CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2013 series

9702 PHYSICS

9702/43

Paper 4 (A2 Structured Questions), maximum raw mark 100

MMM. Hiremepapers.com

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2		2	Mark Scheme	Syllabus	Paper	•			
				GCE AS/A LEVEL – May/June 2013	9702	43				
		Section A								
1	(a)	region of space area / volume where a mass experiences a force					[2]			
	(b)	(i)	force	e proportional to product of two masses e inversely proportional to the square of their separation er reference to point masses <i>or</i> separation >> 'size' of m	asses	M1 M1 A1	[3]			
		(ii)		strength = GM / x^2 or field strength $\propto 1 / x^2$ = $(7.78 \times 10^8)^2 / (1.5 \times 10^8)^2$ = 27		C1 C1 A1	[3]			
	(c)	(i)	or grav eithe M =	er centripetal force = $mR\omega^2$ and $\omega = 2\pi / T$ centripetal force = mv^2 / R and $v = 2\pi R / T$ ritational force provides the centripetal force er $GMm / R^2 = mR\omega^2$ or $GMm / R^2 = mv^2 / R$ $4\pi^2 R^3 / GT^2$ w working to be given in terms of acceleration)		B1 B1 M1 A0	[3]			
		(ii)		= $\{4\pi^2 \times (1.5 \times 10^{11})^3\} / \{6.67 \times 10^{-11} \times (3.16 \times 10^7)^2\}$ = 2.0×10^{30} kg		C1 A1	[2]			
2	(a)	p, \	/ and	e equation pV = constant × T or pV = nRT T explained ues of p , V and T /fixed mass/ n is constant		M1 A1 A1	[3]			
	(b)	(i)		$\times 10^5 \times 2.5 \times 10^3 \times 10^{-6} = n \times 8.31 \times 300$ 0.34 mol		M1 A0	[1]			
		(ii)	3.9 >	otal mass/amount of gas × 10 ⁵ × (2.5 + 1.6) × 10 ³ × 10 ⁻⁶ = (0.34 + 0.20) × 8.31 × 7 360 K	r	C1 A1	[2]			
	(c)	gas woi	s pass rk dor	o opened sed (from cylinder B) to cylinder A ne <u>on</u> gas in cylinder A (and no heating) al energy and hence temperature increase		B1 M1 A1	[3]			

	Pa	ge 3	Mark Scheme	Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2013	9702	43	
3	(a)	(i) 1.	amplitude = 1.7 cm		A1	[1]
		2.	period = 0.36 cm frequency = 1/0.36 = 2.8 Hz		C1 A1	[2]
			$(-)\omega^2 x \text{ and } \omega = 2\pi/T$ eleration = $(2\pi/0.36)^2 \times 1.7 \times 10^{-2}$ = 5.2 m s ⁻²		C1 M1 A0	[2]
	(b)		straight line, through origin, with negative gradient from $(-1.7 \times 10^{-2}, 5.2)$ to $(1.7 \times 10^{-2}, -5.2)$ not reasonable, do not allow second mark)		M1 A1	[2]
	(c)	or $\frac{1}{2}m\omega^2(x)$ $x_0^2 = 2x^2$	kinetic energy = $\frac{1}{2}m\omega^2(x_0^2 - x^2)$ potential energy = $\frac{1}{2}m\omega^2x^2$ and potential energy = kineti $x_0 - x^2$) = $\frac{1}{2} \times \frac{1}{2}m\omega^2x_0^2$ or $\frac{1}{2}m\omega^2x^2 = \frac{1}{2} \times \frac{1}{2}m\omega^2x_0^2$ $\sqrt{2} = 1.7 / \sqrt{2}$	c energy	B1 C1	
		= 1.20			A1	[3]
4	(a)		ne moving unit positive charge inity (to the point)		M1 A1	[2]
	(b)		kinetic energy = change in potential energy qV leading to $v = (2Vq/m)^{\frac{1}{2}}$		B1 B1	[2]
	(c)	either	$(2.5 \times 10^5)^2 = 2 \times V \times 9.58 \times 10^7$ V = 330 V this is less than 470 V and so 'no'		C1 M1 A1	[3]
		or	$v = (2 \times 470 \times 9.58 \times 10^7)$ $v = 3.0 \times 10^5 \text{ m s}^{-1}$ this is greater than $2.5 \times 10^5 \text{ m s}^{-1}$ and so 'no'		(C1) (M1) (A1)	
		or	$(2.5 \times 10^5)^2 = 2 \times 470 \times (q/m)$ $(q/m) = 6.6 \times 10^7 \mathrm{C}\mathrm{kg}^{-1}$ this is less than $9.58 \times 10^7 \mathrm{C}\mathrm{kg}^{-1}$ and so 'no'		(C1) (M1) (A1)	

	Pa	ge 4		Mark Scheme			Syllabus	Paper			
					GCE A	S/A LEVEL	. – May	/June 2013	9702	43	
5	(a)	(un (cr€	iform eates)	magne) force p	tic) flux no per unit le	ormal to lor ngth of 1 N	ng (stra m ⁻¹	ight) wire carrying a	current of 1 A	M1 A1	[2]
	(b)	(i)	flux	density	$= 4\pi \times 1$ $= 6.6 \times$	0 ^{−7} × 1.5 × 10 ^{−3} T	10 ³ × 3	3.5		C1 A1	[2]
		(ii)	flux	linkage	= 6.6 × = 3.0 ×	10 ⁻³ × 28 × 10 ⁻³ Wb	10 ⁻⁴ ×	160		C1 A1	[2]
	(c)	(i)				ortional to r) flux (linka				M1 A1	[2]
		(ii)	e.m.	.f. = (= 7	$2 \times 3.0 \times 7.4 \times 10^{-3}$	10 ^{–3}) / 0.80 V				C1 A1	[2]
6	(a)	(i)				in the core /induced cu				B1 B1	[2]
		(ii)	eithe or		•	ss in transfo = output po				B1	[1]
	(b)	eith or		peak vo	oltage acr	oss load	= √2 × = 340 \			C1 A1 (C1)	[2]
					oltage acr		,	= 12.7 × (8100/300) = 340 V)	(A1)	
7	(a)	(i)		•	•	e.m. radiation n of electro		m the surface)		M1 A1	[2]
		(ii)	E = .	hf						C1	
			three	shold fr	equency	= (9.0 × 10 = 1.4 × 10		6.63 × 10 ⁻³⁴)		A1	[2]
	(b)	either $300 \text{ nm} \equiv 10 \times 10^{15} \text{ Hz}$ (and $600 \text{ nm} \equiv 5.0 \times 10^{14} \text{ Hz}$) or $300 \text{ nm} \equiv 6.6 \times 10^{-19} \text{ J}$ (and $600 \text{ nm} \equiv 3.3 \times 10^{-19} \text{ J}$) or 210 m plotinum $3 \times 220 \text{ nm}$ (and addium $3 \times 520 \text{ nm}$)				- 520 nm)	N11				
		or $zinc \lambda_0 = 340 \text{ nm}$, platinum $\lambda_0 = 220 \text{ nm}$ (and sodium $\lambda_0 = 520 \text{ nm}$) emission from sodium and zinc						₀ = 5∠∪nm)	M1 A1	[2]	
	(c)	each photon has large fewer photons per unit fewer electrons emitte			er unit tin	ne	1			M1 M1 A1	[3]

	Page 5			Mark Scheme GCE AS/A LEVEL – May/June 2013	Syllabus 9702	Paper 43	'
8				nuclei combine more massive nucleus	9702	43 M1 A1	[2]
	(b)	(i)	∆ <i>m</i> energ	= $(2.01410 \text{ u} + 1.00728 \text{ u}) - 3.01605 \text{ u}$ = $5.33 \times 10^{-3} \text{ u}$ gy = $c^2 \times \Delta m$ = $5.33 \times 10^{-3} \times 1.66 \times 10^{-27} \times (3.00 \times 10^8)^2$ = $8.0 \times 10^{-13} \text{ J}$		C1 C1 A1	[3]
		(ii)		d/kinetic energy of proton and deuterium must be very at the nuclei can overcome electrostatic repulsion	arge	B1 B1	[2]
				Section B			
9	(a)	(i)	light-o	dependent resistor/LDR		B1	[1]
		(ii)	strain	gauge		B1	[1]
		(iii)	quart	z/piezo-electric crystal		B1	[1]
	(b)	(i)	resist <i>etihei</i>			M1	
			or V _{OUT}	current increases <u>and</u> $V_{OUT} = IR$ increases		A1 A1	[3]
		(ii)	<i>eithei</i> or so ch	r change in R_T with temperature is non-linear V_{OUT} is not proportional to R_T change in V_{OUT} with R_T ange is non-linear	R_{T} is non-linear	M1 A1	[2]
10	(a)			s: how well the edges (of structures) are defined difference in (degree of) blackening between structures	i	B1 B1	[2]
	(b)	e.g	large	ering of photos in tissue/no use of a collimator/no use o penumbra on shadow/large area anode/wide beam pixel size	f lead grid		
				two sensible suggestions, 1 each)		B2	[2]
	(c)	(i)	I = I _c ratio	$e^{-\mu x}$ = exp(-2.85 × 3.5) / exp(-0.95 × 8.0) = (4.65 × 10 ⁻⁵) / (5.00 × 10 ⁻⁴)		C1 C1	
				= 0.093		A1	[3]
		(ii)	or	r large difference (in intensities) ratio much less than 1.0 od contrast		M1 A1	[2]
			(ansv	ver given in (c)(ii) must be consistent with ratio given ir	a (c)(i))		

	Page 6				Mark Scheme	Syllabus	Paper	•
				GCE AS/A	LEVEL – May/June 2013	9702	43	
11	(a)	(i)		litude of the carrier v ynchrony) with the d	wave varies lisplacement of the information sign	al	M1 A1	[2]
		(ii)	-	enables shorter aeri	s power required/less attenuation	/less interference	B2	[2]
					, ,			
	(b)	(i)		uency = 909 kHz			C1	
			wave	elength = $(3.0 \times 10^{\circ})$ = 330 m	⁻) / (909 × 10°)		A1	[2]
		(ii)	band	dwidth = 18 kHz			A1	[1]
		(iii)	frequ	uency = 9000 Hz			A1	[1]
12	(a)	(a) for received signal, $28 = 10 \lg(P / \{0.36 \times 10^{-6}\})$ $P = 2.3 \times 10^{-4} \text{W}$						[2]
	(b)	(b) loss in fibre = $10 \log(\{9.8 \times 10^{-3}\} / \{2.27 \times 10^{-4}\})$ = $16 dB$						
	(c)	atte	enuati	on per unit length	= 16 / 85 = 0.19 dB km ⁻¹		A1	[1]