Specimen Paper

GCE A LEVEL

MARK SCHEME

MAXIMUM MARK: 100

SYLLABUS/COMPONENT: 9702/04

PHYSICS

Paper 4
www.Students-Resource.com

Section A

1 (a) (i) radial lines B1
pointing inwards
B1
(ii) no difference $O R$ lines closer near surface of smaller sphere

B1 [3]
(b) (i) $F_{G}=G M m / R^{2}$

C1
$=\left(6.67 \times 10^{-11} \times 5.98 \times 10^{24}\right) /\left(6380 \times 10^{3}\right)^{2}$
$=9.80 \mathrm{~N}$
$=9.80 \mathrm{~N}$
A1
(ii) $F_{\mathrm{C}}=m R \omega^{2} \quad \mathrm{C} 1$
$\omega=2 \pi / T$ C1
$F_{C}=\left(4 \pi^{2} \times 6380 \times 10^{3}\right) /\left(8.64 \times 10^{4}\right)^{2}$ $=0.0337 \mathrm{~N}$

A1
(iii) $F_{G}-F_{C}=9.77 \mathrm{~N}$

A1
[6]
(c) because acceleration (of free fall) is (resultant) force per unit mass

B1 acceleration $=9.77 \mathrm{~m} \mathrm{~s}^{-2}$

2 (a) (i) $\omega=2 \pi f$
(ii) (-)ve because a and x in opposite directions OR a directed towards mean position / centre B1
(b) (i) forces in springs are $k(e+x)$ and $k(e-x)$ C1
resultant $=k(e+x)-k(e-x) \quad \mathrm{M} 1$

$$
\begin{equation*}
=2 k x \tag{2}
\end{equation*}
$$

A0
(ii) $F=m a$

B1
$a=-2 k x / m$
A0
(-)ve sign explained B1
(iii) $\omega^{2}=2 k / m$

C1
$(2 \pi f)^{2}=(2 \times 120) / 0.90$ C1
$f=2.6 \mathrm{~Hz}$ A1

3 (a) single diode
in series with $\mathrm{R} O R$ in series with a.c. supply
(b) (i) $\mathbf{1} \quad 5.4 \mathrm{~V}$ (allow $\pm 0.1 \mathrm{~V}$)
(i) $2 \quad V=i R$

$$
I=5.4 / 1.5 \times 10^{3}
$$

C1

$$
=3.6 \times 10^{-3} \mathrm{~A}
$$

(i) 3 time $=0.027 \mathrm{~s}$ A1
(ii) $1 \quad Q=$ it

$$
\begin{aligned}
& =3.6 \times 10^{-3} \times 0.027 \\
& =9.72 \times 10^{-5} \mathrm{C} \\
& =\Delta Q / \Delta V \text { (allow } C \\
& =\left(9.72 \times 10^{-5}\right) / 1.2 \\
& =8.1 \times 10^{-5} \mathrm{~F}
\end{aligned}
$$

$$
\mathrm{C} 1
$$

(ii) $2 C=\Delta Q / \Delta V$ (allow $C=Q / V$ for this mark) C1
A1
(c) line: reasonable shape with less ripple

4 (a) (i) 50 mT
(ii) flux linkage $=B A N$ $=50 \times 10^{-3} \times 0.4 \times 10^{-4} \times 150=3.0 \times 10^{-4} \mathrm{~Wb}$ (allow $49 \mathrm{mT} \rightarrow 2.94 \times 10^{-4} \mathrm{~Wb}$ or $51 \mathrm{mT} \rightarrow 3.06 \times 10^{-4} \mathrm{~Wb}$)
(b) e.m.f. / induced voltage (do not allow current) proportional/equal to B1 rate of change/cutting of flux (linkage) B1
(c) (i) new flux linkage $=8.0 \times 10^{-3} \times 0.4 \times 10^{-4} \times 150$ $=4.8 \times 10^{-5} \mathrm{~Wb}$ C1
change $=2.52 \times 10^{-4} \mathrm{~Wb}$ A1
(ii) e.m.f. $=\left(2.52 \times 10^{-4}\right) / 0.30$

$$
=8.4 \times 10^{-4} \mathrm{~V}
$$

(d) either flux linkage decreases as distance increases so speed must increase to keep rate of change constant

B1 B1
or at constant speed, e.m.f. / flux linkage decreases as x increases (B1) so increase speed to keep rate constant

5 (a) into (plane of) paper / downwards
(b) (i) the centripetal force $=m v^{2} / r$
$m v^{2} / r=B q v$ hence $q / m=v / r B \quad$ (some algebra essential)
B1
(ii) $\begin{aligned} q / m & =\left(8.2 \times 10^{6}\right) /\left(23 \times 10^{-2} \times 0.74\right) \\ & =4.82 \times 10^{7} \mathrm{C} \mathrm{kg}^{-1}\end{aligned}$

C1
A1
(c) (i) mass $\begin{aligned} & =\left(1.6 \times 10^{-19}\right) /\left(4.82 \times 10^{7} \times 1.66 \times 10^{-27}\right) \\ & =2 u\end{aligned}$ C1

$$
\begin{equation*}
=2 u \tag{2}
\end{equation*}
$$

(ii) proton + neutron B1

6 (a) $p V / T=$ constant C1

$$
\begin{aligned}
T & =\left(6.5 \times 10^{6} \times 30 \times 300\right) /\left(1.1 \times 10^{5} \times 540\right) \\
& =985 \mathrm{~K}
\end{aligned}
$$

(if uses ${ }^{\circ}$ C, allow $1 / 3$ marks for clear formula)
(b) (i) $\Delta U=q+w$
symbols identified correctly M1
directions correct A1
(ii) q is zero B1
is positive $O R \quad \Delta U=w$ and U increases B1
ΔU is rise in kinetic energy of atoms M1
and mean kinetic energy $\propto T$ A1
(allow 1 of the last two marks if states ' U increases so T rises')

7 (a) (i) either probability of decay or $\mathrm{d} N / \mathrm{d} t=(-) \lambda N$ OR $A=(-) \lambda N$ M1 per unit time with symbols explained A1
(ii) greater energy of α-particle means MO
(parent) nucleus less stable A1
nucleus more likely to decay A1
hence Radium-224 A1
(b) (i) either $\lambda=\ln 2 / 3.6$ or $\lambda=\ln 2 / 3.6 \times 24 \times 3600$
 C1
activity $=\lambda N$

$$
\begin{aligned}
& =2.23 \times 10^{-6} \times 6.02 \times 10^{18} \\
& =1.3 \times 10^{13} \mathrm{~Bq}
\end{aligned}
$$

Section B

8 (a) + -(b) (i) 1. 4.5 VB1
2. Use of potential divider formula $9 \times 800 /(800+2200)$ C1
2.4 V A1
3. -9.0 V B1
(ii) green (e.c.f. from (a) and (i)3)B1
(c) as temperature rises, potential/voltage at B increases M1at $60^{\circ} \mathrm{C}$, green goes out, red comes onA1
9 (a) (i) clear distinction of boundaries between regionsB1
(ii) significant difference in blackening of different regions B1
(b) (i) $1 / 2=\mathrm{e}^{-\mu}$ C1 A1$\mu=0.693 \mathrm{~mm}^{-1}$
(ii) X-ray (photons) are more penetrating M1
μ is smaller A1 [2]
[2]
10 (a) amplitude of carrier wave varies M1
in synchrony with (displacement of information) signal A1
(b) three vertical lines B1
symmetrical with smaller sidebands B1
at frequencies 70,75 and 80 kHz B1
[2](c) bandwidth $=10 \mathrm{kHz}$B1 [1][3]
11 (a) unwanted energy / power that is random or that covers whole spectrum B1 [1]
(b) number of $\mathrm{dB}=10 \lg \left(P_{\text {OUT }} / P_{\text {IN }}\right)$ C1
$63=10 \lg \left(\right.$ Pout $/\left(2.5 \times 10^{-6}\right)$C1$P_{\text {OUT }}=5.0 \mathrm{~W}$A1
(c) attenuation $=10 \lg \left(5 / 3.5 \times 10^{-8}\right)=81.5 \mathrm{~dB}$ C1
length $=81.5 / 12=6.8 \mathrm{~km}$ A1
12 e.g. permits entry to PSTN selects base station for any handset allocates a carrier frequency/channel monitors handset signal to re-allocate base station allocates time slot for multiplexing etc (any four sensible suggestions, 1 each to max 4)

