Specimen Paper

GCE A LEVEL

MARK SCHEME

MAXIMUM MARK: 30

SYLLABUS/COMPONENT: 9702/05

PHYSICS
Paper 5 (Planning, Analysis and Evaluation)

Page 1	Mark Scheme	Syllabus	Paper
	A and AS LEVEL – Specimen Paper	9702	05

Question 1

	anning (15 marks) fining the problem (3 marks)	
	p is the independent variable OR vary p	1
	f is the dependent variable OR measure f and p	1
	Variable to be controlled e.g. temperature, frequency of sound source	1
Ме	thods of data collection (5 marks)	
	Workable arrangement Should include container, source of sound, pump, microphone, CRO Doubtful arrangement, poor diagram or one missing detail scores one mark	2
	Method of varying <i>p</i> e.g. use of pump to remove air or valve to allow air in	1
	Method of measuring <i>p</i> e.g. Bourdon gauge/pressure gauge/manometer	1
	Method of measuring f Should include reference to CRO timebase and f = 1/period	1
Ме	thod of analysis (2 marks)	
	Plot f against p^2	1
	Equation is correct if graph is a straight line through the origin	1
Sai	fety considerations (1 mark)	
	Safety precaution, e.g. screen/goggles/fuses	1
Ad	ditional detail (4 marks)	
	Additional details Relevant points might include: Second variable to be controlled Method of controlling variables Specified sound source (e.g. electric bell/buzzer/speaker) Use of signal generator with speaker Difficulty of detecting quiet sounds at low pressures Using CRO y-sensitivity to adjust for sound levels Need to seal points where wires pass through bell jar Monitor temperature with thermometer	4

Page 2	Mark Scheme	Syllabus	Paper
	A and AS LEVEL – Specimen Paper	9702	05

Question 2

Analysis, conclusions and evaluation (15 marks) Approach to data analysis (1 mark)

(a) $R^2 = c^2 E^3$, so expect a straight line through the origin

1

1

Table of results (2 marks)

Table Column headings R^2 / cm² and E^3 / MeV³ Allow R^2 (cm²) and E^3 (MeV³)

1

Table Values of R^2 and E^3 16.0 156
18.9 183
23.0 221
25.5 248
32.5 310

All correct for one mark.

3 significant figures required (allow 4 s.f.)

Graph (3 marks)

Graph Points plotted correctly
All five required for the mark

1

Graph Line of best fit

Must be within tolerances.

1

Graph Worst acceptable straight line Must be within tolerances.

1

Conclusion (4 marks)

(c)(iii) Gradient of best-fit line

The hypotenuse of the Δ must be greater than half the length of the drawn line.

Read-offs must be accurate to half a small square.

Check for $\Delta y/\Delta x$ (i.e. do not allow $\Delta x/\Delta y$).

1

1

(d) Gradient = c^2 (= 0.107)

Does not have to be explicitly stated: may be implicit from working

(d) Value of c = 0.327 (allow 0.320–0.350)

1

(d) Unit of c cm MeV^{-3/2}

1

Page 3	Mark Scheme	Syllabus	Paper
	A and AS LEVEL – Specimen Paper	9702	05

Treatment of errors (5 marks)

Table	Errors in R ² 0.4 0.4 allow 0.5 0.5 allow 0.4 0.5 0.6	1
Graph	Error bars plotted correctly	1
(c)(iii)	Error in gradient Must be calculated using gradient of worst acceptable straight line	1
(d)	Method of finding error in c i.e. limit of error range in c from square root of limit of error range in gradient Allow 0.5 x percentage error in gradient	1
(d)	Value for error in <i>c</i> 0.009 (allow ± 0.007–± 0.011)	1