Specimen Paper

GCE A LEVEL

MARK SCHEME

MAXIMUM MARK: 100

SYLLABUS/COMPONENT: 9702/04

PHYSICS Paper 4

Page 1	Mark Scheme	Syllabus	Paper
	A and AS LEVEL – SPECIMEN PAPER	9702	4

Section A

1	(a) (i)	radial lines pointing inwards	B1 B1		
	(ii)	no difference OR lines closer near surface of smaller sphere	B1	[3]	
	(b) (i)	b) (i) $F_{\rm G} = GMm / R^2$ = $(6.67 \times 10^{-11} \times 5.98 \times 10^{24}) / (6380 \times 10^3)^2$ = 9.80 N			
	(ii)	$F_{\rm C} = mR\omega^2 \omega = 2\pi / T F_{\rm C} = (4\pi^2 \times 6380 \times 10^3) / (8.64 \times 10^4)^2$	C1 C1		
		= 0.0337 N	A1		
	(iii)	$F_{\rm G.} - F_{\rm C} = 9.77 {\rm N}$	A1	[6]	
		cause acceleration (of free fall) is (resultant) force per unit mass celeration = 9.77 m s^{-2}	B1 B1	[2]	
2	(a) (i)	$\omega = 2\pi f$	B1		
	(ii)	 (ii) (-)ve because a and x in opposite directions OR a directed towards mean position / centre 		[2]	
	(b) (i)	forces in springs are $k(e + x)$ and $k(e - x)$ resultant = $k(e + x) - k(e - x)$ = $2kx$	C1 M1 A0	[2]	
	(ii)	F = ma	B1		
		a = -2 <i>kx / m</i> (-)ve sign explained	A0 B1	[2]	
	(iii)	$\omega^2 = 2k/m$	C1		
	()	$(2\pi f)^2 = (2 \times 120) / 0.90$ f = 2.6 Hz	C1 A1	[3]	

F	Page 2			Mark Scheme	Syllabus		per
				A and AS LEVEL – SPECIMEN PAPER	9702		4
3	(a) sin in s			h R OR in series with a.c. supply		M1 A1	[2]
				V (allow ±0.1 V)		A1	
	(i)	2		= iR = 5.4 / 1.5 × 10 ³ = 3.6 × 10 ⁻³ A		C1 A1	
	(i)	3	time	e = 0.027 s		A1	[4]
	(ii)	1		= it = 3.6 × 10 ⁻³ × 0.027 = 9.72 × 10 ⁻⁵ C		C1 A1	
	(ii)	2		= $\Delta Q / \Delta V$ (allow $C = Q/V$ for this mark)		C1	
				= (9.72 × 10 ⁻⁵) / 1.2 = 8.1 × 10 ⁻⁵ F		A1	[4]
	(c) line	e :	reas	sonable shape with less ripple		B1	[1]
4	(a) (i)	50	mT			A1	
	(ii)	(ii) flux linkage = BAN = $50 \times 10^{-3} \times 0.4 \times 10^{-4} \times 150 = 3.0 \times 10^{-4}$ Wb (allow 49 mT $\rightarrow 2.94 \times 10^{-4}$ Wb or 51 mT $\rightarrow 3.06 \times 10^{-4}$ Wb)			Vb	C1 A1	[3]
	(b) e.m.f. / induced voltage (<i>do not allow current</i>) proportional/equal to rate of change/cutting of flux (linkage)					B1 B1	[2]
	(c) (i)	nev	w flux	t linkage = $8.0 \times 10^{-3} \times 0.4 \times 10^{-4} \times 150$ = 4.8×10^{-5} Wb		01	
		cha	ange	$= 4.8 \times 10^{-4} \text{ Wb}$ = 2.52 × 10 ⁻⁴ Wb		C1 A1	[2]
	(ii)	e.n		= $(2.52 \times 10^{-4}) / 0.30$ = $8.4 \times 10^{-4} V$		C1 A1	[2]
	(d) eitl	her		linkage decreases as distance increases peed must increase to keep rate of change constant		B1 B1	[2]
	or			constant speed, e.m.f. / flux linkage decreases as x in increase speed to keep rate constant	creases	(B1) (B1)	

	Pag	e 3	Mark Scheme	Syllabus	Paper	
			A and AS LEVEL – SPECIMEN PAPER	9702		4
5	(a) into	o (plane c	of) paper / downwards		B1	[1]
	(b) (i)		<u>ripetal force</u> = mv^2 / r Bqv <u>hence</u> q/m = v/r B (some algebra essential)		B1 B1	[2]
	(ii)		$= (8.2 \times 10^{6}) / (23 \times 10^{-2} \times 0.74)$		C1	
			$= 4.82 \times 10^7 \text{ C kg}^{-1}$		A1	[2]
	(c) (i)		= $(1.6 \times 10^{-19}) / (4.82 \times 10^7 \times 1.66 \times 10^{-27})$ = $2u$		C1	[2]
	(ii)	proton +	- neutron		B1	[1]
-					<i></i>	
6	· · ·	T/T = cc			C1	
	1	$= (6.5 \times $ = 985 k	$\times 10^6 \times 30 \times 300)$ / (1.1 $\times 10^5 \times 540$)		C1 A1	[3]
	(if u		allow 1/3 marks for clear formula)		7.11	[0]
	(b) (i)	$\Delta U = q$			M1	
			s identified correctly ns correct		A1	[2]
	(ii)				B1	[-]
	(")	•	ve $OR \Delta U = w$ and U increases		B1	
		•	e in kinetic energy of atoms		M1	
			an kinetic energy $\propto T$		A1	[4]
		(allow 1	of the last two marks if states 'U increases so T rise	es')		
7	(a) (i)	either	probability of decay or $dN/dt = (-)\lambda N$ OR A =	= (-)λN	M1	
			per unit time with symbols explained		A1	[2]
	(ii)	greater	energy of α -particle means		M0	
			nucleus less stable		A1	
			more likely to decay Radium-224		A1 A1	[3]
					7.11	[0]
	(b) (i)	either				
		unit	= 0.193 = 2.23×10^{-6} day ⁻¹ s ⁻¹		A1 A1	[2]
			<i>Lig., -1, allow</i> λ <i>in hr</i> ⁻¹)		AT	[2]
	(ii)		2.24×10^{-3}) / 224} × 6.02 × 10 ²³		C1	
	()		02×10^{18}		C1	
		activity			c .	
			= $2.23 \times 10^{-6} \times 6.02 \times 10^{18}$ = 1.3×10^{13} Bq		C1 A1	[4]
			- 1.5 × 10 By		ЯΙ	[4]

Page 4	Mark Scheme	Syllabus	Paper
	A and AS LEVEL – SPECIMEN PAPER	9702	4

Section B

8	(a) +	_	B1	[1]
	(b) (i) (ii)	 4.5 V Use of potential divider formula 9 × 800 / (800 + 2200) 2.4 V - 9.0 V green (e.c.f. from (a) and (i)3) 	B1 C1 A1 B1 B1	[4] [1]
	• •	temperature rises, potential/voltage at B increases 60 °C, green goes out, red comes on	M1 A1	[2]
9	(a) (i) (ii)	-	B1 B1	[2]
	. , . ,	$\frac{1}{2} = e^{-\mu}$ $\mu = 0.693 \text{ mm}^{-1}$ X-ray (photons) are more penetrating	C1 A1 M1	[2]
	(ii)	μ is smaller	A1	[2]
10	• •	nplitude of carrier wave varies synchrony with (displacement of information) signal	M1 A1	[2]
	Śsy	ree vertical lines mmetrical with smaller sidebands frequencies 70, 75 and 80 kHz	B1 B1 B1	[3]
	(c) ba	ndwidth = 10 kHz	B1	[1]
11	(a) un	wanted energy / power that is random or that covers whole spectrum	B1	[1]
	63	$ \begin{array}{l} \text{mber of } dB &= 10 \lg(P_{\text{OUT}} / P_{\text{IN}}) \\ \text{H} &= 10 \lg(P_{\text{OUT}} / (2.5 \times 10^{-6})) \\ \text{H}_{\text{OUT}} &= 5.0 \text{W} \end{array} $	C1 C1 A1	[3]
		renuation = 10 lg(5 / 3.5 × 10 ⁻⁸) = 81.5 dB ngth = 81.5 / 12 = 6.8 km	C1 A1	[2]
12	selects allocat monito allocat	ermits entry to PSTN s base station for any handset ses a carrier frequency/channel ors handset signal to re-allocate base station ses time slot for multiplexing etc		
	(any fo	our sensible suggestions, 1 each to max 4)	B4	[4]