

GCE Salters Horners Physics (6751/01)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

6751 Unit Test PSA1 June 2007

1.	a) Describe propagation of longitudinal waves		
	Particles oscillate / compressions/rarefactions produced	\checkmark	
	oscillation/vibration/displacement parallel to direction of propagation	√	2
	b) Calculation of wave speed		
	Recall of $v = f \lambda$	\checkmark	
	Correct answer [7.2 km s ⁻¹]	\checkmark	2
	Example of calculation:		
	$v = f \lambda$		
	v = 9 Hz × 0.8 km		
	= 7.2 km s ⁻¹ [7200 m s ⁻¹]		
	c) Determine if elephants can detect waves more quickly		
	Recall of $v = s / t$	✓	
	Correct answer for t in minutes or hours [about 6 minutes] or relevant comment with 347 s or calculation of tidal wave speed [0.35 km s ⁻¹] with comment [allow ecf]	✓	2
	Example of calculation:		
	v = s / t		
	$t = 2500 \text{ km} \div 7.2 \text{ km s}^{-1}$ OR $v = 2500 \text{ km} \div (2 \times 60 \times 60 \text{ s})$		
	$t = 347 \text{ s}$ OR $v = 0.35 \text{ km s}^{-1}$		
	<i>t</i> = about 6 minutes (stated) / much less than hours / 2 h is 7200 s OR 7.2 km s ⁻¹ >> 0.35 km s ⁻¹		6

2. <u>a) i) Show that resistance is about 0.006 -</u>

Use of ratio of lengths and total resistance to find correct answer [0.0056 ¤¤¤[no ue]	\checkmark	1
Example of calculation:		
$R = 0.05 \text{ m} \times 0.11 \Omega / 0.99 \text{ m}$		
= $0.0056 \ \Omega$ (5.6 × 10 ⁻³ Ω) [no ue]		
a) ii) Suggest why full length used		
More accurate / resistance larger / smaller percentage uncertainty/error	\checkmark	1
b) i) Calculate rate of heat generation		
Recall of $P = IV$ and $V = IR$ (accept $P = I^2R$)	√	
Correct answer [2.2 W] [allow ecf for a) i) answer if not 0.006 Ω]	\checkmark	2
Example of calculation:		
$P = I^2 R$		
= 20 A × 20 A × 0.0056 Ω		
= 2.2 W		
b) ii) Calculate energy to raise wire to melting point		
Use of $\Delta Q = mc\Delta\theta$	√	
Correct answer [= 35.5 J]	\checkmark	2
Example of calculation:		
$\Delta Q = mc\Delta\theta$		
= 8.7 × 10 ⁻⁵ kg × 385 J kg ⁻¹ °C ⁻¹ × (1080 °C - 20 °C)		

= 35.5 J

b) iii) Calculate time to raise wire to melting point

Use of power = energy/time to find correct answer [16.1 s] [ecf] \checkmark 1

Example of calculation:

time = energy / power

= 35.5 J / 2.2 W

= 16.1 s

b) iv)Explain increase in resistance

(Temperature increase) causes $\underline{increased}$ vibrations of (lattice) \checkmark ions/ atoms

with an increase in the scattering of flowing <u>electrons</u> / increased rate of collisions with <u>electrons</u> / harder for <u>electrons</u> to pass \checkmark

Total 9

3.

<u>a) i) Show that acceleration is about 1.7 m s⁻²</u>

Use of appropriate equation(s) of motion Correct answer $[a = 1.73 \text{ m s}^{-2}]$ [no ue] 2 Example of calculation: $s = \frac{1}{2} at^2$ 1.35 m = $1/_2 \times a \times (1.25 \text{ s})^2$ OR $a = 2 \times 1.35 \text{ m} / (1.25 \text{ s})^2$ $a = 1.73 \text{ m s}^{-2}$ a) ii) Explain constant acceleration No <u>air</u> resistance Accelerating force on each is constant / Resultant force remains \checkmark 2 just weight b) Calculate weight Recall of W = mgCorrect answer [179 N] 2 Example of calculation: W = mg= 105 kg × 1.7 N kg⁻¹ = 179 N

```
c) i) Time of flight of ball
```

Recall of trigonometrical function

Recall of v = u + at

Correct answer [t = 18.1 s]

Example of calculation:

vertical component of velocity = 45 m s⁻¹ × sin 20°

= 15.4 m s⁻¹

v = u + at15.4 m s⁻¹ = -15.4 m s⁻¹ + 1.7 m s⁻² × t

 $t = 30.8 \text{ m s}^{-1} \div 1.7 \text{ m s}^{-2}$

t = 18.1 s

c) ii) Horizontal distance

Use of trigonometrical function

Correct answer [766 m] [ecf]

Example of calculation:

horizontal component of velocity = $45 \text{ m s}^{-1} \times \cos 20^{\circ}$

= 42.3 m s⁻¹

distance = 42.3 m s⁻¹ × 18.1 s

= 766 m

c) iii) Comment on this distance

[766 m \div 1600 m/mile = 0.48 mile] [ecf] - This is only about half a \checkmark mile (N.B. answer for c) ii) required to get this mark)

Total 12

1

3

4. <u>a) Meaning of superposition</u>

	hen vibrations/disturbances/waves from 2 or more sources bincide at same position	✓	
	esultant <u>displacement</u> = sum of <u>displacements</u> due to individual aves	√	2
<u>b)</u>	i) Explanation of formation of standing wave		
	escription of combination of incident and reflected waves/waves opposite directions	√	
de	escribed as superposition or interference	\checkmark	
OF OF	here in phase, constructive interference / antinodes R where antiphase, destructive interference / nodes R causes points of constructive and destructive interference R causes nodes and antinodes	√	3
			-
<u>[D]</u>	ii) Calculate wavelength		
Ide	entify 2 wavelengths	\checkmark	
Co	prrect answer [2.1 × 10 ⁻⁹ m]	✓	2
Ex	cample of calculation:		
(N	IANANANAN) X to Y is 2 × λ		
λ =	$= 4.2 \times 10^{-9} \text{ m} \div 2$		
= ;	2.1 × 10 ⁻⁹ m		
<u>b)</u>	iii) Explain terms		
	nplitude - maximum displacement (from mean position) an use diagram with labelled displacement axis)	√	n
	ntinode - position of maximum amplitude R position where waves (always) in phase	√	2
			Total
			9

÷

5.

<u>a) i) calculate resistance</u>

Recall of R = V/I

Correct answer [8.65 Ω]

Example of calculation:

R = V/I

 $R = 2.68 \text{ V} \div 0.31 \text{ A}$

= 8.65 Ω

a) ii) Show that internal resistance is about 0.4 Ω

Recall of relevant formula $[V = \mathcal{E} - Ir \text{ OR lost volts} = (\mathcal{E} - V) \text{ OR}$ $\mathcal{E} = I(R + r)$ including emf

Correct answer [0.39 Ω] [no ue] [allow ecf if $\mathcal{E} = I(R + r)$]

Example of calculation:

 $V = \mathcal{E} - Ir$

 $r = (\mathcal{E} - V)/I$

= (2.8 V - 2.68 V)/0.31 A

= 0.39 Ω

a) iii) Comment on match to maximum power

Not matched [ecf for R in a) i) and r in a) ii)]

Max power when internal resistance = load resistance

2

2

2

 \checkmark

b) i) Show that charge is about 14 000 C

Recall of Q = It

Correct answer [14 400 C] [no ue]

Example of calculation:

Q = It

 $= 2 \times 2 A \times 60 \times 60 s$

= 14 400 C

b) ii) Calculate time for which battery maintains current

Use of Q = It OR use of W = Pt

Correct answer [46 450 s or 12.9 h]

Example of calculation:

t = Q/I

= 14 400 C / 0.31 A

= 46 450 s

c) Explain effect on efficiency

Efficiency = $l^2R / l^2(r + R) /$ Efficiency depends on $R / (r + R) / \checkmark$ more heat dissipated in cells / Efficiency is V/ and V decreases

so efficiency is less

[Must attempt explanation to get 2nd mark]

Total 12

2

√

2

6. <u>a) i) Calculate ave speed from D8</u>

[15.2 m s⁻¹][no ue]

Use of equations of motion to find correct answer

Example of calculation:

v = 7.6 m / 0.5 s

= 15.2 m s⁻¹ [No ue]

a) ii) Formula for E7

E6 + B7 OR 35.5 + 9.1 OR B4 + B5 + B6 + B7 OR sum(B4:B7) OR 35.3 + 9.1

1

1

3

2

1

a) iii) Use graph to find ave deceleration

line drawn - full width, 0 s to 2 s

substitution of values in gradient formula

correct answer $[5.5 \text{ m s}^{-2} (\pm 0.3 \text{ m s}^{-2})]$

Example of calculation:

gradient = $(28 \text{ m s}^{-1} - 17 \text{ m s}^{-1}) / 2 \text{ s}$

= 5.5 m s⁻² (\pm 0.3 m s⁻²) [ignore any negative sign]

b) i) Calculate average braking force

Recall of F = ma

Correct answer [3300 N] [ecf]

Example of calculation:

F = ma

 $= 600 \text{ kg} \times 5.5 \text{ m s}^{-2}$

= 3300 N

b) ii) State origin of force

friction between brake pad and disc

[frictional force of road on tyres]

c) i) Calculation of kinetic energy from F6

Recall of $E_k = \frac{1}{2} mv^2$	\checkmark	
Correct answer [132 kJ] [no ue]		2
Example of calculation:		
$E_{\rm k} = 1/2 m v^2$		
$E_{\rm k} = 1/2 \times 600 \rm kg \times (21 m s^{-1})^2$		
= 132 kJ		
<u>c) ii) Explain gradient = braking force</u>		
<u>Change</u> in kinetic energy = work done by braking force	\checkmark	
work/distance = force		
OR		
gradient = <u>change</u> in kinetic energy / distance	\checkmark	
= work done by braking force / distance = force	1	
(Showing units/dimensions of gradient consistent with force gains 1 mark)		2
		Total 12

Total for Paper = 60