 1
		Example: 5/15 x 12 = 4V		
	(c)(i)	Resistance: Recall of R = ρ L/A Correct substitution of values into formula Correct answer [98(Ω)] [allow 97 - 98 Ω to allow for rounding errors] [no u.e.]	✓ ✓ ✓	3
		Example: $R = (3.4 \times 10^2 \times 1.44) / (100 \times 0.05)$ $= 98 \Omega$		
	(ii)	$\begin{tabular}{ll} \underline{Combined\ resistance:} \\ \hline Use\ of\ 1/R_{Tot} = 1/R_1 + 1/R_2 \\ \hline Correct\ answer\ for\ R\ [4.8\Omega] \\ \hline [allow\ 4.7\Omega\ -\ 4.8\Omega\ to\ allow\ for\ rounding\ errors] \\ \hline \end{tabular}$	√ √	2
		1/R = 1/98 + 1/5 (or = 1/100 + 1/5) R = 4.8 Ω		
	(iii)	Relay voltage: P.d. across relay with ballast very similar to p.d across the relay alone / p.d. = 3.9 V / p.d. lower (slightly)	✓	1
	(iv)	<u>Train on track:</u> Relay voltage becomes very small / zero	✓	1
	(v)	Wet ballast: Any two- • Combined resistance now small / R_T = 0.45 Ω • Relay voltage now small / V = 0.52 V • Relay voltage too small to trigger green light /		
		signal remains red	√ √	2
				Total

Total 11

(a)	High viscosity flow: Slower (than low viscosity flow) / greater time taken to flow the same distance / flows less distance in the same time	✓	1
(b)	Measurement of viscosity: Distance travelled by lava in a set time / time taken to travel a set distance / speed of lava flow	✓	1
(c)	Effect of cooling: (viscosity) increases	✓	1
(d)	Laminar/Turbulent flow: Any 3 points - Laminar - smooth Shown by at least 2 straight-ish lines Turbulent - flow causes whirlpools /eddies (or explanation involving energy) Turbulent flow shown on diagram with at least 3 lines resulting in eddies	√ √ √	Max 3
(e)	Viscosity graph: Use a log scale / powers of 10 scale	✓	1
			Total 7
	Total marks	for pap	er = 60

6.

