MNN. Firemed abers com

## **CAMBRIDGE INTERNATIONAL EXAMINATIONS**

GCE Advanced Subsidiary Level and GCE Advanced Level

## MARK SCHEME for the October/November 2013 series

## 9702 PHYSICS

9702/33

Paper 3 (Advanced Practical Skills 1), maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.



| га  | ye z                                                                                                                                                                     |                      | Wark Scheine                                                                                                                                                                                                                                          | Syliabus          | rapei                 |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------|
|     |                                                                                                                                                                          |                      | GCE AS/A LEVEL – October/November 2013                                                                                                                                                                                                                | 9702              | 33                    |
| (a) | (i)                                                                                                                                                                      | Valu                 | e for $d$ in the range 0.15 mm $\leq d \leq$ 0.25 mm, with unit.                                                                                                                                                                                      |                   | [1]                   |
| (c) | (ii)                                                                                                                                                                     | Valu                 | es of $V_1$ and $V_2$ , and $V_1 > V_2$ .                                                                                                                                                                                                             |                   | [1]                   |
| (d) |                                                                                                                                                                          |                      | of readings of $l$ , $V_1$ and $V_2$ scores 5 marks, five sets scollp from Supervisor –2. Minor help from Supervisor –1.                                                                                                                              | res 4 marks etc   | . [5]                 |
|     | Rar                                                                                                                                                                      | nge: 🛭               | <i>l</i> ≥ 30 cm.                                                                                                                                                                                                                                     |                   | [1]                   |
|     | Eac                                                                                                                                                                      | ch col               | neadings: umn heading must contain a quantity and a unit where a must conform to accepted scientific convention, e.g. $\ell/\ell$                                                                                                                     |                   | [1]                   |
|     |                                                                                                                                                                          | nsiste<br>value:     | ncy: s of raw $\it l$ must be given to the nearest mm.                                                                                                                                                                                                |                   | [1]                   |
|     | Significant figures: Significant figures for every row of $V_1/V_2$ must be the same as, or one more than the leanumber of significant figures used in $V_1$ and $V_2$ . |                      |                                                                                                                                                                                                                                                       |                   | [1]<br>than the least |
|     |                                                                                                                                                                          | culati<br>ues o      | on: f $V_1/V_2$ calculated correctly.                                                                                                                                                                                                                 |                   | [1]                   |
| (e) | (i)                                                                                                                                                                      | Scal<br>both<br>Scal | s: sible scales must be used, no awkward scales (e.g. 3:10 es must be chosen so that the plotted points occupy a x and y directions. es must be labelled with the quantity that is being plotte e markings should be no more than three large squares | at least half the | [1] graph grid in     |
|     |                                                                                                                                                                          | All o<br>Dian        | ing of points:<br>bservations in the table must be plotted.<br>neter of plotted point must be ≤ half a small square (no '<br>k to an accuracy of half a small square.                                                                                 | ʻblobs").         | [1]                   |
|     |                                                                                                                                                                          |                      | lity: oints in the table must be plotted on the grid for this man oints must be within 0.05 (to scale) on the y-axis $V_1/V_2$ f                                                                                                                      |                   |                       |
|     | (ii)                                                                                                                                                                     | Judg                 | of best fit :<br>ge by balance of all points on the grid about the candida<br>e must be an even distribution of points either side of th                                                                                                              |                   |                       |

**Mark Scheme** 

**Syllabus** 

**Paper** 

Page 2

1

Allow one anomalous point only if clearly indicated by the candidate.

Line must not be kinked or thicker than half a small square.

| Page 3 |                                                                                                                                                                                                                                      | Mark Scheme                                                                                                                                                                    | Syllabus                                | Paper                  |  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------|--|
|        |                                                                                                                                                                                                                                      | GCE AS/A LEVEL – October/Novemb                                                                                                                                                | per 2013 9702                           | 33                     |  |
|        | (iii) Gradient: The hypotenuse of the triangle must be at least half the length of the drawn line. Both read-offs must be accurate to half a small square in both the x and y directions. The method of calculation must be correct. |                                                                                                                                                                                |                                         |                        |  |
|        |                                                                                                                                                                                                                                      | y-intercept:<br>Either:                                                                                                                                                        |                                         |                        |  |
|        |                                                                                                                                                                                                                                      | Check correct read off from a point on the line and substituted into $y = mx + c$ .<br>Read-off must be accurate to half a small square in both $x$ and $y$ directions.<br>Or: |                                         |                        |  |
|        |                                                                                                                                                                                                                                      | Check read-off of the intercept directly from the graph.                                                                                                                       |                                         |                        |  |
|        | (f) (i)                                                                                                                                                                                                                              | Value of P = candidate's gradient. Value of Q =                                                                                                                                | candidate's intercept.                  | [1]                    |  |
|        | (ii)                                                                                                                                                                                                                                 | Value of $\rho$ in range 1.0 – 20.0 × 10 <sup>-7</sup> $\Omega$ m                                                                                                              |                                         | [1]                    |  |
|        |                                                                                                                                                                                                                                      |                                                                                                                                                                                |                                         | [Total: 20]            |  |
| 2      | <b>(b)</b> Val                                                                                                                                                                                                                       | ue of $\emph{m}$ to the nearest 1 g or better with consister                                                                                                                   | nt unit.                                | [1]                    |  |
|        | (c) (ii)                                                                                                                                                                                                                             | Measurement of raw $\theta$ to nearest degree with $\theta$ Evidence of repeat readings for $\theta$ .                                                                         | ınit.                                   | [1]<br>[1]             |  |
|        | (iii)                                                                                                                                                                                                                                | Percentage uncertainty in $\theta$ based on absolute provided this is not zero), and correct method of                                                                         | - · · · · · · · · · · · · · · · · · · · | half the range<br>[1]  |  |
|        | (iv)                                                                                                                                                                                                                                 | Correct calculation of tan ( $\theta$ /2).                                                                                                                                     |                                         | [1]                    |  |
|        | (d) (i)                                                                                                                                                                                                                              | Second value of $m > $ first value of $m$ .                                                                                                                                    |                                         | [1]                    |  |
|        | (ii)                                                                                                                                                                                                                                 | Second value of $\theta$ . Quality: second value of $\theta$ < first value of $\theta$ .                                                                                       |                                         | [1]<br>[1]             |  |
|        | (e) Val                                                                                                                                                                                                                              | ue of $\theta$ .                                                                                                                                                               |                                         | [1]                    |  |
|        | (f) (i)                                                                                                                                                                                                                              | Two values of <i>k</i> calculated correctly.                                                                                                                                   |                                         | [1]                    |  |
|        | (ii)                                                                                                                                                                                                                                 | Justification of s.f. in k linked to significant figure                                                                                                                        | es in $m$ and $\theta$ .                | [1]                    |  |
|        | (iii)                                                                                                                                                                                                                                | Sensible comment relating to the calculated specified by the candidate.                                                                                                        | values of $k$ , testing again           | nst a criterion<br>[1] |  |

| Page 4 | Page 4 Mark Scheme                     |      | Paper |
|--------|----------------------------------------|------|-------|
|        | GCE AS/A LEVEL – October/November 2013 | 9702 | 33    |

| (g) | (i) Limitations (4 max)                                                             | (ii) Improvements (4 max)                                                                                                                                                                                         | Do not credit                                                                                                                     |
|-----|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| A   | Two readings not enough (to draw a conclusion                                       | Take more readings <u>and</u> plot a graph / take more readings and calculate more <i>k</i> values and compare                                                                                                    | repeat readings / 'few readings' / 'take more readings and calculate average' / 'only one reading' / 'repeat readings' on its own |
| В   | Difficult to measure $\theta$ because hook of mass (hanger) in the way / thick band | Tie thread to centre of bottom of rubber band and hang mass from it                                                                                                                                               |                                                                                                                                   |
| С   | Difficult to hold the protractor steady / parallax error reading angle / protractor | Improved method to measure $\theta$ e.g. project image of stretched rubber band onto a screen / mark on board / measure lengths and calculate $\theta$ clamp protractor / take picture or video and measure angle |                                                                                                                                   |
| D   | Rubber band stretches over time                                                     | Take readings quickly / remove mass from rubber band between readings                                                                                                                                             |                                                                                                                                   |
| E   | Stands moved / rods twist when loads attached to rubber band                        | Method of preventing movement of stands / clamp stands to bench / use nails in board                                                                                                                              |                                                                                                                                   |
| F   | Difficult to locate centre of band                                                  | Method of locating <u>and mark</u> centre e.g. measure and mark centre                                                                                                                                            |                                                                                                                                   |
| G   | Change in $\theta$ small                                                            | Larger range of masses                                                                                                                                                                                            |                                                                                                                                   |

[Total: 20]