MNN. Aremedabers.com

9701CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2013 series

9702 PHYSICS

9702/43

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9702	43

Section A

1 (a) force proportional to product of the two masses and inversely proportional to the M1 square of their separation either reference to point masses or separation >> 'size' of masses **A1** [2] **(b)** gravitational force provides the centripetal force **B**1 $GMm/R^2 = mR\omega^2$ M1 where m is the mass of the planet **A1** $GM = R^3 \omega^2$ Α0 [3] (c) $\omega = 2\pi / T$ C₁ either $M_{\text{star}} / M_{\text{Sun}} = (R_{\text{star}} / R_{\text{Sun}})^3 \times (T_{\text{Sun}} / T_{\text{star}})^2$ $M_{\rm star} = 4^3 \times (\frac{1}{2})^2 \times 2.0 \times 10^{30}$ C1 $= 3.2 \times 10^{31} \text{kg}$ **A1** [3] $M_{\rm star} = (2\pi)^2 R_{\rm star}^3 / GT^2$ or (C1)= $\{(2\pi)^2 \times (6.0 \times 10^{11})^3\} / \{6.67 \times 10^{-11} \times (2 \times 365 \times 24 \times 3600)^2\}$ (C1) $= 3.2 \times 10^{31} \text{kg}$ (A1)2 (a) (i) sum of kinetic and potential energies of the molecules M1 reference to random distribution **A1** [2] (ii) for ideal gas, no intermolecular forces M1 so no potential energy (only kinetic) **A1** [2] **(b)** (i) either change in kinetic energy = $3/2 \times 1.38 \times 10^{-23} \times 1.0 \times 6.02 \times 10^{23} \times 180$ C₁ = 2240 J**A1** [2] or $R = kN_A$ energy = $3/2 \times 1.0 \times 8.31 \times 180$ (C1) = 2240 J(A1)(ii) increase in internal energy = heat supplied + work done on system **B1** 2240 = energy supplied - 1500C1 energy supplied = 3740 J Α1 [3] M1 3 (a) work done bringing unit positive charge from infinity (to the point) **A1** [2] (b) (i) either both potentials are positive/same sign M1 Α1 so same sign [2] gradients are positive & negative (so fields in opposite directions) (M1)or so same sign (A1)(ii) the individual potentials are summed **B**1 [1] (iii) allow value of x between 10 nm and 13 nm Α1 [1] (allow $0.42 \text{ V} \rightarrow 0.44 \text{ V}$) (iv) V = 0.43 VM1 energy = $2 \times 1.6 \times 10^{-19} \times 0.43$ **A1** $= 1.4 \times 10^{-19} J$ **A1** [3]

Page 3	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9702	43

4 (a) e.g. store energy (do not allow 'store charge')

in smoothing circuits

blocking d.c.

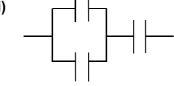
in oscillators

any sensible suggestions, one each, max. 2

B2 [2]

(b) (i) potential across each capacitor is the same and Q = CV

B1 [1]


(ii) total charge $Q = Q_1 + Q_2 + Q_3$ $CV = C_1V + C_2V + C_3V$ (allow Q = CV here or in (i)) so $C = C_1 + C_2 + C_3$

M1

M1

A0 [2]

(c) (i)

Α1 [1]

A1 [1]

5 (a) (i) region (of space)

either where a moving charge (may) experience a force

- around a magnet where another magnet experiences a force
- B1 [1]

(ii) $(\Phi =) BA \sin \theta$

A1 [1]

- (b) (i) plane of frame is always parallel to B_V /flux linkage always zero
- **B**1 [1]

(ii) $\Delta \Phi = 1.8 \times 10^{-5} \times 52 \times 10^{-2} \times 95 \times 10^{-2}$ = 8.9×10^{-6} Wb

C1 **A1** [2]

(c) (i) (induced) e.m.f. proportional to rate of change of (magnetic) flux (linkage) (allow rate of cutting of flux)

M1 [2] **A1**

(ii) e.m.f. = $(8.9 \times 10^{-6}) / 0.30$ $= 3.0 \times 10^{-5} \text{ V}$

- Α1 [1]
- (iii) This question part was removed from the assessment. All candidates were awarded 1 mark.
- **B1** [1]

	Page 4				Syllabus	Paper	
				GCE A LEVEL – October/November 2013	9702	43	
6	or		ther constant speed parallel to plate accelerated motion/force normal to plate/in direction field not circular			B1 A0	[1]
	(b)	(i)		ction of force due to magnetic field opposite to that due netic field into plane of page	to electric field	B1 B1	[2]
	(ii)		e due to magnetic field = force due to electric field = <i>qE</i>		B1	
			B =	Elv		C1	
				$(2.8 \times 10^4) / (4.7 \times 10^5)$ $6.0 \times 10^{-2} \text{ T}$		A1	[3]
	(c)	(i)	no c	hange/not deviated		B1	[1]
	(ii)	devi	ated upwards		B1	[1]
	(i	ii)	no c	hange/not deviated		B1	[1]
7	(a)	(i)		mum photon energy mum energy to remove an electron (from the surface)		B1 B1	[2]
	(ii)	eithe or	er maximum KE is photon energy – work function ene max KE when electron ejected from the surface	rgy	B1	
			ener	rgies lower than max because energy required to surface	bring electron		[2]
	(b)	(i)		shold frequency = 1.0×10^{15} Hz (allow $\pm 0.05 \times 10^{15}$ k function energy = hf_0 = $6.63 \times 10^{-34} \times 1.0 \times 10^{15}$) ¹⁵)	C1 C1	
			(allo the l	= 6.63×10^{-19} J w alternative approaches based on use of co-ordin	nates of points o	A1 on	[3]
	(ii)	sket	ch: straight line with same gradient displaced to right		M1 A1	[2]
	(i	ii)		nsity determines number of photons arriving per unit tinnsity determines number of electrons per unit time (not		B1 B1	[2]
8	i i	probability of decay (of a nucleus)/fraction of number of nuclei in sample that decay per unit time (allow $\lambda = (dN/dt)/N$ with symbols explained – (M1), (A1))			ole M1 A1	[2]	
	(b)	(i)	num	ber = $(1.2 \times 6.02 \times 10^{23}) / 235$ = 3.1×10^{21}		C1 A1	[2]

	Page 5	Mark Scheme	Syllabus	Paper	
	-	GCE A LEVEL – October/November 2013	9702	43	
	nec for	$N_0 e^{-\lambda t}$ gligible activity from the krypton barium, $N = (3.1 \times 10^{21}) \exp(-6.4 \times 10^{-4} \times 3600)$ $= 3.1 \times 10^{20}$ ivity $= \lambda N$ $= 6.4 \times 10^{-4} \times 3.1 \times 10^{20}$ $= 2.0 \times 10^{17} \text{ Bq}$		B1 C1 C1 A1	[4]
		Section B			
9	infil infil infil infil	o output impedance/resistance nite input impedance/resistance nite (open loop) gain nite bandwidth nite slew rate		Do	[0]
	(Teach	, max. 3)		В3	[3]
	(b) (i) gai	n = 1 + (10.8 / 1.2) = 10		C1 A1	[2]
	hor	ph: straight line from (0,0) towards V_{IN} = 1.0 V, V_{OUT} = 1 izontal line at V_{OUT} = 9.0 V to V_{IN} = 2.0 V rect +9.0 V \rightarrow -9.0 V (and correct shape to V_{IN} = 0)	0 V	B1 B1 B1	[3]
10	either	pin/precess ecess about direction of magnetic field frequency of precession depends on magnetic field stre large field means frequency in radio frequency range	ngth	B1 B1 B1	[3]
	of subjection	form field means frequency of precession different is ect solution of precessing nuclei to be determined at thickness of slice to be varied/location of slice to be cl	-	B1 B1 B1	[3]
11	witl	ner series of 'highs' and 'lows' or two discrete values in no intermediate values		M1 A1	[2]
	(ii) e.g	noise can be eliminated (NOT 'no noise') signal can be regenerated addition of extra data to check for errors larger data carrying capacity cheaper circuits more reliable circuits (any three, 1 each)		В3	[3]

	Page 6			Mark Scheme	Syllabus	Paper	
				GCE A LEVEL – October/November 2013	9702	43	
	(b)	(i)	1 . a	mplifier		B1	[1]
			2. d	igital-to-analogue converter (allow DAC)		B1	[1]
		(ii)		out of ADC is number of digits all at one time allel-to-serial sends digits one after another		B1 B1	[2]
12	(a)	e.g.	large	ittle ionospheric reflection e information carrying capacity v two sensible suggestions, 1 each)		B2	[2]
	(b)	•		(very) low power signal received at satellite vamped by high-power transmitted signal		M1 A1	[2]
	(c)	atte	enuati	fion/dB = 10 lg(P_2/P_1) 185 = 10 lg($\{3.1 \times 10^3\}/P$) $P = 9.8 \times 10^{-16} \text{ W}$		C1 C1 A1	[3]