MNN. Firemed abers com

CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2014 series

9702 PHYSICS

9702/43

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2014	9702	43

Section A

1 M1 (a) work done bringing unit mass from infinity (to the point) Α1 [2] **(b)** $E_{\rm P} = -m\phi$ B1 [1] C1 (c) $\phi \propto 1/x$ $(= 1.05 \times 10^7 \text{ J kg}^{-1})$ either at 6R from centre, potential is $(6.3 \times 10^{7})/6$ and at 5R from centre, potential is $(6.3 \times 10^7)/5$ (= 1.26×10^7 J kg⁻¹) C1 change in energy = $(1.26 - 1.05) \times 10^7 \times 1.3$ C1 $= 2.7 \times 10^6 \text{ J}$ **A1** or change in potential = $(1/5 - 1/6) \times (6.3 \times 10')$ (C1) change in energy = $(1/5 - 1/6) \times (6.3 \times 10^7) \times 1.3$ (C1) $= 2.7 \times 10^6 \text{ J}$ (A1) [4] 2 (a) the number of atoms M1 in 12 g of carbon-12 Α1 [2] **(b) (i)** amount = 3.2/40= 0.080 molΑ1 [1] (ii) pV = nRT $p \times 210 \times 10^{-6} = 0.080 \times 8.31 \times 310$ C1 $p = 9.8 \times 10^5 \, \text{Pa}$ Α1 [2] (do not credit if T in °C not K) (iii) either pV = $1/3 \times Nm < c^2 >$ $N = 0.080 \times 6.02 \times 10^{23} \ (= 4.82 \times 10^{22})$ and $m = 40 \times 1.66 \times 10^{-27}$ (= 6.64 × 10⁻²⁶) C1 $9.8 \times 10^{5} \times 210 \times 10^{-6} = 1/3 \times 4.82 \times 10^{22} \times 6.64 \times 10^{-26} \times < c^{2} > 0.8 \times 10^{-2} \times < c^{2} \times 10^{-2} \times 10^{-2} \times < c^{2} \times 10^{-2$ C1 $\langle c^2 \rangle = 1.93 \times 10^5$ $c_{\rm RMS} = 440 \; {\rm m \; s^{-1}}$ Α1 [3] $Nm = 3.2 \times 10^{-3}$ or (C1) $9.8 \times 10^{5} \times 210 \times 10^{-6} = 1/3 \times 3.2 \times 10^{-3} \times < c^{2} >$ (C1) $\langle c^2 \rangle = 1.93 \times 10^5$ $c_{\rm RMS} = 440 \text{ m s}^{-1}$ (A1) $1/2 m < c^2 > = 3/2 kT$ (C1) or $1/2 \times 40 \times 1.66 \times 10^{-27} < c^2 > = 3/2 \times 1.38 \times 10^{-23} \times 310$ (C1) $\langle c^2 \rangle = 1.93 \times 10^5$ $c_{\rm RMS} = 440 \; {\rm m \; s^{-1}}$ (A1) (if T in °C not K award max 1/3, unless already penalised in (b)(ii))

	Pa	ge 3		<u> </u>	Mark Scheme Syllab GCE AS/A LEVEL – May/June 2014 9702		Paper 43	
				G	CE AS/A LEVEL – May/June 2014	9702	43	
3	(a)	or	lic	quid volum	polume = $(1.69 - 1.00 \times 10^{-3})$ e << volume of vapour $10^5 \times 1.69 = 1.71 \times 10^5$ (J)		M1 A1	[2]
	(b)	(i)	1. he	eating of sy	stem/thermal energy supplied to the system	n	B1	[1]
			2. wo	ork done o	n the system		B1	[1]
		(ii)			10^6) – (1.71×10^5) 10^6 J (3 s.f. needed)		C1 A1	[2]
4	(a)	kine	etic (e	nergy)/KE	/E _K		В1	[1]
	(b)	<i>or</i> new	<u>m</u> v amp	<u>iax</u> E propolitude is 1.	nergy = 0.60 mJ ortional to (amplitude)²/equivalent numerical 3 cm e = 0.2 cm	l working	B1 B1 B1	[3]
5	(a)	gra	Cl	urve with d	at constant potential = V_0 from $x = 0$ to $x = r$ ecreasing gradient ough $(2r, 0.50V_0)$ and $(4r, 0.25V_0)$	•	B1 M1 A1	[3]
	(b)	gra	CI pa	urve with dassing thro	at $E=0$ from $x=0$ to $x=r$ ecreasing gradient from (r, E_0) ough $(2r, \frac{1}{4}E_0)$ k line must be drawn to $x=4r$ and must not	touch x-axis)	B1 M1 A1	[3]
6	(a)	(i)	ener	gy = <i>E</i> Q = 9.0 : = 0.20	× 22 × 10 ⁻³) J		C1 A1	[2]
		(ii)		f = Q/V = (22×1) = 4.7 V	0^{-3})/(4700 × 10^{-6})		C1 A1	[2]
			2.	either	$E = \frac{1}{2}CV^{2}$ $= \frac{1}{2} \times 4700 \times 10^{-6} \times 4.7^{2}$ $= 5.1 \times 10^{-2} \text{ J}$		C1	[0]
				or	$= 5.1 \times 10^{\circ} \text{ J}$ $E = \frac{1}{2}QV$		A1	[2]
				OI .	$= \frac{1}{2} \times 22 \times 10^{-3} \times 4.7$ $= 5.1 \times 10^{-2} \text{ J}$		(C1) (A1)	
				or	$= 5.1 \times 10^{-3}$ $E = \frac{1}{2}Q^{2}/C$		(C1)	
				Oi.	$= \frac{1}{2} \times (22 \times 10^{-3})^{2} / 4700 \times 10^{-6}$ $= 5.1 \times 10^{-2} \text{ J}$		(A1)	
							. ,	

	Page 4		Mark Scheme	Syllabus	Paper	•
			GCE AS/A LEVEL – May/June 2014	9702	43	
	(b)	energy lost (as thermal energy) in resistance/wires/battery/resistor (award only if answer in (a)(i) > answer in (a)(ii)2)				[1]
7	(a)	V	$Y_{\rm H}$ increases from zero when current switched on $Y_{\rm H}$ then non-zero constant $Y_{\rm H}$ returns to zero when current switched off		B1 B1 B1	[3]
	(b)	• • •	uced) e.m.f. proportional to rate nange of (magnetic) flux (linkage)		M1 A1	[2]
		zero	e as current is being switched on e.m.f. when current in coil e in opposite direction when switching off		B1 B1 B1	[3]
8	(a)	allow: dis	and equal amounts (of charge) screte amounts of 1.6 \times 10 ⁻¹⁹ C/elementary charge/e tegral multiples of 1.6 \times 10 ⁻¹⁹ C/elementary charge/e		B1	[1]
	(b)	weight = 4.8×10^{-1} $q = 4.9 \times 10^{-1}$	$e^{-14} = (q \times 680)/(7.0 \times 10^{-3})$		C1 A1	[2]
	(c)		ary charge = 1.6×10^{-19} C (allow 1.6×10^{-19} C to 1.7×10^{-19} C to 1.7	< 10 ⁻¹⁹ C)	MO	
			is a common factor nighest common factor		C1 A1	[2]
9	(a)	max max rate	me delay between illumination and emission i. (kinetic) energy of electron dependent on frequency i. (kinetic) energy of electron independent of intensity of emission of electrons dependent on/proportional to be separate statements, one mark each, maximum 3)	intensity	В3	[3]
	(b)		oton) interaction with electron may be below surface rgy required to bring electron to surface		B1 B1	[2]

	Page 5		j	Mark Scheme	Syllabus	Paper	
				GCE AS/A LEVEL – May/June 2014	9702	43	
		(ii)	1. th	nreshold frequency = $5.8 \times 10^{14} \text{ Hz}$		A1	[1]
			2 . Ø	$b = hf_0$		C1	
				= $6.63 \times 10^{-34} \times 5.8 \times 10^{14}$ = 3.84×10^{-19} (J)		C1	
				$= (3.84 \times 10^{-19})/(1.6 \times 10^{-19})$		O1	
				= 2.4 eV		A1	[3]
			0	r			
				$f = \Phi + E_{\text{MAX}}$	l h into	(C1)	
				hooses point on line and substitutes values E_{MAX} , f and quation with the units of the hf term converted from J to		(C1)	
			Φ	e = 2.4 eV		(A1)	
10	(a)			equired to separate the nucleons (in a nucleus)		M1	[0]
			nfinity <i>ow re</i>	verse statement)		A1	[2]
	(b)	(i)		= (2 × 1.00867) + 1.00728 – 3.01551		C1	
				= 9.11×10^{-3} u ing energy = $9.11 \times 10^{-3} \times 930$		C1	
				= 8.47 MeV		A1	[3]
				w 930 to 934 MeV so answer could be in range 8.47 to w 2 s.f.)	o 8.51 MeV)		
		(ii)		= 211.70394 – 209.93722			
				= 1.76672 u ing energy per nucleon = (1.76672 × 930)/210		C1 C1	
				= 7.82 MeV		A1	[3]
			•	w 930 to 934 MeV so answer could be in range 7.82 to w 2 s.f.)	o 7.86 MeV)		
	(c)			ling energy of barium and krypton		M1	
		is g	reate	r than binding energy of uranium		A1	[2]
Section B							
11	(a)	(i)	inve	rting amplifier		B1	[1]
		(ii)		is <u>very</u> large/infinite		B1	
		-	V^{\dagger} is	s earthed/zero Implifier not to saturate, P must be (almost) earth/zero		B1 B1	[3]
			ioi a	implino not to saturate, i must be (almost) earth/zero		וט	اما
	(b)	(i)	R _A =	: 100 kΩ		A1	
	` '	.,	$R_{\rm B} =$: 10 kΩ		A1	F03
			V _{IN} =	= 1000 mV		A1	[3]
		(ii)	varia	able range meter		B1	[1]

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2014	9702	43

12	(a)	series of X-ray images (for one section/slice) taken from different angles to give image of the section/slice repeated for many slices to build up three-dimensional image (of whole object)	M1 M1 A1 M1 A1	[5]
	(b)	deduction of background from readings division by three	C1 C1	
		P=5 Q=9 R=7 S=13		
		(four correct 2/2, three correct 1/2)	A2	[4]
13	(a)	e.g. noise can be eliminated/waveform can be regenerated extra bits of data can be added to check for errors cheaper/more reliable greater rate of transfer of data		
		(1 each, max 2)	B2	[2]
	(b)	receives bits all at one time transmits the bits one after another	B1 B1	[2]
	(c)	sampling frequency must be higher than/(at least) twice frequency to be sampled	M1	
		either higher (range of) frequencies reproduced on the discor lower (range of) frequencies on phone	A1	
		either higher quality (of sound) on discor high quality (of sound) not required for phone	B1	[3]
14	(a)	reduction in power (allow intensity/amplitude)	В1	[1]
	(b)	(i) attenuation = 2.4 × 30 = 72 dB	A1	[1]
		(ii) gain/attenuation/dB = 10 $\lg(P_2/P_1)$ $72 = 10 \lg(P_{IN}/P_{OUT})$ or $-72 = 10 \lg(P_{OUT}/P_{IN})$ ratio = 1.6×10^7	C1 C1 A1	[3]
	(c)	e.g. enables smaller/more manageable numbers to be used e.g. gains in dB for series amplifiers are added, not multiplied	B1	[1]