MNN. Xiremedabers.com

CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2013 series

9702 PHYSICS

9702/23

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	ı age z	wark ocheme Cynabus	i apci		
		GCE AS/A LEVEL – October/November 2013 9702	23		
1	volume = $\pi (14 \times 10^{-3})^2 \times 12 \times 10^{-3} (=7.389 \times 10^{-6} \text{ m}^3)$ density = mass / volume [any subject]				
	mass = $6.8 \times 10^3 \times 7.389 \times 10^{-6} = 0.0502$ weight = mg = $0.0502 \times 9.81 = 0.49 \text{ N}$ (mark not awarded if not to two s.f.)				
2	` '	s for T: s, R: m and M: kg (or seen clearly in formula)	C1		
	$K = T^2$	M/R^3 units: $s^2 kg m^{-3}$ (allow $s^2 kg / m^3$ or $\frac{s^2 kg}{m^3}$)	A1	[2]	
	K = [(86 6% of <i>K</i> K = (5.9	ertainty in <i>K</i> : 1% (for <i>T</i>) + 3% (for <i>R</i>) + 2% (for <i>M</i>) OR = 6% $(6400)^2 \times 6 \times 10^{24}$] / $(4.23 \times 10^7)^3 = 5.918 \times 10^{11}$ $(4.23 \times 10^{11})^3 = 5.918 \times 10^{11}$	C1 C1 C1 A1	[4]	
3		ocity = rate of <u>change</u> of displacement R displacement <u>change</u> / time (taken)	A1	[1]	
		celeration = rate of <u>change</u> of velocity R <u>change</u> in velocity / time (taken)	A1	[1]	
(ial constant velocity as straight line / gradient constant ddle section deceleration/ speed / velocity decreases / slowing down as	B1		
	gra las	adient decreases It section lower velocity (than at start) as gradient (constant and) smaller It section lower velocity (than at start) as gradient (constant and) smaller It section lower velocity (than at start) as gradient (constant and) smaller It section decreases (constant and) smaller	B1 B1	[3]	
	(ii) vel	ocity = $45 / 1.5 = 30 \text{ m s}^{-1}$	A1	[1]	
	ac	ocity at 4.0s is $(122 - 98) / 2.0 = 12 (\text{m s}^{-1})$ (allow 12 to 13) celeration = $(12 - 30) / 2.5 = -7.2 \text{m s}^{-2}$ (if answer not this value then	B1		
		mment needed to explain why, e.g. difficulty in drawing tangent)	A1	[2]	
	(iv) <i>F</i> =	= <i>ma</i> = (–)1500 × 7.2 = (–)11000 (10800) N	C1 A1	[2]	
4	(a) gravitational PE is energy of a <u>mass</u> due to its position in a <u>gravitational field</u> elastic PE energy <u>stored</u> (in an object) <u>due to</u> (a force) changing its shape /				
	deformation / being compressed / stretched / strained				
	(b) (i) 1.	kinetic energy = $\frac{1}{2} mv^2$ = $\frac{1}{2} \times 0.065 \times 16^2 = 8.3(2) \text{ J}$	C1 A1	[2]	
	2.	$v^2 = 2gh \text{ OR PE} = mgh$ $h = 16^2 / (2 \times 9.81) = 13(.05) \text{ m}$	C1 A1	[2]	

Mark Scheme

Syllabus

Paper

Page 2

	Page 3		Mark Scheme	Syllabus	Paper	
			GCE AS/A LEVEL – October/November 2013 9702		23	
	(ii)	KE i	ed at $t = \frac{1}{2}$ total time = 8 (m s ⁻¹) or total $t = 1.63$ or or h at $t_{1/2} = 9.78$ (m PE is $\frac{3}{4}$ of max ratio = 3 or ratio = 9.78 / 3.26)	C1 C1 A1	[3]
	(iii)		e is less because (average) acceleration is greater OF reater	R average force	ce B1	[1]
5	(a) (i)		wavelength: minimum distance between two points moving OR distance between neighbouring or consecutive peaks OR wavelength is the distance moved by a wavefront in oscillation/cycle or period (of source)	s or troughs	B1	[1]
			frequency: number of wavefronts / (unit) time OR number of oscillations per unit time or oscillations/time	ie	B1	[1]
	(ii)	spe	$ed = \underline{distance} / time = \underline{wavelength / time period}$ $= \lambda / T = \lambda f$		M1 A0	[1]
	(b) (i)	amp	olitude = 4.0 mm (allow 1 s.f.)		A1	[1]
	(ii)					
		ansv	speed = $2.5 \times 4.8 \times 10^{-2}$ = 12×10^{-2} m s ⁻¹ unit consistent with numerical answer, e.g. in cm s ⁻¹ if cm used for λ and unit changed on answer line [if 18 cm = 3.5λ used giving speed 13 (12.9) cm s ⁻¹ allow max. 1].			
	(iii)	180°	$^{\circ}$ or π rad		A1	[1]
			screen and correct positions above and below ripple tandrideo camera	k	B1 B1	[2]
6	(a) e.m.f. = total energy available (per unit charge) some (of the available energy) is used/lost/wasted/given out in the internal resistance of the battery (hence p.d. available less than e.m.f.)					
						[2]
	(b) (i)		<i>IR</i> 5.9 / 5.0 = 1.4 (1.38) A		C1 A1	[2]
	(ii)		ost volts / current 9– 6.9) / 1.38 = 1.5(2) Ω		C1 A1	[2]
	(c) (i)		EI (not $P = VI$ if only this line given or 9 V not used in se $9 \times 1.38 = 12$ (12.4) W	cond line)	C1 A1	[2]
	(ii)	effic	iency = output power / total power = <i>VI</i> / <i>EI</i> = 6.9 / 9 or (9.52) / (12.4) = 0.767 / 76.7%		C1 A1	[2]

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9702	23

7 **B**1 (a) (i) six vertical lines from plate to plate equally spaced across plates [only allow if greatest to least spacing is < 1.3, condone slight curving on the two edges. There must be no area between the plates where an additional line(s) could be added.] arrow downwards on at least one line B1 [2] (ii) E = V/dC1 = $1200 / 40 \times 10^{-3} = 3.0 \times 10^{4} \text{ V m}^{-1}$ (allow 1 s.f.) Α1 [2] C1 (b) (i) F = Ee $= 3 \times 10^4 \times 1.6 \times 10^{-19} = 4.8 \times 10^{-15} \text{ N}$ Α1 [2] (ii) couple = $F \times$ separation of charges C1 $= 4.8 \times 10^{-15} \times 15 \times 10^{-3} = 7.2 \times 10^{-17}$ **A1** unit: N m or unit consistent with unit used for the separation B1 [3] (iii) A at top/next to +ve plate B at bottom/next to -ve plate vertically aligned M1 [could be shown on the diagram] forces are equal and opposite in same line / no resultant force and no

A1

[2]

resultant torque